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Abstract: Ionospheric scintillation frequently occurs in equatorial, auroral and polar regions, posing
a threat to the performance of the global navigation satellite system (GNSS). Thus, the detection
of ionospheric scintillation is of great significance in regard to improving GNSS performance, es-
pecially when severe ionospheric scintillation occurs. Normal algorithms exhibit insensitivity in
strong scintillation detection in that the natural phenomenon of strong scintillation appears only
occasionally, and such samples account for a small proportion of the data in datasets relative to
those for weak/moderate scintillation events. Aiming at improving the detection accuracy, we
proposed a strategy combining an improved eXtreme Gradient Boosting (XGBoost) algorithm by
using the synthetic minority, oversampling technique and edited nearest neighbor (SMOTE-ENN)
resampling technique for detecting events imbalanced with respect to weak, medium and strong
ionospheric scintillation. It outperformed the decision tree and random forest by 12% when using
imbalanced training and validation data, for tree depths ranging from 1 to 30. For different degrees
of imbalance in the training datasets, the testing accuracy of the improved XGBoost was about 4% to
5% higher than that of the decision tree and random forest. Meanwhile, the testing results for the
improved method showed significant increases in evaluation indicators, while the recall value for
strong scintillation events was relatively stable, above 90%, and the corresponding F1 scores were
over 92%. When testing on datasets with different degrees of imbalance, there was a distinct increase
of about 10% to 20% in the recall value and 6% to 11% in the F1 score for strong scintillation events,
with the testing accuracy ranging from 90.42% to 96.04%.

Keywords: GNSS; ionospheric scintillation detection; XGBoost; SMOTE-ENN

1. Introduction

The ionosphere, the atmosphere at about 60 to 1000 km from the ground, is modulated
by the ionizing effects of solar radiation, particle precipitation and the geomagnetic field.
There are some typical ionospheric phenomena, such as the equatorial ionization anomaly
(EIA) and equatorial plasma bubbles at low attitudes [1–3], as well as the tongue of ion-
ization at high latitudes [4,5], by which radio waves such as global navigation satellite
system (GNSS) signals may be severely affected. When passing through the ionospheric
irregularities, the signals are plagued with rapid fluctuation, phase shifts, delay, multi-
path, and even loss of tracking loop. More seriously, this phenomenon of ionospheric
scintillation occurs more frequently and severely in both low-latitude regions and polar
regions, compromising positioning accuracy and continuity [6,7]. In high-latitude regions,
the occurrence of ionospheric scintillation is more apparent during geomagnetic storms,
and the formation of irregular structures and ionospheric scintillation activities appears to
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be related to the magnetic local time, resulting in the fast movement of large-scale iono-
spheric plasma structures and phase fluctuations [8–10]. In low-latitude areas, equatorial
scintillation activities are stronger and frequent during years with solar maxima, which
are associated with the solar activities [11]. The GNSS receiver is affected by amplitude
and phase fluctuation, carrier Doppler jitter, cycle slips, and the serious loss of lock and
even navigation interruption, which have adverse effects on both ionospheric research and
navigation and positioning services [12,13].

Evidence suggests that ionospheric scintillation plays a vital role in receiver perfor-
mance in positioning and navigation services. To improve the quality and reliability of
GNSS observations, the implementation of the automatic detection and monitoring of
ionospheric scintillation is vital, especially during strong scintillation. Relevant ionospheric
scintillation monitoring receivers (ISMRs) have recently been designed for use in commerce
and research, which are used by presetting thresholds for amplitude and phase indices [14].
However, detection methods such as traditional thresholding technologies are influenced
by various factors. To be specific, this approach requires detrending and filtering algo-
rithms for observations and overlooks higher-order moment information of the GNSS
signals [15]. Moreover, it is sensitive to false alarms due to factors such as multipath, and
has been proved to present a lower detection accuracy of 81%, compared to the approach
of manual visual inspection [15,16]. Some wavelet decomposition and transform-based
techniques using Butterworth filters with non-indices are proposed as alternatives to over-
come the problem of detrending, but they rely on expensive computation and complex
implementation [17,18].

In recent years, researchers have investigated a variety of machine learning approaches
to achieve automatic scintillation detection. Jiao et al. (2017) [19,20] firstly exploited the
support vector machine (SVM) for amplitude scintillation detection on two classes. They
used a mass of real data and manual labels in the training process and achieved a detection
accuracy of 91–96%, outperforming other traditional triggering approaches and non-index
techniques. A similar detection method for phase scintillation presents an accuracy of
around 92% [21,22]. Lin et al. (2020) [23] analyzed the effects of a binary classification SVM
model on hyperparameters and achieved excellent performance in testing. However, based
on features such as scintillation indices and relevant maximum and average values, these
methods require a filtering process for the scintillation indices S4/SigmaPhi and predeter-
mined elevation mask of 30◦. Ludwig-Barbosa, V. et al. (2021) [24] trained SVM models
with features combining amplitude/phase scintillation indices along with corresponding
maximum and mean values, as well as intensity power spectral density (PSD), showing
about 91% accuracy in the detection of ionospheric scintillation. Besides the detection of
ionospheric scintillation by an SVM, similar research such as that on jamming detection in
GNSS bands with an SVM was conducted, with 94.4% accuracy [25]. An accuracy of 91.36%
was found when performing a similar task using convolutional neural networks [26], which
are widely researched for various classification tasks, showing great performance [26–28].
Linty et al. (2019) [16] proposed a decision tree algorithm relying on the in-phase and
quadrature correlator outputs of the receiver tracking loop, which are considered as sample
features after simple computation. The results of 10-fold cross-validation show that the
accuracy of amplitude scintillation detection reached 96.7% for features consisting of S4,
the carrier-to-noise rate (C/N0) and satellite elevation. Furthermore, for features used
by correlator outputs and corresponding combinations, the cross-validation accuracy in-
creased from 98.0% to 99.7% when using a random forest algorithm. The overall F1 score
reached a high value of 90%, compared with the value of 80.1% achieved with the semi-
hard rule [16]. Based on this research, Franzese et al. (2020) [29] proposed semi-supervised
scintillation detection using the DeepInformax technique, which presents a validation
accuracy in accord with that of the decision tree model. The decision tree and random
forest models are vulnerable to the problem of overfitting if the high model complexity is
designed improperly. More importantly, these methods mentioned above rarely consider
the imbalanced phenomenon of different intensities of scintillation events [16,19–25,29].
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Insufficient data related to strong scintillation may cause great trouble in model training.
Moreover, the events to be tested with different intensities may show different degrees of
imbalance. Such imbalance in different intensities of scintillation events is rarely taken into
consideration. Among the occasional ionospheric scintillation events, strong scintillation
is a minority class compared to weak and moderate scintillation. For this class of data,
few classification algorithms can accurately describe the inherent characteristics due to
the lack of information about the minority class, which causes the decision boundary to
be greatly compressed in the classification model [30]. Although the overall accuracy of
the final model is relatively high, there is some missed detection for strong scintillation
events. It can be optimized by solving the imbalance of the dataset to reduce the problem
of missing detection points for strong scintillation events in the testing set.

In this paper, an improved machine learning method is proposed for improving the
automatic detection accuracy for strong ionospheric scintillation, and it is compared in
detail with the present decision tree and random forest, which show high accuracy for the
validation set [16]. There is also a brief comparison with an SVM and CNN, which have
recently been utilized in relevant research [19–28]. The proposed approach can provide
significant guidance for designing robust GNSS receivers as well as research on atmospheric
layers and space weather. Several aspects of this approach can be described as follows:

(1) To propose a high-performance detection method for XGBoost based on the deci-
sion tree algorithm, assuring good overall detection accuracy for three intensities of
ionospheric scintillation;

(2) To compare with decision tree and random forest based on cross-validation, proving
the superior accuracy of the XGBoost algorithm and mitigation of the overfitting
problem;

(3) To compare different resampling techniques for an imbalanced dataset consisting of a
majority of weak/medium scintillation events and a minority of strong scintillation
events, proving the great performance of SMOTE-ENN according to evaluation
indicators;

(4) To make a brief overall comparison with the decision tree, random forest, SVM and
CNN, evaluating the performance in terms of accuracy, computational load and
applicability, focusing on detailed comparison with the first two methods with high
performance hereafter;

(5) To evaluate the performance of the proposed improved method on different de-
grees of imbalanced training datasets and testing datasets, respectively, proving the
effectiveness in enhancing the detection accuracy for strong scintillation events.

In this work, a strategy of using data processing technology for imbalanced iono-
spheric scintillation events is proposed, and we applied our strategy to space weather
detection for the first time, which successfully improved the detection accuracy for strong
scintillation events. Additionally, an improved machine learning algorithm with proven
high overall accuracy for scintillation events of different intensities is proposed. The general
overviews are described in Section 2, including an introduction to ionospheric scintillation,
the data collection system and feature extraction. Section 3 presents an improved machine
learning method, giving a theoretical introduction to the XGBoost algorithm and SMOTE-
ENN technique. Section 4 validates the optimal detection performance of the proposed
approaches, showing and evaluating the quantitative results obtained from the training
and testing on datasets with different degrees of imbalance. Section 5 discusses various
training and testing cases, and Section 6 draws the main conclusions.

2. General Overviews

This section presents brief descriptions of GNSS ionospheric scintillation, the data
collection system and the feature extraction process.
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2.1. GNSS Ionospheric Scintillation

GNSS satellites transmit low-rate navigation messages modulated by unique spread-
ing sequences or codes, which are carried by radio frequency (RF) signals and received by
GNSS receivers on the Earth. Corresponding computations on position, velocity and time
can be utilized in land applications such as autonomous vehicle navigation and vehicle
tracking monitoring, in marine applications such as ocean transportation and inland river
shipping, and in aviation applications such as route navigation, airport scene monitoring
and precision approach.

In the propagation of RF signals from satellites to receivers, there are natural distur-
bances in the GNSS signals when they pass through the ionospheric irregularity, resulting
in temporal delay and fluctuations, degrading the accuracy, integrity and reliability of the
system’s performance. Figure 1 shows the effects of ionospheric scintillation on the process
of transiting satellite signals to GNSS receivers. Ionospheric scintillation, a form of major
interference, is difficult to model due to its quasi-random nature. With the increased de-
mand for and dependence on navigation systems in various fields, research on improving
the accuracy of scintillation detection is significant.
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Figure 1. Representative effects of ionospheric scintillation on GNSS receiver. The green blocks refer
to the ionospheric irregularities on the area of ionospheric layer, and the red lines represent the main
disturbances on the ground receiver.

Ionospheric scintillation is classified into amplitude scintillation and phase scintilla-
tion; the former is more frequent in low-latitude areas. It is extremely important for a better
detection method to be developed for the Beidou navigation system (BDS), which has been
built in recent years with an immature scintillation detection technique [31]. Based on
existing GPS data consisting of strong scintillation that were collected in the latest peak
year for solar activity, relevant research on scintillation detection can be carried out to
develop corresponding technology for the BDS. The performance can also be evaluated in
the coming peak year for solar activity (2023–2024). S4, commonly used as an indicator,
ranges from 0 to 1, for which a large value represents a stronger intensity of ionospheric
scintillation. Values greater than 1 represent the occurrence of extremely severe ionospheric
scintillation. The scintillation levels are normally classified into three categories [32–34]:
strong if 0.6 ≤ S4, moderate if 0.2 < S4 ≤ 0.6, and weak if 0 < S4 ≤ 0.2. Due to the
occasional contingency, irregularity and certain seasonal characteristics of ionospheric scin-
tillation, there are far fewer strong scintillation events than weak and moderate scintillation
events [35]. Moreover, most of the scintillation activity over the course of a day occurs from
sunset to dawn [36]. In other words, the proportion of strong scintillation events in with
respect to scintillation events of all intensities is relatively low, causing imbalance [16,20,23].
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Thus, the imbalance exists naturally in ionospheric scintillation detection and monitoring.
However, such a phenomenon has not been taken into consideration for the detection of
interference in space weather monitoring.

2.2. Data Collection System

The data used in this paper were collected at the low-latitude site of São José dos Cam-
pos, Brazil (23.2S, 45.9W), from 2013 to 2015 during the last peak of the solar cycle, where
the phenomenon of ionospheric scintillation was extremely active due to its geographical
location close to both the South Atlantic Magnetic Anomaly (SAMA) and the EIA [37].
Months of GPS data from 2013 to 2015 were recorded, with strong ionospheric scintillation
detected during each hour of monitoring. Aiming at studying the natural, occurrent and
unpredictable phenomenon, a Septentrio PolaRx ionospheric scintillation monitoring (ISM)
receiver was utilized to monitor the scintillation activity. Figure 2 shows the framework of
the data collection system used to monitor ionospheric scintillation events. The wideband
antenna was split into several ports that were connected to a commercial ISM receiver,
Septentrio PolaRx, and SDR-based RF front ends, respectively. Scintillation-related mea-
surements including channel correlation values were continuously collected by the ISM
receiver, and relevant scintillation indices and event indicators were calculated simulta-
neously [10]. Furthermore, the indicators were to be compared with the threshold values
preset before data collection to trigger the data server to record raw IF samples generated
by the SDR front ends [38,39]. It should be mentioned that only data affected by the natural
ionospheric scintillation phenomenon were to be recorded, to save a large amount of
memory. These data could be utilized in research on optimal algorithms with respect to
the ISM receiver, as well as providing a database for the analysis of strong scintillation
characteristics. It is worth mentioning that, in the process of the acquisition and tracking,
the DLL and PLL pull-in noise bandwidths were set as 2 Hz and 25 Hz, respectively, while
the pull-in time was set as 500 ms. Once the signals were locked and the tracking loop
was kept stable, the DLL and PLL pull-in noise bandwidths were reset to 1 Hz and 10 Hz,
respectively, to reduce the influence of noise and other sources of interference.
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Figure 2. Architecture of the scintillation event-driven data collection system developed in the
equatorial region. The commercial ISM Septentrio PolaRx is used to collect relevant navigation data
and trigger SDR-based RF front ends when natural scintillation events occur.
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A dataset of GPS L1 C/A signals was selected for the study. It was recorded from
the GTEC free front ends, which were configured to collect zero-frequency data with 8-bit-
resolution samples at a 20 MHz complex sampling rate. The collection period lasted from
March 2013 to February 2015, covering the latest peak period for solar activity. Furthermore,
these available data were processed by the SDR receiver advanced by a combination
coherent/con-coherent integration acquisition algorithm to enhance the acquisition and
tracking performance under the strong ionospheric scintillation environment.

Overall, 45 segments of one-hour data were used in the following research, with two
or three satellites’ data selected in each segment. The I/Q values were sampled at 1000 Hz,
while the sample rate was set to 1 Hz according to the size of the shifting window. Based
on three levels of scintillation intensity, Table 1 presents the information of the training
dataset and testing dataset used in the following research.

Table 1. The distribution information of training dataset and testing dataset on three classes.

Dataset Weak (Class 0) Moderate (Class 1) Strong (Class 2) Total Ratio

Training 155,892 136,343 38,515 349,559 4.05:3.54:1
Testing 18,680 14,496 5665 38,841 3.30:2.56:1

2.3. Feature Extraction

The features play a decisive role in the classification model. There are different sets
of features producing different results for the detection accuracies, while the set of signal-
based features as well as corresponding combinations are proved to be optimal with the
location-independent technique [16]. The raw GNSS signal measurements in phase (I)
and quadrature-phase (Q) correlators were utilized as features, which were extracted from
the software GNSS receiver at the end of the tracking process. In recent research [16], the
feature set of

{
〈I〉, 〈Q〉,

〈
I2〉, 〈Q2〉, 〈SI〉,

〈
SI2〉}—namely, the average values of I and Q

correlator outputs, I2, Q2, signal intensity SI and SI2—has been proved to show excellent
performance for ionospheric scintillation detection by machine learning algorithms. Thus,
based on the above feature set and non-Gaussian noise characteristics of ionospheric
scintillation [40], the other four metrics of variances and covariance are also presented to
further reflect the features.

σSI =
1

N − 1

N

∑
n−1

(SIn − 〈SI〉)2 (1)

cov
(

I2, Q2
)
=

1
N − 1

N

∑
n−1

(
In

2 −
〈

I2
〉)(

Qn
2 −

〈
Q2
〉)

(2)

σI =
1

N − 1

N

∑
n−1

(In − 〈I〉)2 (3)

σQ =
1

N − 1

N

∑
n−1

(Qn − 〈Q〉)2 (4)

where σSI , σI and σQ are variance of SI, I and Q, respectively, and cov
(

I2, Q2) is the
covariance of I2 and Q2. N is the number of samples used in one value. To remove the
impact of thermal noise and reserve the characteristics of the scintillation phenomenon,
the frequency of the initial observables I and Q was f = 1000 Hz. For each feature, the
observation window was set as T = 60 s, meaning that there were N = T· f = 60000 initial
observables averaged in the observation period. The frequency of observation was 1 Hz,
which was in line with the shifting window of 1 s. Based on that, the features used in this
work are described as follows.

X =
{
〈I〉, 〈Q〉,

〈
I2
〉

,
〈

Q2
〉

, 〈SI〉,
〈

SI2
〉

, σSI , cov
(

I2, Q2
)

,σI ,σQ

}
(5)
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The scintillation phenomenon may persist for several hours or longer, meaning that
the data will be affected by the scintillation for a significant period of time rather than
several minutes or less. The scintillation events were manually marked as L = {0, 1, 2}
based on the visual inspection of thresholds, divided into 0 < S4 ≤ 0.2, 0.2 < S4 ≤ 0.6 and
0.6 ≤ S4, representing weak, moderate and strong scintillation events marked as 0, 1 and 2,
respectively. Meanwhile, the corresponding carrier-to-noise density power ratio (C/N0)
was also taken into consideration in the manual detection process. This manual labelled
approach combined with personal knowledge and experience can reserve the transient
phases of the events and reduce the missed detections, significantly enhancing the labelling
accuracy and detection performance.

3. Methodology

The goal of this approach was to propose an improved eXtreme Gradient Boosting
(XGBoost) algorithm combined with the synthetic minority oversampling technique and
edited nearest neighbor (SMOTE-ENN), comparing the performance with that of the
decision tree and random forest algorithms, which have been successfully used in recent
research [16].

3.1. XGBoost Algorithm

The XGBoost algorithm was proposed by Chen Tianqi in 2016, presenting low com-
putational complexity, a fast running speed and high accuracy [41]. As it is an inefficient
ensemble learning algorithm, the boosting is aimed at transforming a weak classifier into
a strong classifier to achieve good accuracy. Moreover, the gradient boosting attempts
to improve robustness by making the algorithm’s loss function drop along its gradient
direction in the iteration process. Additionally, as a fast implementation of the gradient
boosting algorithm, XGBoost can make full use of multi-core CPUs for parallel computation
and improve the accuracy, significantly reducing the computational loads and enhancing
the accuracy compared with other widely used algorithms such as the decision tree and
random forest.

As the basis function of XGBoost, decision tree-based solutions for classification tasks
have been used successfully in various fields, and corresponding advanced algorithms
based on that are gradually being proposed to enhance the classification performance
in terms of accuracy, precision, generalization and computing efficiency. There are three
typically used decision-tree algorithms based on information theory: ID3, C4.5 and classifi-
cation and regression tree (CART); the classification regulation of CART is derived from the
Gini index, and CART is used more frequently than the two other algorithms. It not only
assigns categories to leaf nodes, but also considers the possibility of all attributes being
selected as leaf nodes. When all the samples in the node belong to the same attribution or
the depth of the decision tree reaches a preset threshold, the tree construction stops. Due
to the overfitting phenomenon for the former condition, it is vital to set the max depth
value before training. Moreover, the random forest consists of multiple structurally similar
decision trees for determining the dataset together to prevent overfitting and reduce the
variance of an estimate. The training set is sampled to obtain multiple subsets, and then,
several decision trees with the same structure are constructed, each of which is trained
separately by using the constructed training subsets. The classification result depends on
votes from all the decision trees trained on the testing set. More details can be found in the
literature [16].

Consisting of different decision trees, the core of the XGBoost algorithm is learning
a new function f (x) to fit the last predicted residuals, adding decision trees continually
and continuing to split features to grow a tree before meeting the growth conditions. After
completing the training process and obtaining k trees, we needed to predict the novel
data. According to the characteristics of samples, they will be classified to a leaf node
corresponding to a score in each tree, and the sum of the scores for each tree to be regarded
as the predicted value of the sample. Obviously, the goal of the algorithm is to make the
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predicted value of all the trees ŷi as close as possible to the corresponding true value yi,
with as much generalization capability as possible. Based on the current tree, an additional
tree is added to fit the residual between the predicted result of the previous trees and
corresponding true value. To choose the next tree to be added, we introduced the objective
function combined with the loss function and regular function, as shown in (6).

Obj(t) =
n

∑
i=1

l
(

yi, ŷi
(t−1) + ft(xi)

)
+ Ω( ft) + cons (6)

where i represents the ith sample, n is the number of samples, yi is the true score of the
current tree, and ŷi

(t−1) refers to the predicted value of t − 1 trees. ft is a new function of
the current tree; Ω( ft) is the corresponding regularization item. Additionally, the constant
value cons can be ignored without affecting the following objective process. The objective
function can be approximated as follows after using Taylor expansion:

Obj(t) =
n

∑
i=1

[
l
(

yi, ŷi
(t−1)

)
+ gi ft(xi) +

1
2

hi ft
2(xi)

]
+ Ω( ft) + cons

=
n

∑
i=1

[
giωq(xi) +

1
2

hiωq
2(xi)

]
+ γT + λ

1
2

T

∑
j=1

hiωj
2 + C

(7)

where gi = ∂ŷ(t−1) l
(

yi, ŷ(t−1)
)

; hi = ∂2
ŷ(t−1) l

(
yi, ŷ(t−1)

)
, T is the number of the leaf nodes,

and ωj is the weight of the jth leaf node. γ and λ are used to control the complexity of the

trees. Defining Gj = ∑
i∈Ij

gi and Hj = ∑
i∈Ij

hi, the optimal solution ω∗j = − Gj
Hj+λ ; then, the

optimal objective function without a constant value C can be obtained as follows.

Obj(t) =
T

∑
j=1

[
Gjωj +

1
2

Hjωj
2
]
+ γT = −1

2

T

∑
j=1

Gj

Hj + λ
+ γT (8)

Furthermore, the greedy algorithm is utilized to enumerate all the different tree
structures to find the optimal splitting node, achieving the maximum gain of the objective
function after splitting, as shown in (9).

Gain =
1
2

[
G2

L
HL + λ

+
G2

L
HL + λ

− (GL + GR)
2

HL + HR + λ

]
− γ (9)

where GL and GR are the first-order gradient values of the leaf nodes on left and right
after splitting. Similarly, HL and HR are corresponding second gradient values. A brief
schematic diagram of the XGBoost algorithm is shown in Figure 3.

There are some preset parameters used to control the tree building, such as γ, λ, the
maximum depth of the tree, the minimum weight of the child node, and the learning rate
for each tree. The main purpose is to limit the complexity and weight of each tree, so that
the overfitting problem can be mitigated or prevented.

3.2. SMOTE-ENN Resampling Technique

An imbalance in the dataset refers to the phenomenon of certain types of samples
being lower in number than other types, and researchers always have more interest in
the minority class samples [42]. For similar characteristics of data, many classification
algorithms have difficulty in accurately expressing the inherent features because of the
lack of information on the minority class samples, which causes the decision boundary to
be greatly compressed in the classification system. Although the overall accuracy of the
detection model is excellent, it is unable to effectively detect the minority target samples
that ought to be detected. As shown in Table 2, the weak, moderate and strong scintillation
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events are marked as 0, 1 and 2, respectively. When the training sample proportion
ranges from 1:1:1 to 7:7:1 based on a constant 100,000 entries, the overall accuracy remains
relatively stable and good, ranging from 90.18% to 93.32%. Meanwhile, Figure 4 shows
that the recall value for the majority class 0 remains above 93%, while that for class 1 keeps
increasing and reaches over 98%. However, there is a distinct decline for class 2 from
87% to 74%, with an approximate 13% decline, which means that an increasing number of
strong scintillation events go undetected. This indicates the great importance of balancing
the minority class data in improving the accuracy of strong scintillation detection.
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Figure 4. Influence of imbalanced datasets on performance of XGBoost model. These seven training
datasets with 100,000 samples were selected randomly in the overall training dataset listed in Table 1,
according to different sample ratios for classes 0/1/2. The testing dataset for each detection model
trained by the above training dataset is the same as that mentioned in Table 1.

The purpose of resampling in this study was to balance the ionospheric scintillation
events of different intensities, enhancing the detection accuracy for strong scintillation
events. The normally used undersampling methods include random undersampling of
the majority class, edited nearest neighbor (ENN) [43], Tomeklink [44], condensed nearest



Remote Sens. 2021, 13, 2577 10 of 22

neighbor (CNN) [45], and neighborhood cleaning (NCL) [46], while the typical oversam-
pling methods include random oversampling of the minority class, the synthetic minority
oversampling technique (SMOTE) [47], and Borderline-SMOTE (BSM) [48]. However, the
former methods miss sample information through reducing the majority samples, and the
latter methods add minority samples, causing a constant increase in useless information
and an overfitting problem. The combinational algorithm SMOTE-ENN preserves the
features of majority samples and increases the characteristics of minority samples, resulting
in excellent classification performance for imbalanced datasets [49].

The basic idea of the SMOTE method is to carry out linear interpolation between
neighboring minority class samples to synthesize new minority class samples, solving the
problem of significant data overlap compared with random oversampling [47]. Further
details can be described as follows: for each minority class sample xm ∈ X (m = 1, . . . , M),
find the k nearest neighboring samples of the same class K, and then, choose n samples in
K according to the sampling rate n, mark them as ym,i ∈ Ym (i = 1, . . . , n, m = 1, . . . , M),
and finally achieve random linear interpolation on the lines between xm and ym,1, . . . , ym,n,
respectively. The new built sample can be described as (10).

Xnew,m = xm + r ∗ (Ym − xm), m = 1, . . . , M (10)

where r is the random coefficient ranging from 0 to 1, and Xnew,m is the vector including n
new samples built by xm. In total, there are M ∗ n new samples.

Focusing on majority class samples, the ENN algorithm deletes the sample if there are
two or more in the nearest three neighboring samples different from it [43]. However, the
majority samples are near each other, which causes limited sample removal.

The SMOTE-ENN method achieves oversampling on the minority class samples,
firstly using SMOTE, and then finishes undersampling on the majority class samples to
coalesce their advantages. Thus, the combination of SMOTE and ENN is utilized to balance
data with few strong ionospheric scintillation events; its performance was evaluated and
compared with that of other methods, such as SMOTE and ENN. Figure 5 shows the
process of resampling, training and predicting, using the XGBoost algorithm improved by
the SMOTE-ENN resampling technique.
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4. Results

A series of experiments were conducted to evaluate the performance of the proposed
method and compare it with that of the decision tree and random forest algorithms, which
have shown high validation accuracy in previous research [16]. The evaluation criterion
with which the results were quantitatively analyzed is introduced. Based on the validation
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phase, the overall accuracy of three different machine learning methods in the condition of
different tree depths was compared, determining the complexity, computational efficiency
and performance of these models to a large extent. Next, different resampling methods
were implemented on the training dataset, comparing their performance in improving
the detection of the minority class. Finally, experiments on training sets with different
ratios of the three classes were carried out to evaluate the influence of imbalanced data on
scintillation detection, while previous similar experiments were conducted on testing sets.

4.1. Evaluation Criterion

As one of the statistical tools most commonly used to evaluate the performance
of detection algorithms, the confusion matrix, aimed at detection for three classes, was
introduced. According to that, the corresponding metrics of overall accuracy, precision,
recall and F1 score could be calculated to assess the performance of the detection models.
Table 3 shows the example of the confusion matrix on three classes.

Table 3. The confusion matrix on three classes.

Class
Prediction

0 1 2

Truth
0 N00 N01 N02
1 N10 N11 N12
2 N20 N21 N22

In Table 3, Nij (i, j = 0, 1, 2) refers to the number of samples corresponding to the truth
class i and prediction class j. According to that, the relative evaluation indicators on three
classes can be described as follows:

accuracy =
N00 + N11 + N22

N00 + N10 + N20 + N01 + N11 + N21 + N02 + N12 + N22
(11)


precision0 = N00

N00+N10+N20

precision1 = N01
N01+N11+N21

precision2 = N02
N02+N12+N22

(12)


recall0 = N00

N00+N01+N02

recall1 = N10
N10+N11+N12

recall2 = N02
N20+N21+N22

(13)


F1− score0 = 2 ∗ precision0 ∗ recall0

precision0+recall0
F1− score1 = 2 ∗ precision1 ∗ recall1

precision1+recall1
F1− score1 = 2 ∗ precision1 ∗ recall1

precision1+recall1

(14)

where the precision value represents the correct predicted positive ratio, and the recall value
refers to the percentage of correctly predicted positive events among real positive events. Based
on that, the weighted average of the precision and recall F1 score is defined as the F1 score.

4.2. Accuracy Evaluation on Cross Validation

As an important parameter for algorithms based on the decision tree, random forest
and XGBoost, the tree depth determines the complexity and performance of models.
Excessive depth might increase the validation accuracy, but can also lead to increased
model complexity and greater computational loads, causing overfitting. Therefore, an
appropriate tree depth is vital for the training model. Based on cross-validation, Figure 6
shows the mean accuracies across different tree depths and detection methods. Of the
overall 349,559 points of the training set, 100,000 entries were randomly selected and used
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in the validation experiment to reduce the running time. The accuracies of XGBoost are
marked, ranging from 1 to 30, and compared with those of the decision tree and random
forest, which presented high validation accuracies in previous research [16].
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Figure 6. The mean accuracy of 10-fold cross validation based on different tree depths and detection
methods. In the overall training dataset mentioned in Table 1, 100,000 samples were selected
randomly and used in the validation process, and the remaining data were used as training samples.

Overall, the accuracy of XGBoost remained higher than that of the decision tree and
random forest, which presented similar accuracy at different tree depths. Meanwhile, the
high accuracy of XGBoost started to stabilize when the tree depth reached 6, while there was
a significant advantage in accuracy compared with the other methods. The higher accuracy
of XGBoost with a lower tree depth means a simpler trained model and less running
time, compared with the random forest, which relies on a larger tree depth and is more
computationally expensive. Even though the decision tree model shows a high training
efficiency, the accuracy was significantly lower than that of XGBoost, even when the tree
depth reached 20 or higher, causing overfitting on the validation dataset and affecting the
detection performance for novel data. The XGBoost algorithm proved to be appropriate,
with high accuracy and low computational expense. Other, more vital parameters were set
to default because there were no huge training data or large feature classes.

Considering the running time and detection accuracy, the tree depth of XGBoost
was set to 3 to reduce overfitting and improve the efficiency. The number of samples
is also important for dealing with overfitting and underfitting problems. Based on the
overall 349,559 points of the training set, 30% of the data were randomly reserved as an
additional validation set, while 70% of the data were the training set, divided into 10,
and the training size ranged from 0.1 to 1. As shown in Figure 7, the training accuracy
across ten cross-validations and testing accuracy was compared at 10 different ratios for
the training set. With an increase in training samples, the validation accuracy and testing
accuracy gradually approached the same value and presented lower differences, which
means that the model showed low bias and variance. Moreover, when the ratio of the
training samples was set to 0.4 or higher, the accuracy variation decreased slightly and
presented little fluctuation. To prevent overfitting or underfitting, the ratio was set to 0.4,
meaning that approximately 100,000 points would be trained in following experiments.

4.3. Performance with Different Resampling Algorithms

Aiming at mitigating the impact of data imbalance on the detection of strong scintil-
lation, a combination of oversampling and undersampling algorithms was proposed to
achieve resampling. As shown in Table 4, comparisons were made between the SMOTE-
ENN algorithm and other several single oversampling or undersampling methods, namely,
the random oversampling, random undersampling, SMOTE, and ENN algorithms, on the
basis of the raw data used in the training process. All of the comparison experiments were
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based on 100,000 points of data randomly selected from the overall training dataset, and
the ratio of weak, moderate and strong scintillation events was 4.05:3.54:1, in accord with
those in the overall training dataset. The training process was achieved with the XGBoost
algorithm with a tree depth of 3. The raw data were trained directly on the XGBoost
model, while the other methods required resampling on the raw data and then training
on the XGBoost model. All the trained models were tested on the 38,841 points of the
dataset mentioned in Table 1 with a ratio of weak, moderate and strong scintillation events
equal to 3.30:2.56:1, including 11 segments of one-hour data that were not involved in the
training phase.
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Figure 7. Training accuracy and testing accuracy of XGBoost versus the sample number used in the
training set. In the overall training dataset mentioned in Table 1, 30% of the samples were randomly
selected as the validation set, and the reserved samples were randomly selected as the training
datasets according to different training sizes.

Table 4. Performance comparison for XGBoost algorithm improved by different resampling techniques based on testing results.

Resampling Technique Raw Data Random
Oversampling

Random
Undersampling SMOTE ENN SMOTE-ENN

Precision
(%)

0 99.38 99.51 99.64 99.77 99.47 99.71
1 82.45 83.07 85.00 85.05 86.67 87.96
2 96.02 95.14 94.83 95.19 95.77 95.00

Recall
(%)

0 87.91 87.55 89.43 89.31 92.13 92.16
1 97.89 97.64 97.65 97.93 97.85 97.77
2 86.55 90.15 90.75 91.17 87.47 91.60

F1 score
(%)

0 93.29 93.15 94.26 94.25 95.66 95.79
1 89.51 89.77 90.89 91.04 91.93 92.61
2 91.01 92.58 92.75 93.14 91.43 93.27

Accuracy
(%) 91.43 91.69 92.69 92.80 93.58 94.17

Based on the SMOTE-ENN resampling technique, Table 5 compares the experimental
data for five detection algorithms. The decision tree and random forest, each of which
presented excellent performance in the binary classification for ionospheric scintillation
detection in recent research [16], were tested for comparison. Considering the good per-
formance of the SVM in similar detection tasks [19–23], tests for such a method were
performed and analyzed. The CNN model was also employed in the comparison due to its
effectiveness in a wide range of classification problems [25–28]. However, the SMOTE-ENN
resampling technique is meaningless in regard to improving CNN performance, as its
space structure becomes disordered after the resampling process. Thus, the CNN test
was carried out on raw data only, while the same tests on the SVM accord with those
on the other three methods. Due to the mentioned problem of the CNN and excessive
computational loads of the SVM, these two methods were not studied further. As shown in
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Table 5, apart from the overall accuracy, the recall and F1 score for class 2 were recorded to
illustrate the performance in detecting strong scintillation events. In addition, considering
the unavailability of the resampling technique for the CNN, larger computational loads and
running time for the SVM, and the overall better performance with XGBoost, further tests
with both methods were not carried out. Further details can be found in the Discussion.

Table 5. Comparison of performance of different detection algorithms trained with raw dataset and SMOTE-ENN resampled
dataset (apart from CNN algorithm), based on testing results.

Algorithm
Accuracy (%) Recall for Class 2 (%) F1 Score for Class 2 (%)

Raw Data SMOTE-
ENN

Improvement
Ratio Raw Data SMOTE-

ENN
Improvement

Ratio Raw Data SMOTE-
ENN

Improvement
Ratio

CNN 89.86 - - 73.63 - - 82.15 - -
SVM 93.39 93.52 0.13 90.49 95.06 4.57 89.46 89.07 -0.39

Decision
tree 85.39 87.36 1.97 86.73 90.41 3.68 88.94 90.98 2.04

Random
forest 86.95 88.92 1.97 85.44 89.97 4.53 90.43 92.91 2.48

XGBoost 91.43 94.17 2.74 86.55 91.60 5.05 91.04 93.27 2.23

When training on the raw data and resampled data, the accuracy of XGBoost was
about 4% and 7% better than that of the decision tree and random forest, as shown in the
left panel of Figure 8. The middle and right panels in Figure 8 also show higher recall and
F1 scores for the XGBoost method, implying the superiority of XGBoost improved by the
SMOTE-ENN technique.
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Figure 8. Comparison of detection algorithms in terms of overall accuracy, recall value for class 2 and F1 scores for class 2,
respectively. From left to right: (a) the overall accuracy; (b) the recall value for class 2; (c) the F1 score for class 2. The blue
polyline marked by triangles refers to the testing results based on raw training data, while the orange polyline marked by
asterisks represents the testing results based on SMOTE-ENN resampled training data. The 100,000 training samples were
selected in the overall training dataset listed in Table 1, while the testing dataset was that mentioned in Table 1.

4.4. Analysis on Imbalanced Training Datasets

To explore the detection performance of the XGBoost algorithm improved by the
SMOTE-ENN resampling technique for strong scintillation events, a series of comparison
experiments were performed based on different degrees of imbalance in the training and
testing datasets, compared with the decision tree and random forest algorithm. From the
training dataset with 349,559 samples, seven subsets of data were extracted. For each
subset, 100,000 randomly selected samples were included, with the ratio of classes 0, 1 and
2 ranging from 1:1:1 to 7:7:1, respectively. All of the trained models were tested on the
same dataset mentioned in Table 1.

According to the experimental results for the three detection algorithms and that im-
proved by the SMOTE-ENN resampling technique based on these training subsets, Figure 9
shows the corresponding trends of each evaluation indicator with sample ratios of 1:1:1 to
7:7:1. Table 6 presents the improvement ratios in detail, based on a comparison between
the detection results obtained with training on the resampled datasets and raw datasets.



Remote Sens. 2021, 13, 2577 15 of 22
Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 9. Testing results for detection algorithms regarding overall accuracy (top row), recall value for class 2 (middle 
row) and F1 score for class 2 (bottom row), with different ratios of classes 0/1/2 for the training sets. From left to right: 
testing results with decision tree (left column); testing results with random forest (middle column); testing results with 
XGBoost (right column). These seven training datasets with 100,000 samples were randomly selected from the overall 
training dataset listed in Table 1, according to different sample ratios of classes 0/1/2. The testing dataset for each detection 
model trained on the above training dataset is the same as that mentioned in Table 1. 

Table 6. Improvement ratios for evaluation indicators with different training datasets with different detection algorithms 
trained on SMOTE-ENN resampled data, compared with raw training data. 

Training Set 1 2 3 4 5 6 7 

Accuracy 
(%) 

Decision tree 2.68 2.18 1.63 0.97 1.41 1.76 1.99 
Random forest 1.87 1.49 1.66 1.41 1.72 1.86 1.77 

XGBoost 1.35 2.36 3.56 2.11 2.69 2.4 2.44 

Recall for class 2 
(%) 

Decision tree 1.92 1.27 3.81 2.62 1.84 2.9 3.57 
Random forest 1.2 2.76 3.81 3.9 4.98 5.8 5.4 

XGBoost 0.19 3.28 3.18 4.67 5.69 4.34 6.37 

F1 score for class 
2 (%) 

Decision tree 1.18 0.56 1.03 0.56 0.21 1.11 2.1 
Random forest 1.01 1.74 2.16 2.31 2.9 3.18 2.73 

XGBoost 0.23 1.49 1.41 1.99 2.5 1.64 2.78 

4.5. Analysis on Imbalanced Testing Datasets 
We also investigated the detection performance of the proposed method for strong 

scintillation events with different degrees of imbalance in the testing datasets. Table 7 lists 
the training datasets and testing datasets with different ratios of the three classes. The 
same 100,000 samples randomly selected in the overall training dataset were used in each 
model training process, while seven groups of testing datasets were designed with differ-
ent ratios of classes, roughly ranging from 1:1:1 to 7:7:1. For each testing dataset with 
31,779 samples, the dataset consisted of nine segments of one-hour observations consecu-
tively, with 3531 samples included in each hour’s data. Additionally, several such seg-
ments could be included in several groups of testing sets, but each group of the testing set 
was not involved in the training dataset. 

86
87
88
89
90
91
92

Ac
cu

ra
cy

 (%
)

Decision tree
Raw data
SMOTE-ENN

Random forest
Raw data
SMOTE-ENN

XGBoost

Raw data
SMOTE-ENN

84

86

88

90

92

R
ec

al
l o

n 
cl

as
s 

2 
(%

)

1:1:1 2:2:1 3:3:1 4:4:1 5:5:1 6:6:1 7:7:1

89

90

91

92

93

F-
sc

or
e 

on
 c

la
ss

 2
 (%

)

1:1:1 2:2:1 3:3:1 4:4:1 5:5:1 6:6:1 7:7:1
Training set ratio on class 0/1/2

1:1:1 2:2:1 3:3:1 4:4:1 5:5:1 6:6:1 7:7:1

2.78% growth

2.44% growth3.56% growth

6.39%
decline

2.82%
decline

6.37% growth

Figure 9. Testing results for detection algorithms regarding overall accuracy (top row), recall value for class 2 (middle
row) and F1 score for class 2 (bottom row), with different ratios of classes 0/1/2 for the training sets. From left to right:
testing results with decision tree (left column); testing results with random forest (middle column); testing results with
XGBoost (right column). These seven training datasets with 100,000 samples were randomly selected from the overall
training dataset listed in Table 1, according to different sample ratios of classes 0/1/2. The testing dataset for each detection
model trained on the above training dataset is the same as that mentioned in Table 1.

Table 6. Improvement ratios for evaluation indicators with different training datasets with different detection algorithms
trained on SMOTE-ENN resampled data, compared with raw training data.

Training Set 1 2 3 4 5 6 7

Accuracy
(%)

Decision tree 2.68 2.18 1.63 0.97 1.41 1.76 1.99
Random forest 1.87 1.49 1.66 1.41 1.72 1.86 1.77

XGBoost 1.35 2.36 3.56 2.11 2.69 2.4 2.44

Recall for class 2
(%)

Decision tree 1.92 1.27 3.81 2.62 1.84 2.9 3.57
Random forest 1.2 2.76 3.81 3.9 4.98 5.8 5.4

XGBoost 0.19 3.28 3.18 4.67 5.69 4.34 6.37

F1 score for class 2
(%)

Decision tree 1.18 0.56 1.03 0.56 0.21 1.11 2.1
Random forest 1.01 1.74 2.16 2.31 2.9 3.18 2.73

XGBoost 0.23 1.49 1.41 1.99 2.5 1.64 2.78

4.5. Analysis on Imbalanced Testing Datasets

We also investigated the detection performance of the proposed method for strong
scintillation events with different degrees of imbalance in the testing datasets. Table 7
lists the training datasets and testing datasets with different ratios of the three classes.
The same 100,000 samples randomly selected in the overall training dataset were used in
each model training process, while seven groups of testing datasets were designed with
different ratios of classes, roughly ranging from 1:1:1 to 7:7:1. For each testing dataset
with 31,779 samples, the dataset consisted of nine segments of one-hour observations
consecutively, with 3531 samples included in each hour’s data. Additionally, several such



Remote Sens. 2021, 13, 2577 16 of 22

segments could be included in several groups of testing sets, but each group of the testing
set was not involved in the training dataset.

Table 7. The distribution information for testing dataset imbalanced with respect to three classes.

Dataset
Scintillation Intensity

Total RatioWeak
(Class 0)

Moderate
(Class 1)

Strong
(Class 2)

Training
set

Raw data 46,610 42,514 10,876 100,000 4.05:3.54:1
SMOTE-ENN 43,201 41,468 45,976 130,645 1.04:1:1.11

Testing
set

1 11,945 9264 10,570 31,779 1.13:0.87:1
2 11,983 14,290 5506 31,779 2.18:2.60:1
3 13,984 13,052 4743 31,779 2.95:2.75:1
4 14,124 14,595 3060 31,779 4.61:4.77:1
5 14,124 15,102 2553 31,779 5.53:5.92:1
6 16,268 13,140 2371 31,779 6.86:5.54:1
7 14,124 15,728 1927 31,779 7.33:8.16:1

Table 8 records the improvement ratios for the evaluation indicators for different
testing datasets with different detection algorithms trained on SMOTE-ENN resampled
data, compared with raw training data, while Figure 10 shows the corresponding values of
accuracy, recall and F1 scores for class 2.

Table 8. Improvement ratios for evaluation indicators for different testing datasets with different detection algorithms
trained on SMOTE-ENN resampled data, compared with raw training data.

Testing Set 1 2 3 4 5 6 7

Accuracy
(%)

Decision tree 2.58 1.57 2.57 0.47 1.18 0.44 1.06
Random forest 2.45 2.07 2.34 0.65 1.24 0.36 0.45

XGBoost 6.04 2.44 2.92 0.94 0.62 1.25 0.29

Recall for
class 2

(%)

Decision tree 4.09 2.58 10.94 9.15 9.24 8.01 8.41
Random forest 5.82 9.23 10.61 4.51 13.90 7.00 12.61

XGBoost 10.59 12.60 17.69 13.98 16.17 19.40 14.06

F1 score
for class 2

(%)

Decision tree 2.28 1.76 6.53 2.76 5.46 1.06 4.51
Random forest 3.17 5.01 5.62 1.29 7.5 2.11 5.37

XGBoost 6.00 6.64 9.54 7.15 8.04 10.61 6.61
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Figure 10. Testing results for detection algorithms regarding overall accuracy (top row), recall value for class 2 (middle row)
and F1 score for class 2 (bottom row), with different ratios of classes 0/1/2 for testing datasets. Relevant information on
training dataset and seven testing datasets is listed in Table 7. The green, yellow and orange bars refer to results for decision
tree, random forest and XGBoost, respectively. The highlighted bold bar on the right of each group represents the result of
the XGBoost method improved by the SMOTE-ENN technique, with better performance.

5. Discussion

All the experiments were carried out on real data collected in an equatorial region
during solar maximum years, under various ionospheric scintillation intensities. Firstly,
different resampling techniques were compared based on the XGBoost algorithm, and the
integration of SMOTE and ENN produced better results regarding XGBoost’s performance.
As shown in Table 4, based on random oversampling, there was only a 3% increase in
the recall value for the minority class 2 in that it just randomly took out samples in class
2 without any rule, and thus added in several invalid data. Meanwhile, there was little
contribution to the other two classes. Different from oversampling, the method of random
undersampling is aimed at randomly deleting samples of the majority class until the data
of these classes are equal to those of the minority classes in number. Thus, much useful
information is discarded, reducing the detection accuracy, presenting similar results to
random oversampling. Although the resampling rule of SMOTE is based on the nearest
neighboring samples and linear interpolation, it still aims at increasing the minority class
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without significant improvement for the other two classes. As for the SMOTE, ENN only
showed a 4% improvement on the recall value of the majority class 0, because the samples
of the boundary around classes 0 and 1 were deleted. Meanwhile, the overall samples were
still imbalanced, resulting in ineffective enhancement for class 2.

Differently, the SMOTE-ENN method firstly deals with the data of the minority class
through the SMOTE oversampling technique and then carries out the ENN undersampling
for the data of the majority class. It not only increases the data of the minority class but
also deletes the multi-class samples on the boundary as much as possible, significantly
improving the detection performance in various aspects. The results in Table 4 show
that there was an apparent improvement in performance for all three classes, with an
approximately 3% increase in overall accuracy. As for the value of recall, it showed a 5%
enhancement for class 2, corresponding to strong scintillation events, and 4% increase
for class 0, corresponding to weak scintillation events, meaning that more strong and
weak scintillation events that may be easily missed can be detected correctly. Thereby, the
precision for class 1, corresponding to moderate scintillation events, increased by 6%, with
more events of classes 0 and 2 being correctly detected. Meanwhile, the F1 scores for the
three classes increased by 3%, 3% and 2%, respectively, demonstrating an improvement in
both precision and recall. Especially, the integrated technique outperforms ENN by 4.13%
in recall for class 2, while showing a 1.37% enhancement in overall accuracy compared
with SMOTE. Compared with the other single resampling methods, the SMOTE-ENN
proved to be effective in dealing with imbalanced data with insufficient strong scintillation
events. Based on that, brief comparisons of five methods were drawn. As shown in
Table 5, XGBoost outperformed the CNN by 1.57%, 12.92% and 8.99% in terms of the
overall accuracy, recall and F1 score for class 2 when trained and tested on raw data,
showing significant superiority in strong scintillation detection. Overall, all four detection
algorithms were enhanced when improved by SMOTE-ENN. Moreover, for resampled
data, XGBoost outperformed the SVM by 0.65% in terms of overall accuracy. The recall
for the SVM was 3.46% higher than that for XGBoost, but the F1 score for the SVM was
4.20% lower. This indicates that the SVM missed many strong scintillation events, with
a precision of only 83.79% for class 2. More importantly, larger computational loads and
longer running times are needed for SVM detection than detection with the three other
machine learning methods. Thus, both methods will not be further discussed due to the
unavailability of the CNN and large running loads for the SVM.

For the different imbalanced training sets, the accuracy of the improved XGBoost
was about 4% to 5% higher than that of the decision tree and random forest, which is
clear from Figure 9. Although the recall values of the decision tree were about 2% higher
than those of XGBoost based on the training sets of 1, 3 and 6, the F1 scores for XGBoost
were about 2% higher than those for the decision tree and random forest. As shown in
the right panels of Figure 9, there was a 6.39% decline in the recall value, from 90.86% to
84.47%, and 2.82% decline in the F1 score, from 92.81% to 89.99%, implying more missed
strong scintillation events. However, the XGBoost model, trained on the SMOTE-ENN
resampled datasets, remained relatively stable, with recall values of about 90% to 91%
and F1 scores of 92% to 93%, indicating more enhancement for more severely imbalanced
training samples. Meanwhile, there was a 6.37% improvement in the recall value, from
84.47% to 90.84%, and 2.78% improvement in the F1 score, from 89.99% to 92.77%, with
the resampled training data with a sample ratio of 7:7:1. Additionally, there was also
improvement in the other two classes in the precision, recall and F1 score, as well as
the overall accuracy, which increased by 3% to over 92% compared to that with the raw
data. These illustrate the effectiveness of the proposed XGBoost algorithm improved by
the SMOTE-ENN resampling technique for imbalanced training data in improving the
detection performance for strong scintillation events.

Considering various natural phenomena of different ionospheric scintillation events,
seven groups of testing datasets with different degrees of imbalance were established, and
each dataset included nine segments of real one-hour data. The results significantly illus-
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trate the excellent performance of the improved XGBoost in strong scintillation detection
under different scintillation conditions. It can be intuitively observed from Figure 10 that
the accuracy of the improved XGBoost was higher than that of the other methods based on
each testing dataset, while almost all the values of recall and F1 score were similar. The
overall testing accuracy of the XGBoost model trained on the resampled dataset varied
from 90.42% to 96.04%, higher than that of the XGBoost model trained on the raw dataset,
ranging from 85.81% to 95.42%. Table 8 illustrates the improvement ratios for the evaluation
indicators for the different testing sets with different detection algorithms trained on the
resampled dataset, compared with the raw dataset. For these testing datasets, the results
show an increase of at least 10% in the recall values. Especially, for the sixth group of the
testing dataset, it increased by 19.40%, from 74.61% to 94.01%. Meanwhile, the F1 score
significantly increased by more than 6.00%, ranging from 77.31% to 94.82%, for these seven
testing datasets, while there was a significant increase of 10.61% from 84.14% to 94.75%
for the sixth testing dataset. The results also present an improvement or maintenance of
the corresponding recall, precision and F1 scores for the other two classes. These results
indicate that it is valuable to enhance the detection accuracy for strong scintillation events
with different degrees of imbalance in the testing data with the method of resampling the
imbalanced training data by SMOTE-ENN before training the XGBoost model.

6. Conclusions

Severe ionospheric scintillation is an adverse factor influencing the amplitude and
carrier phase of a GNSS signal; its detection is a prerequisite in the design of an advanced re-
ceiver with greater accuracy, reliability and efficiency. Nevertheless, the natural appearance
of strong ionospheric scintillation occurs incidentally compared to that of weak/moderate
scintillation. The imbalance may prove a challenge in achieving higher detection accuracy
for strong scintillation events. As a strategy for detecting the severe ionospheric scintilla-
tion events, the eXtreme Gradient Boosting (XGBoost) algorithm improved by the synthetic
minority oversampling technique and edited nearest neighbor (SMOTE-ENN) resampling
technique was developed as follows:

(1) The machine learning method of XGBoost was proposed to improve the overall
detection accuracy. According to 10 cross-validations, the accuracy was better than
that of the decision tree and random forest. Meanwhile, XGBoost demonstrated
sufficient validation accuracy when the tree depth was set to a small value, which not
only significantly simplified the model complexity, but also effectively alleviated the
overfitting problem.

(2) Aiming at dealing with imbalance, different resampling techniques were compared
based on the XGBoost detection model. SMOTE-ENN outperformed the other tech-
niques on the whole. Moreover, similar improvements were observed for the decision
tree and random forest detection models, after the SMOTE-ENN resampling tech-
nique, while the improved XGBoost performed better than the other methods.

(3) As for training datasets with different degrees of imbalance in classes 0/1/2, with ra-
tios ranging from 1:1:1 to 7:7:1, different detection models and corresponding models
improved by SMOTE-ENN were trained and then tested on the same novel dataset.
The results showed overall enhancements for the improved detection methods com-
pared to the corresponding raw methods, among which the improved XGBoost
method showed the best performance.

(4) The improved methods were tested with different degrees of imbalance in real data
to evaluate the performance of the improved XGBoost. The results show distinct
enhancements in overall accuracy, recall for class 2 and F1 scores for class 2, proving
significant improvements in detecting severe scintillation events as well as reducing
the problem of missing important events.

Consequently, the performance of XGBoost improved by SMOTE-ENN was examined
in comparative tests and under various conditions. The significance of these results lies in
dealing with the problems of the natural and incidental appearance of strong scintillation
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events, which may cause imbalance and especially affect the detection accuracy for strong
scintillation events. This work would be of general interest for researchers in the fields of
detecting interference in satellite signals (e.g., ionospheric scintillation, solar radio burst,
and spoofing); the design of advanced receivers with greater accuracy, reliability and
efficiency; and the atmospheric layer and space weather.
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