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Abstract: Soils represent the largest store of carbon in the biosphere with soils at high latitudes
containing twice as much carbon (C) than the atmosphere. High latitude tundra vegetation commu-
nities show increases in the relative abundance and cover of deciduous shrubs which may influence
net ecosystem exchange of CO2 from this C-rich ecosystem. Monitoring soil respiration (Rs) as a
crucial component of the ecosystem carbon balance at regional scales is difficult given the remoteness
of these ecosystems and the intensiveness of measurements that is required. Here we use direct
measurements of Rs from contrasting tundra plant communities combined with direct measurements
of aboveground plant productivity via Normalised Difference Vegetation Index (NDVI) to predict soil
respiration across four key vegetation communities in a tundra ecosystem. Soil respiration exhibited
a nonlinear relationship with NDVI (y = 0.202e3.508 x, p < 0.001). Our results further suggest that
NDVI and soil temperature can help predict Rs if vegetation type is taken into consideration. We
observed, however, that NDVI is not a relevant explanatory variable in the estimation of SOC in a
single-study analysis.
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1. Introduction

The Arctic is now the New Arctic [1–4], emerged from a rapidly changing ecosystem
as global temperatures continue to rise [5–7]. Temperatures in the region have climbed
0.6 ◦C per decade over the last 30 years alone [8], growing three times faster than the
global mean surface temperature [9]. The Arctic’s vulnerability to climate change is of
special interest because it contains around half of the total global soil organic carbon (SOC)
with most of its ~1300 Pg of SOC stored in permafrost [10–12]. Warming temperatures,
expansion of shrub communities and widespread thaw of permafrost have emphasised the
urgent need to understand soil carbon dynamics in the region [13,14].

A critical obstacle when determining regional carbon budget lies in the use of detailed
data from a limited number of sites to predict the activity of the larger landscape [15,16].
Satellite remote sensing technologies have made it possible to determine vegetation pro-
ductivity of large and inaccessible areas [17]. The multi-spectral remote sensing from
Earth-orbiting satellites is indicating a spectral ‘greening’ trend of the aboveground compo-
nent of tundra vegetation [18] due, in part, to changes in community composition driven
by shrub expansion and changes in plant traits such as height, leaf area or phenology [19].
Documentation of the ‘Arctic greening’ phenomenon relies strongly on the use of remotely
sensed proxies of vegetation [18,20,21], in particular Normalized Difference Vegetation
Index (NDVI), which measures the relative density and health of vegetation for each pixel
in a satellite image. There is a known association between NDVI and gross ecosystem
productivity [22]. Yet, NDVI values are highly susceptible to a variety of ground-cover
fluctuations that can be hard to unravel, including vegetation biomass and type, litter cover
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and non-vegetation changes such as unfavourable atmospheric conditions [19]. Further,
scaling effects can lead to underestimation of ecosystem productivity parameters due to
their non-linear relationship with NDVI and the heterogeneity of Arctic land covers [23].
The high fragmentation and high diversity of Arctic land covers and plant community
composition must be taken into account in vegetation monitoring [23–26].

A key part in determining the role of the Arctic in the global climate system is by
understanding the dynamism of vegetation [27,28]. Carbon stocks in arctic soils commonly
far exceed carbon stored in vegetation [29], and changes in plant ecology impact on physi-
cal, chemical and biological processes and feedbacks within the carbon and hydrological
cycles [30]. Nevertheless, there is still uncertainty regarding the effect of vegetation change
at high latitudes, because seemingly contradictory studies [31] show that it may partly
offset atmospheric CO2 increases via increased vegetation growth or it could aggravate
soil carbon loss due to higher decomposition rates [32]. Conversely, the focus of research
has been mostly on the visible effect of a warming climate or how this reflects on above-
ground productivity [16,33,34]. The impact on belowground soil variability and plant
productivity in tundra environments remains less clear [34,35]. Iversen et al. (2015) [36]
adeptly named plant roots in Arctic tundra “the unseen iceberg”, inspired by the emphasis
on the importance of leaf and canopy properties, whilst largely ignoring belowground
productivity’s role.

The structure and function of plant communities are crucial drivers of carbon exchange
dynamics [37], with soil CO2 efflux (also soil respiration or Rs) patterns reflecting plant
species differences in litter quality, root production and root respiration [38,39]. Thus, it is
imperative to solve how best to measure change in various vegetation types to depict those
exchanges in the wider context of climate change impacts on northern landscapes. Plant
functional types (PFTs) have been adopted by global ecological modellers to represent
broad groupings of functionally similar plant types sharing analogous characteristics and
roles [40,41]. Although recent observations indicate the widespread “greening” of the
Arctic tundra at a landscape scale, distinct responses are observed among PFTs due to their
idiosyncratic physical, biological, and chemical characteristics [36,41]. PFTs’ response to
warming diverge in terms of productivity, biomass allocation and root distribution as well
as their plasticity [34] whose impact on soil carbon will also differ.

Models aiming to project future climate scenarios must capture the uniqueness of
the tundra plant community structure and function from observations on the ground.
Estimating, or at least constraining flux magnitudes of soil and ecosystem respiration based
on remotely sensed vegetation characteristics remains a challenge, as we so far lack a firm
understanding of the relationship between aboveground vegetation characteristics and
belowground processes.

Our study aims to establish an association between aboveground plant productivity
and belowground soil respiration to derive crucial information for tundra carbon budgets.
Specifically, we test two hypotheses:

Hypothesis 1. In tundra ecosystems, soil respiration is more strongly related to differences in
community-dominant plant functional type than variations in NDVI in each community.

Hypothesis 2. Organic horizon soil carbon storage is strongly positively related to plant communities.

2. Materials and Methods
2.1. Site Description and Vegetation Survey

The research site is situated about 5 km south of Abisko in northern Sweden, around
200 km north of the Arctic Circle (68◦19′N, 18◦49′E) and c. 500–550 m above sea level.
According to the Abisko Scientific Research Station [42], which has been recording temper-
atures for around 100 years, the average annual temperature for the area is approximately
0 ◦C with a mean temperature in July of 11 ◦C (Abisko Science Station). In the last century,
the average monthly precipitation in July is 59 mm. We opted for a focused measuring cam-
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paign during the peak growing season [23,43] for this first investigation into the correlations
between NDVI and belowground biochemical activities. This study took place between
the 19th and the 31st of July 2018, which registered monthly air temperatures above the
average for this time of the year (14.9 ± 3.9 ◦C) and lower than typical precipitation levels
(42.5 mm).

Our study area is located at the transition between mountain birch forest and open
tundra, forming an island treeline ecotone. The vegetation in the area is varied and ranging
from snow bed communities, bryophytes and lichens, heath to tall shrubs and birch forest
ecosystems [44]. The area was surveyed for four specific tundra plant communities that are
important at the regional scale and are representative for large areas across the pan-Arctic
region [45]: (1) dense shrubs of Betula nana L. (dwarf birch) and (2) Salix spp. species
(willow), (3) tundra heath dominated by Empetrum nigrum L. (crowberry) and crusted areas
of (4) lichen heath. Within these, three levels of relative “greenness” per plant community
were visually assessed and selected based on the % of plant cover in a gradient from low
(<50%), medium (50–70%) to high greenness (75–100%) within 1 m2 plots. Four blocks
of ~100 m2 each were created in a tundra area of approximately 3 km2 (Figure 1) acting
as spatial replicates within which 12 plots of four vegetation types and three levels of
greenness were located. This resulted in a total of 48 measuring locations.
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Figure 1. Map of the study area. NDVI measurements captured from an UAV (Unmanned Aerial
Vehicle) equipped with multispectral sensor (see Siewert and Olofsson 2020) with the superimposed
areas of the four sampling blocks (black squares). Green denotes high NDVI while red represents
low NDVI or levels of greenness. All plant functional types occur in each block.

2.2. NDVI and Land Surface Greenness

NDVI measurements of each 1 m2 plot were carried out with a handheld Spec-
trosense 2+ spectrometer (Skye Instruments Ltd., Llandrindod Wells, UK) with 2 channels
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(650/40 nm and 800/40 nm centre wavelengths/bandwidth). The NDVI vegetation index
is calculated according to:

NDVI = (NIR − Red)/(NIR + Red)

where NIR is reflectance in the near-infrared (800 nm centre wavelength) and Red is re-
flectance in the red range of wavelengths (560 nm) of the light spectrum, resulting on a
scale between −1 and 1, where 0 is typically bare ground with minimal to no vegetation
greenness and 1 is high degree of greenness (Figure 1). NDVI has been shown to be a
good proxy for LAI (leaf area index), and Van Wijk and Williams (2005) [46] successfully
established a relationship between NDVI and LAI in a tundra environment (R2 = 0.73),
using comparable sensors and wavelengths to ours (580 to 690 nm and 725 to 1100 nm, re-
spectively). We apply their equation to convert our own NDVI values into LAI accordingly:
LAI = 0.003 e7.845 x NDVI.

2.3. Soil Respiration

To measure soil respiration, PVC (Polyvinyl chloride) collars with a diameter of 15 cm
and a height of 7 cm were placed on the soil surface taking care to gently clear the diameter
space of any vegetation or plant debris. These were sealed to the soil using a non-setting
putty. Soil CO2 efflux measurements were taken using a portable Infra-Red Gas Analyser
(IRGA, EGM-4, PP Systems International, Amesbury, MA, USA) equipped with CPY-4
chamber, which was carefully placed on top of the PVC collar, ensuring a good seal between
chamber and collar.

CO2 captured by the chamber is the total soil CO2 efflux, including microbial and
plant root activity, with respiration rates being calculated based on a linear function of
the increase in the amounts of carbon dioxide within the compartment over a period of
90 s [47]. Entire blocks were measured on the same day, avoiding significant differences in
temperature and moisture over time. Measurements from all collars took place on three
occasions during the 10-day period, and the order in which the four blocks and the 12 plots
within each block were sampled was randomised. To explain variations in soil respiration,
soil temperature at 5 cm depth was also recorded between 10 and 20 cm from each soil flux
collar every time CO2 efflux measurements took place.

2.4. Soil Cores: Moisture, Organic Matter, and Elemental Analysis

Three soil cores per plot were collected by inserting a 4.5 diameter × 20 cm deep soil
corer into the ground within each plot until it would not go any deeper. The assumption is
that the corer hit the parent material or a large rock. Organic soil horizon was separated
from mineral soil and samples from all three cores per plot were combined according to
horizon type. Soil samples were utilised to determine soil organic matter and soil moisture,
because soil moisture (like soil temperature) can influence variation in Rs rates. Soil samples
were sieved with a 2 mm sieve to remove the coarse fraction and then weighed before
and after being dried at 60 ◦C until all moisture had been removed. This was verified by
regularly reweighing the sample to see if the weigh was still being lost. Fine roots (<2 mm)
were picked from the soil samples and their weight was recorded to estimate root biomass
(in g of roots per m2).

Soil organic matter content was quantified by loss-on-ignition (LOI; [48]) by placing
oven dried soil samples in a muffle furnace at 450◦ C for a minimum of 12 h. The organic
matter amount is estimated as the mass difference of samples before and after incineration
in the furnace. To calculate SOC content, approximately 5 g of soil selected from 23 samples
(14 organic and 9 mineral soil) under high level of greenness were also milled to powder.
The C content of sub-sample of c. 3 mg was determined by elemental analysis (FlashSmart
2000 NC Org., Thermo Fisher Scientific, Cambridge, UK).
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2.5. Statistical Analysis

All analyses were carried out on R version 4.0.2 (22 June 2020). Log transformation was
employed where data were not normally distributed upon analysis of model’s distribution
of the residuals. Homogeneity of variance was tested by applying the ANOVA() function
(a variation of Levene’s Test). The aov() function was employed to determine if there were
statistically significant differences between the respiration and SOC means of the respective
plant communities. A post-hoc Tukey test was carried out using the TukeyHSD() (‘Honest
Significant Difference’) function to perform a multiple pairwise-comparison between the
means of groups. We report F values (ratio of variance between and within groups) and
level of significance (p > 0.05, p < 0.05, p < 0.01, or p < 0.001).

To address hypothesis 1, a linear mixed-effects model was fitted first with maximum
likelihood (ML) using the lme4 package in R to understand the effect of NDVI, soil mois-
ture, soil temperature, fine roots as fixed effects on soil respiration [49,50]. “Block” and
“Community” (representing spatial replicates and plant functional types, respectively)
within the experiment were identified as random factors. As LAI is derived mathematically
from measured NDVI values, it is not an independent parameter and not considered in
the model. The soil CO2 efflux response to soil temperature (at 5 cm depth) was derived
from model parameters and expressed as Q10, i.e., the factor by which CO2 flux increases
following a temperature increase by 10 ◦C.

We tested the relationship between carbon in the organic horizon (SOC) against NDVI,
soil moisture, fine roots, and soil temperature to address hypothesis 2, by using a linear
mixed-effects model with Block and Community once again explaining random variance.
Following model simplification by AIC (Akaike Information Criterion) to estimate model
parsimony (where the model with the lowest AIC is the most parsimonious), the final
version was fitted with restricted maximum likelihood (REML) for more accurate coefficient
estimates. We also calculated the ICC (intraclass correlation) which can be interpreted as
the proportion of the variance in Block and plant community (our random effects) that
can be explained by the grouping structure in the population. The ICC is calculated by
dividing the random effect variance, σ2

i, by the total variance, i.e., the sum of the random
effect variance and the residual variance, σ2

ε [51].

3. Results
3.1. Organic Matter and Carbon

Organic matter content results from loss-on-ignition correlated significantly with C
content established by the elemental analysis across both mineral and organic soil horizons
(y = 0.4472x + 0.7528, R2 = 0.99, p < 0.001). This relationship was applied to organic matter
results to obtain C content for all plots. At 5.63 ± 4.51 kg m−2, stocks of carbon are greater
in the organic horizon of the soil profile across all vegetation types than in the mineral
horizon (1.28 ± 0.82 kg m−2). Focusing only on the organic horizon (Table 1), willow has
the highest level of SOC (7.19 ± 6.33 kg m−2) while lichen has the lowest concentrations
(3.09 ± 1.83 kg m−2). Betula nana presented the least extent of relative data variation
(Table 1).
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Table 1. Descriptive statistics for plant communities, soil respiration (µmol m−2 s−1), vegetation index, soil organic carbon
(SOC), organic matter stocks in the organic horizon (kg m−2), fine roots (g m−2) and abiotic conditions (soil moisture %, soil
temperature ◦C). Some cores under E. nigrum vegetation did not show an organic horizon.

B. nana (N= 12) E. nigrum (N= 10) Lichen (N= 12) Willow (N= 12) Overall (N= 46)

Fine Roots
Mean (SD) 146 (87.8) 146 (87.8) 146 (87.8) 146 (87.8) 93.2 (77.4)

Median [Min, Max] 125 [42.8, 216] 125 [42.8, 216] 125 [42.8, 216] 125 [42.8, 216] 78.9 [14.0, 316]
LAI

Mean (SD) 1.82 (0.563) 1.13 (0.413) 0.146 (0.111) 1.87 (0.276) 1.25 (0.807)

Median [Min, Max] 1.88 [0.980, 2.72] 1.11 [0.630, 1.90] 0.105 [0.040,
0.340] 1.95 [1.51, 2.31] 1.41 [0.040, 2.72]

NDVI
Mean (SD) 0.813 (0.0427) 0.751 (0.0431) 0.461 (0.0961) 0.818 (0.0221) 0.709 (0.161)

Median [Min, Max] 0.820 [0.740,
0.870] 0.750 [0.680, 0.820] 0.450 [0.340,

0.600]
0.815 [0.780,

0.850]
0.780 [0.340,

0.870]
SOM

Mean (SD) 13.0 (6.49) 14.4 (11.4) 6.70 (3.99) 15.7 (13.9) 12.4 (9.98)
Median [Min, Max] 12.0 [5.89, 25.4] 11.3 [1.64, 39.1] 5.68 [1.86, 16.2] 10.9 [5.51, 55.1] 9.73 [1.64, 55.1]

SOC
Mean (SD) 5.71 (2.47) 6.72 (5.29) 3.09 (1.83) 7.19 (6.33) 5.63 (4.51)

Median [Min, Max] 5.42 [2.69, 11.6] 5.17 [0.780, 17.8] 2.62 [0.990, 7.43] 4.97 [2.54, 25.1] 4.66 [0.780, 25.1]
Soil Moisture

Mean (SD) 63.0 (7.32) 57.3 (13.0) 44.0 (14.3) 62.9 (12.0) 56.8 (14.0)
Median [Min, Max] 64.4 [49.4, 72.1] 61.5 [28.3, 67.8] 43.7 [22.8, 63.2] 65.3 [31.7, 75.0] 60.8 [22.8, 75.0]

Soil Respiration
Mean (SD) 5.30 (2.31) 2.98 (1.05) 1.26 (0.340) 5.87 (2.27) 3.89 (2.54)

Median [Min, Max] 5.41 [1.68, 9.93] 2.71 [1.26, 4.41] 1.29 [0.770, 1.86] 5.75 [2.68, 10.2] 3.19 [0.770, 10.2]
Soil Temperature

Mean (SD) 10.9 (1.22) 12.9 (1.31) 16.6 (1.38) 10.7 (0.883) 12.8 (2.69)
Median [Min, Max] 11.0 [8.43, 12.8] 13.3 [11.1, 14.9] 16.2 [14.6, 18.7] 10.9 [8.93, 11.8] 11.8 [8.43, 18.7]

3.2. Soil Respiration, Organic Carbon, and Vegetation Indices

Different plant communities are not associated with significantly different stocks of
SOC and show high variability (Figure 2A; F = 2.08, p > 0.05). However, plant communities
are found to have significantly different rates of soil respiration (Figure 2B; F = 18.04,
p < 0.001), caused mainly by reduced soil respiration under Empetrum nigrum and lichen
vegetation compared to more productive shrub type vegetation (post-hoc Tukey test;
Figure 2B), and show less variation compared to organic carbon.

Soil respiration exhibited a nonlinear relationship with NDVI (Figure 3A; [y = 0.202 e3.508 x,
p < 0.001]). The regression indicates a doubling in Rs for an increase in NDVI of 0.1976.
The relationship between soil C in the organic horizon and NDVI is only marginally
significant (Figure 3C [y = 0.035 + 7.897x, R2 = 0.08, p = 0.057]). Conversion of NDVI to LAI
(y = 0.003e7.845x, Van Wijk and Williams, 2005), resulted in a significant linear relationship
with soil respiration (Figure 3B [y = 0.982 + 2.332x, R2 = 0.55, p < 0.001]) but not for soil
organic carbon (Figure 3D [y = 4.023 + 1.291x, R2 = 0.05, p > 0.05]).
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The parameter estimates (Table 2) for the mixed effects model indicate that for an
increase in soil temperature by 1 ◦C, there is a 6.6% increase in Rs (p < 0.001; Q10 = 1.90)
and that for a 0.1 rise in NDVI, we observe a 24.6% increase in soil respiration (p < 0.01).

Table 2. Parameter estimates for both final mixed effects models, with standard error, level of significance, 95% confidence
intervals (CI) and intraclass correlation (ICC). ICC represents the effect of the block design and plant community on
the model.

Parameter Values Standard Error CI (Lower) CI (Upper)

NDVI 2.20 ** 0.81 0.58 4.32
log (Rs) Soil temperature 0.0644 *** 0.0191 0.0247 0.1010

Constant −1.38 0.73 −3.04 0.055
ICC (adjusted) 0.495
Soil moisture 0.0264 *** 0.0055 0.0154 0.0372

log (SOC) Fine roots 0.00205 * 0.00101 0.00010 0.00407
Constant −0.209 0.340 −0.863 0.454

ICC (adjusted) 0.414

Note: * p < 0.05; ** p < 0.01; *** p < 0.001.
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While soil moisture did not correlate with Rs (p > 0.05), there is a highly significant
correlation between soil moisture on soil organic carbon (p < 0.001), with carbon in the
organic horizon predicted to increase by 1.063 kg m−2 for every 1% increase in moisture
(95% CI = 1.036, 1.089 kg m−2) after back-transforming the log values. We also observe
a 1.0047 kg m−2 increase for every g m−2 fine root biomass (p < 0.05; 95% CI = 1.0045,
1.0142 kg m−2). However, the relationship between SOC and NDVI is not significant
(p > 0.05). Our models also show that the intra-class correlation that measures the random
effect variance for block and plant community is high both for the soil respiration model
(ICC = 0.495) and the organic carbon model (ICC = 0.414), indicating that a considerable
fraction of the total variation in the data lies between groups.

4. Discussion
4.1. Predicting Soil Respiration in a Highly Heterogeneous Environment

Accurate measurement of soil respiration rates is crucial for the evaluation of carbon
cycling in the Arctic [52]. Our results show that vegetation type and level of greenness
(NDVI) are significantly and measurably related to soil respiration. However, this is
a multifaceted relationship and cannot be adequately forecast by levels of NDVI alone
(Hypothesis 1). Nevertheless, the inclusion of NDVI and soil temperature measurements
along with information about plant community composition and spatial distribution
resulted in a significant predictive model (Table 2).

Our results echo the intricacy of biogeochemical characteristics in high latitude re-
gions [53,54], reflecting the complexity of an ecotone between boreal forest and tundra.
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Arctic tundra soils are typically organic-rich due to the accumulation of plant material and
slow decomposition rates [55]. Rising temperatures cause an increase in decomposition by
increasing soil microbial activity, impacting particularly on an ecosystem characterised by
low primary productivity, low nutrient inputs and slow cycling of these nutrients [56,57].
Soil respiration is highly responsive to temperature increases [58–60], and soil moisture
responses have also been widely reported [61,62]. Understandably, abiotic variables such
as soil temperature and soil moisture remain a classic approach in regression analysis to
determine Rs, with many empirical relationships having been established via field mea-
surements [63–65]. We found no direct influence of moisture on short-term variation in soil
CO2 efflux rates, and we speculate that characteristic variations in soil water content were
confounded with vegetation types. With respect to the explanatory power of temperature
on the rate of CO2 efflux this is limited in highly heterogenic landscapes with varied
vegetation cover [66]. Climate warming favours growth of deciduous shrubs at the cost
of other plant types in the arctic tundra such as grasses, mosses and lichens [52,67,68].
Nevertheless, terrestrial vegetation is one of the largest sources of uncertainty in climate
change predictions [69,70] and studies investigating the significance of CO2 release from
soils in relation to vegetation cover are rare, but necessary to get a full picture of Arctic
carbon dynamics [38,43,71]. Most climate models currently use only two PFTs (one grass
and one shrub) to embody Arctic vegetation [41,72]. In order to capture the high-latitude
vegetation processes, it is important to embrace Arctic and boreal specific PFTs in modelling
vegetation change predictions, including deciduous and evergreen shrubs, sedges, grasses,
forbs, Sphagnum and non-Sphagnum mosses and lichens [69,73]. Our data show that dif-
ferent plant communities have different soil respiration rates (Figure 2B), underlining the
importance of incorporating plant community composition into the partitioning of energy
and carbon fluxes in the Arctic [74].

Recent satellite remote sensing studies, which revealed greening trends in the Arc-
tic associated with increasing temperatures, suggest intensification of productivity and
photosynthetic uptake of CO2 [18]. Nonetheless, the study of broad-scale ecosystem level
changes in soil respiration as a response to variations in climate and vegetation cover
are less straightforward [52]. The evaluation of the global impact of changes in the net
carbon balance of high-latitude ecosystems requires the understanding of the controls on
belowground CO2 efflux at correct spatial and temporal scales [39]. The implementation of
vegetation indices such as NDVI to aid the process of discovery of CO2 efflux patterns is
faced with the challenge of the fine-scale variation of the Arctic vegetation, corresponding
to differences in topography, hydrology and frost-heaves [15], requiring highly resolved
UAV data to obtain a full picture of landscape level distribution of ecosystem productivity
variables [23]. A girdling study from a site near to the present study shows that C sup-
ply from the canopy drives root and rhizosphere respiration in treeline birch and dense
willow shrub patches [43], confirming the significance of C assimilation on belowground
rhizosphere processes [75,76]. Our results from tundra vegetation align with these findings,
as we also show that higher the productivity of the canopy (assessed by NDVI) corre-
lates with higher soil CO2 flux, most likely associated with rhizosphere C supply. Arctic
models already consider conceptual representations of root biomass, depth distribution,
turnover and respiration rates, among others. However, few models explicitly explore root
morphology, phenology and interactions between roots and their surroundings [36].

Linking Rs to NDVI would allow for landscape scale estimates of Rs that are so far
lacking in the spatial distribution of soil respiration data estimation [77] and research advo-
cates this potential for remote sensing to assess CO2 efflux [77–79]. Our study revealed that
a combination of remote sensing products (NDVI) and in situ sampling of soil temperature
adequately predicted Rs. A comparison of several statistical models using remote sensing
products such as Land Surface Temperature (LST; the radiative skin temperature of the
Earth measured by a sensor like MODIS), root zone soil moisture and photosynthesis
Enhanced Vegetation Index (EVI), to examine their relationship with Rs [79] to models
based on in situ measurements in a deciduous forest ecosystem (Huang, Gu and Niu, 2014)
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concluded that models based entirely on spatial data products showed lower explanation
capacity for seasonal variation of Rs than the model measured from ground data (R2 = 0.76
and 0.90, respectively). However, we would expect the relationship between Rs and re-
motely sensed NDVI more straight forward in tundra than in broadleaved forest where the
spatial variation is modulated by large trees with extensive root networks.

4.2. Soil Organic Carbon and Vegetation Indices Constraints

Associations between soil carbon and vegetation indices are instrumental for under-
standing the magnitude and acceleration of CO2 emissions in a warming Arctic [38,80,81],
because, unlike belowground features, aboveground vegetation can be easily detected
remotely using aerial and satellite imagery. SOC storage results from the balance of carbon
inputs and losses and is therefore a key regulator of land-atmosphere feedbacks in the face
of climate change [82].

We know that more productive plant communities with higher leaf area have higher
respiration rates [38], but despite the established positive relationship between leaf and
fine root turnover rates with LAI [83] our results show no evidence for NDVI propelling
variations in fine root biomass either between or within vegetation types. These results
diverge from our findings relating to SOC, where we concluded that soil organic carbon
can be adequately explained by levels of soil moisture (p < 0.001) and fine roots biomass
(p < 0.05) in the organic horizon and by the consideration of plant community composition
in the model (ICC = 0.414).

Previous research looking at correlations between NDVI and SOC suggested a good
level of prediction and modelling accuracy when using time series regression, yet it also
observed that single-data NDVI alone cannot be used to forecast SOC [22], but requires
more sophisticated model based digital soil mapping approaches in the Arctic, including
a range of environmental variables [26,84]. Adding to the multi temporal constraint
of NDVI/SOC associations is the element of soil depth evaluation [85]. The functional
relationship between SOC and vegetation cover sensitive in certain spectral bands allowed
to use spectral remote sensing data in digital soil mapping approaches for robust estimates
of SOC [26,86]. However, soils in the tundra show tremendous subsurface variability of
SOC caused by annual freeze and thaw processes and permafrost, yet, the lack of surface
expression often conceals subsurface variability with valuable information potentially
unaccounted for [87]. Moreover, vegetation cover and soil moisture are known to lead to
inaccurate predictions of SOC [88,89].

A follow-on study should measure LAI in the field so we can better define the relation-
ships between NDVI/LAI and soil respiration. This would suitably verify the predictive
power of LAI measured on the ground on soil respiration. Our study provides strong
evidence for the potential to use NDVI as a predictor for soil respiration at local scale and
highlights the more complicated relationship between vegetation productivity and SOC.

5. Conclusions

Our findings show the usefulness of remotely sensed products to infer biological indi-
cators not only of plant productivity, but also relating it to the dynamics of soil respiration
in a highly heterogenic ecosystem. It thus improves our understanding of the interactions
between above- and belowground processes in a tundra ecosystem, by successfully linking
soil respiration with aboveground plant productivity at a landscape level. Regression
analysis determined an empirical relationship between Rs and remotely sensed levels of
greenness (NDVI) under distinct vegetation types. The inclusion of a photosynthesis re-
lated index such as EVI may possibly solve the classic saturation problem as demonstrated
by recent studies in remote sensing. This single-site study was unable to directly link
NDVI to SOC for prediction purposes. With the increasing availability of high-resolution
multi-spectral satellite and UAV imagery resolving plant communities and productivity
at ever finer grain, our results highlight the potential to map and estimate soil respiration
at landscape scale, providing crucially needed ground reference data for large scale, but
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coarse-resolution satellite validation and model calibration. This may eventually provide
urgently needed understanding of soil respiration dynamics in a warming New Arctic.
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