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Abstract: Using advanced Differential Interferometric Synthetic Aperture Radar (InSAR) with small
baseline subsets (SBAS) and Permanent Scatter Interferometry (PSI) techniques and C-band Sentinel-
1A data, this research monitored the surface displacement of a large old landslide at Xuecheng town,
Lixian County, Sichuan Province, China. Based on the MassMov2D model, the effect of the dynamic
process and deposit thickness of the potentially unstable rock mass (deformation rate < −70 mm/year)
on this landslide body were numerically simulated. Combined with terrain data and images gener-
ated by an Unmanned Aerial Vehicle (UAV), the driving factors of this old landslide were analyzed.
The InSAR results show that the motion rate in the middle part of the landslide body is the largest,
with a range of −55 to −80 mm/year on average, whereas those of the upper part and toe area were
small, with a range of −5 to −20 mm/year. Our research suggests that there is a correlation between
the LOS (line of sight) deformation rate and rainfall. In rainy seasons, particularly from May to July,
the deformation rate is relatively high. In addition, the analysis suggests that SBAS can provide
smoother displacement time series, even in areas with vegetation and the steepest sectors of the
landslide. The simulation results show that the unstable rock mass may collapse and form a barrier
dam with a maximum thickness of about 16 m at the Zagunao river in the future. This study demon-
strates that combining temporal UAV measurements and InSAR techniques from Sentinel-1A SAR
data allows early recognition and deformation monitoring of old landslide reactivation in complex
mountainous areas. In addition, the information provided by InSAR can increase understanding of
the deformation process of old landslides in this area, which would enhance urban safety and assist
in disaster mitigation.

Keywords: Interferometric Synthetic Aperture Radar (InSAR); Multi Temporal InSAR (MT-InSAR);
Unmanned Aerial Vehicle (UAV); MassMov2D; numerical simulation; old landslide

1. Introduction

There is a large old landslide with an estimated volume of about 3.5 × 107 m3 at
Xuecheng town, Lixian County, Sichuan Province, China (103.3206◦E, 31.5673◦N) (hereafter
called the XC landslide). It is located on the left bank of the Zagunao river. A ground
survey and remote sensing interpretation show that the back part of this landslide has an
obvious armchair shape and its deposit mass is well preserved. It can be inferred that this
landslide has experienced two slides based on its morphology: the first is the slope failure,
which was presumably triggered by a historical earthquake; and the second occurred on
the existing landslide mass. Subsequently, as a result of river erosion, small-scale collapses
have taken place on the front. Thus, there is significant concern about whether this old
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landslide will be reactivated, thus leading to a geologic hazard, and the influences on its
potential instability.

In recent years, new remote sensing techniques, such as Interferometric Synthetic
Aperture Radar (InSAR) and Unmanned Aerial Vehicle (UAV) photogrammetry have been
widely used in investigations of landslides [1–7]. InSAR technique has the advantages
of being available at all times and in all weather conditions [8]. In particular, due to the
application of SAR satellites of higher resolution and shorter revisit times, and InSAR
data processing techniques, multiple temporal InSAR (MT-InSAR) methods have been
developed, such as Permanent Scatter Interferometry (PSI) [9–11], small baseline sub-
sets (SBAS) [12,13], and Distributed Scatter (DS) approaches [14,15]. Many case studies
have demonstrated that PSI and SBAS technologies can facilitate large-scale landslide
monitoring, and are suitable for measurement of mass movement at regional and slope
scales [15–18].

Numerical methods can help understand the movement process of large-scale land-
slides and predict the runout of the potentially unstable mass [19,20]. The commonly
used numerical simulation software packages include DAN3D, Massflow, and Mass-
Mov2D [21,22]. Among these, MassMov2D is a new open-source landslide model with
high operation efficiency, which can be employed to reveal the failure process and kine-
matic characteristics of landsliding, and aid in monitoring the motion of an unstable rock
mass [22].

InSAR has becomes an effective technique for deformation monitoring and identifi-
cation of landslides, and allows measurement of millimetric ground displacement [4–6].
In addition, UAVs, also termed remotely piloted aircraft (RPA) technology, can obtain
very high-resolution images, thus increasing the vertical resolution and accuracy of such
final products as the digital surface model (DSM) and orthophotos, which are important
supplements to conventional investigations of landslides [1,7]. The current study made a
further investigation of the XC landslide using UAV and InSAR techniques. Based on PSI
and SBAS methods, the deformation rate of this old landslide was measured based on the
C-band Sentinel-1A data, and two time-series results were compared. In terms of the InSAR
results, we then used the MassMov2D model to simulate the possible motion process and
accumulation characteristics of the unstable rock of this old landslide body. Finally, the
driving factors of the instability of this landslide and hazard prediction of potential failure
were investigated. This study allows us to better understand the relationship between the
deformation and potential triggering factors. Furthermore, it also has guiding significance
for the assessment of the reactivation of other old landslides in the eastern margin of the
Tibetan plateau.

2. Study Area and Description of the Old Landslide
2.1. Study Area

Lixian County is located in the northwest of Sichuan Province, 200 km from Chengdu
(Figure 1). This area is close to the Longmen Shan fault zone, between the Songpan-
Ganzi block in the west and Sichuan Basin in the east. Associated with complex tectonic
movement, four earthquakes with magnitude greater than MS 7.0 have occurred around this
area during the past 100 years. Due to the combination of rugged topography, earthquakes,
heavy rainfall, and human activity, this region is prone to landslides. Previous work
shows that this area is among the worst hit by geological disasters caused by the 2008
Wenchuan Mw7.9 earthquake [23]. Following this shock, numerous old landslide deposits
and unstable slopes have experienced large continuous deformation [24,25].
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Figure 1. Map showing the tectonic setting of the study area (box) and historical earthquakes. MJF: 
Minjiang fault, HYF: Huya fault, BYF: Beichuan-Yingxiu fault, WMF: Wenchuan-Maoxian fault, 
JGF: Jiangyou-Guanxian fault, LQSF: Longquan Shan fault. The active faults are from Deng (2007) 
[26]. 

The study area has a large topographic relief in which the highest elevation is 5900 
m and the lowest is 1400 m, and an average elevation of 2700 m (Figure 2a). The average 
annual temperature in the valley is between 10 and 13 °C, and the annual rainfall is be-
tween 400 and 700 mm. The rainy season is from May to September, and accounts for two-
thirds of the annual precipitation. The monthly average rainfall from May to July is the 
largest, and is more than 70 mm [27]. Most streams pertain to the Zagunao River, which 
is a major tributary of the Minjiang River. The slopes on both sides of the Zagunao River 
are steep with sparse vegetation and strong erosion. As a result, geologic hazards such as 
debris flows and landslides occur frequently [27]. The lithology of the study area mainly 
includes Silurian gray phyllite with limestone of the Maoqun Formation (Smx4 and Smx5), 
Devonian Carbonaceous phyllite or phyllite with quartzite of the Weiguan Formation 
(Dwg1, Dwg2), Carboniferous and Permian basalt and conglomeratic limestone (C + P), and 
Upper Triassic feldspathic quartz sandstone of the Zhunwei Formation (T3zh). Thin Qua-
ternary deposits are present in the bottom of the Zagunao River valley, including alluvial, 
proluvial, eluvial, and old landslide masses. 

Figure 1. Map showing the tectonic setting of the study area (box) and historical earthquakes. MJF:
Minjiang fault, HYF: Huya fault, BYF: Beichuan-Yingxiu fault, WMF: Wenchuan-Maoxian fault, JGF:
Jiangyou-Guanxian fault, LQSF: Longquan Shan fault. The active faults are from Deng (2007) [26].

The study area has a large topographic relief in which the highest elevation is 5900 m
and the lowest is 1400 m, and an average elevation of 2700 m (Figure 2a). The average
annual temperature in the valley is between 10 and 13 ◦C, and the annual rainfall is between
400 and 700 mm. The rainy season is from May to September, and accounts for two-thirds
of the annual precipitation. The monthly average rainfall from May to July is the largest,
and is more than 70 mm [27]. Most streams pertain to the Zagunao River, which is a major
tributary of the Minjiang River. The slopes on both sides of the Zagunao River are steep
with sparse vegetation and strong erosion. As a result, geologic hazards such as debris
flows and landslides occur frequently [27]. The lithology of the study area mainly includes
Silurian gray phyllite with limestone of the Maoqun Formation (Smx4 and Smx5), Devonian
Carbonaceous phyllite or phyllite with quartzite of the Weiguan Formation (Dwg1, Dwg2),
Carboniferous and Permian basalt and conglomeratic limestone (C + P), and Upper Triassic
feldspathic quartz sandstone of the Zhunwei Formation (T3zh). Thin Quaternary deposits
are present in the bottom of the Zagunao River valley, including alluvial, proluvial, eluvial,
and old landslide masses.
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2b. (b) Elevation and rivers around Xuecheng area. The black box indicates the scope of Figure 2c. 
(c) The lithology distribution near the XC landslide (denoted by the yellow star). 
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The XC landslide is located on the left bank of the Zagunao River, where the valley 

is deep and narrow, and exhibits a “V” shape. The landslide has a “U” shape in plane 
view, in which most of the material was displaced from the upper part and deposited in 
the lower part (Figure 3). Based on its topographical features, it is a typical large-scale old 
landslide with an area of approximately 1.4 km2, and is about 1900 m long and 850 m 
wide. The main sliding direction is 130°. The main scarp has an armchair-like shape with 
a height of about 260 m. The elevations of the main scarp and the toe are 2750 and 1500 
m, respectively, with an elevation difference of about 1250 m. The slope angle averages 
35°, and reaches 50~60° at some places. According to field investigations and remote sens-
ing interpretations, two sliding events can be distinguished, and the main scarp and lat-
eral scarps of two slides can be clearly identified (Figure 3). The first slide is the slope 
failure, and the second event occurred on the deposit due to the first event. The gullies 
and surface water flows can be clearly seen in the whole landslide mass. Previous research 
[28] indicates that the hydrological paths are closely related to the micro-topography evo-
lution and stability of landslides. Based on UAV-based DSM data with 0.1 m resolution, 
the hydrological paths of the landslide mass were extracted using GRASSGIS software 
[29]. Figure 3 shows that the areas with the densest hydrological paths are in the middle 
part of the old landslide. 

Figure 2. (a) Elevation and drainages in Lixian County. The black box indicates the scope of Figure 2b.
(b) Elevation and rivers around Xuecheng area. The black box indicates the scope of Figure 2c. (c) The
lithology distribution near the XC landslide (denoted by the yellow star).

2.2. Landslide Characteristics

The XC landslide is located on the left bank of the Zagunao River, where the valley is
deep and narrow, and exhibits a “V” shape. The landslide has a “U” shape in plane view, in
which most of the material was displaced from the upper part and deposited in the lower
part (Figure 3). Based on its topographical features, it is a typical large-scale old landslide
with an area of approximately 1.4 km2, and is about 1900 m long and 850 m wide. The main
sliding direction is 130◦. The main scarp has an armchair-like shape with a height of about
260 m. The elevations of the main scarp and the toe are 2750 and 1500 m, respectively, with
an elevation difference of about 1250 m. The slope angle averages 35◦, and reaches 50~60◦

at some places. According to field investigations and remote sensing interpretations, two
sliding events can be distinguished, and the main scarp and lateral scarps of two slides
can be clearly identified (Figure 3). The first slide is the slope failure, and the second
event occurred on the deposit due to the first event. The gullies and surface water flows
can be clearly seen in the whole landslide mass. Previous research [28] indicates that the
hydrological paths are closely related to the micro-topography evolution and stability of
landslides. Based on UAV-based DSM data with 0.1 m resolution, the hydrological paths of
the landslide mass were extracted using GRASSGIS software [29]. Figure 3 shows that the
areas with the densest hydrological paths are in the middle part of the old landslide.
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Figure 3. Diagram showing the three-dimensional morphology of the Xuecheng (XC) landslide
from UAV images obtained by FEIMA D2000. The UAV datasets were collected on 23, 24, and 27
September 2020, with a flight altitude of about 160 m.

3. Data
3.1. SAR Datasets

Sentinel-1A, a space mission of the Europe Space Agency (ESA), was launched on 3
April 2014 [30]. Compared to other SAR missions, due to its revisit time of 12 days and
short baselines (i.e., orbital separations), Sentinel-1A is promising in the application of
InSAR [31,32]. The SAR data used in this study were taken from Sentinel-1 satellites, and
were acquired with the Interferometric Wide (IW) swath mode. Its pixel resolution is about
3.5 m in the range direction and 14 m in the azimuth direction. A total of 63 ascending
scenes from 8 April 2018 to 21 April 2020 were acquired and processed with an incidence
angle of 39.45◦. POD Precise Orbit Ephemerides published by the Sentinel-1A satellite were
used to remove systematic errors caused by orbit errors (https://qc.sentinel1.eo.esa.int/,
accessed on 10 April 2021). In addition, an ALOS PALSAR DEM of 12.5 m resolution
(https://search.asf.alaska.edu/, accessed on 10 April 2021) was used as the reference
elevation dataset for removing the topographic phase and geocoding the InSAR results.

3.2. UAV Data

The UAV used for photogrammetry was a FEIMA Intelligent Aerial Survey System
D2000. This is a small long-endurance quadrotor UAV system, which can carry optical
to microwave sensors to obtain multi-source data [33]. UAV data sets used in this work
were collected on 23, 24, and 27 September 2020. The ground resolution was set to 5 cm,
the images were designed with an overlap of 80%, and the flight altitude was about
160 m. UAV manager software developed by FEIMA Company was used to process im-
ages (http://www.feimarobotics.com/zhcn/productDetailManager, accessed on 10 April
2021). This software can generate georeferenced spatial data, such as 3D point clouds,
DSMs, and digital orthophoto models (DOM) [33]. Finally, we obtained the DSM and DOM
data with a resolution of 0.1 m.

https://qc.sentinel1.eo.esa.int/
https://search.asf.alaska.edu/
http://www.feimarobotics.com/zhcn/productDetailManager
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4. Methodology
4.1. MT-InSAR Processing

Time-series analysis based on multiple SAR acquisitions can be performed using a
set of differential interferograms generated from the co-registered image stack. Multi-
referencing and master-referencing are the two approaches used to build a stack of interfer-
ograms, and these two techniques were developed to carry out DInSAR analysis, including
PSI, and SBAS [34].

The PSI method was first proposed by Ferretti et al. [35], and bounces satellite radar
signals of naturally occurring permanent scattering points, such as man-made objects
(buildings, roads) and bare rocks [36]. This technique is based on a set of pixels that have
a stable phase over long periods of time, and are used to estimate the motion rate [37].
The SBAS technique is a different time series method based on multi-master images, and
proposed by Berardino et al. [38]. This method overcomes the drawbacks of the poor
coherence of some interferograms caused by the use of one master image. In addition,
because only interferograms with small baselines are selected for the time series analysis,
the deformation results are denser and more reliable. However, in the SBAS algorithm,
the interferograms are subjected to multi-look processing to further reduce decorrelation
noise. Thus, spatial filtering is not needed in the SBAS method, which avoids increasing
the noise contribution of non-dominant scatterers by coarsening of the resolution [34]. In
the PSI method, all interferograms can be created with respect to a single master, which
allows reduction of the noise contribution of the master image prior to phase unwrapping
because it is present in all interferograms. Therefore, the two approaches can be considered
to be complementary in the usual case in which a dataset contains pixels with a range of
scattering characteristics [34].

In this study, for the PSI method, a master image on 12 May 2019 was chosen based
on the minimization of the perpendicular and temporal baselines (Figure 4a). Low and
high band pass filters with window sizes of 1200 m and 365 days were then applied to
remove the spatial and temporal distributions of the atmospheric variations. Interferogram
generation and inversion were performed using the SARscape software [39]. For the
SBAS method, the maximum normal baseline and temporal baseline were set to 2% and
60 days, respectively, and interferogram pairs were generated (Figure 4b). All unwrapped
interferograms obtained were analyzed individually to inspect large unwrapping errors
before the time series generation. To ensure low coherence of the interferograms, we
removed these interferogram pairs [40]. The phase unwrapping was conducted using
Delaunay Minimum Cost Flow (Delaunay MCF) [41] and the Goldstein filter was used to
perform interferometric filtering [42]. After phase unwrapping, 36 ground control points
(GCPs) were selected to correct the unwrapped phase. The selection criteria can be found
in detail in previous work [43]. Preliminary displacements were estimated by a linear
model that is commonly used. The 12.5 m DEM was used to remove the topographic phase
and geocoding the SAR results in the SARscape software. The result was geolocated to the
WGS84 map geometry.
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4.2. MassMov2D Model

MassMov2D is a numerical model used to simulate the expansion (runout) and de-
position of mass over a complex topography by approximating the sliding mass to a
homogeneous one-phase fluid [44]. The model describes the mass movement as a two-
dimensional flux taking advantage of the shallow water equations [45]. This formula is
derived from the general Navier–Stokes equations under the hypothesis that the vertical
components of velocity and pressure are negligible with respect to the horizontal compo-
nents, and that the vertical pressure profile can be considered to be almost hydrostatic [46].
The code is freely available and implemented in GRASSGIS [22].

The input data includes the sliding surface topography (topographic data without
the sliding body) and the initial sliding mass thickness. Other input parameters that
characterize the mass material are the Chèzy (turbulent) coefficient (m·s−2), internal friction
angle of the sliding mass (degree), and the fluid flow rate (m·s−1) [22,47]. The turbulent
term summarizes all velocity-dependent factors of flow resistance and the density of the
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debris. The fluid rate defines the transaction velocity of the sliding mass when it changes
from a solid state to a fluid state.

The work flow of this study is shown in Figure 5. The basic data comprised 63 as-
cending C-band Sentinel-1A data, the 12.5 m DEM, UAV data, and monthly average
rainfall and lithology data. First, we analyzed the surface displacement of the land-
slide with SBAS and PSI techniques. Then, we selected potential unstable rock mass
(motion rate < −70 mm/year) to simulate the kinematic and accumulation characteristics
based on the MassMov2D software. Finally, by combining the monthly average rainfall
and lithology distribution, we investigated the potential driving factors of the landslide.
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Figure 5. Workflow of the MT-InSAR processing and numerical simulation.

5. Results
5.1. InSAR Time Series

The PS points refer to naturally occurring permanent scattering points, such as man-
made structures. The buildings, roads, and bare rocks in the study area are distributed
along both side of the gully with sparse vegetation, which increase the likelihood of finding
a persistent scatterer within a resolution cell (Figure 3).

As shown in Figure 6a, 1164 PS points were identified in the whole slope area. These
PS points are mainly distributed in the middle and lower parts, whereas those in the upper
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part are relatively sparse due to vegetation cover. Based on the InSAR result and UAV data,
the area of deformation rate <−10 mm/year was delineated as the presumed landslide
boundary. Figure 6a and Figure 7a display the deformation rates from April 2018 to April
2020. The yellow color (negative values) indicates motion away from the satellite in the line
of sight (LOS), and the blue color (positive values) indicates motion toward the satellite.
Overall, the PSI result is consistent with that of SBAS. The deformation rate in the middle
part of the slope is the largest, and has an average range of −55 to −80 mm/year, whereas
that of the upper part and toe area of the slope is relatively small, having a range of −5 to
−20 mm/year.
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Figures 6b and 7b show the temporal evolution of the LOS displacement at different
points over the observation period. The displacement of point 1 outside the presumed
landslide area is almost 0. Point 6 has the largest cumulative displacements of −142 mm
and −136 mm using PSI and SBAS methods, respectively. However, point 2 (upper part of
the slope) and points 3, 4, and 5 (toe area) display roughly the same displacement between
−50 and −70 mm. Comparing the InSAR results of the two techniques (Figures 6 and 7),
we can observe that, in the case of PSI, only accumulation areas that are generally located
on gentle slopes are detected, whereas SBAS provides the deformation rates of the area
with dense vegetation and the steepest sectors of the landslide. Thus, we believe that the
SBAS technique is more effective than PSI at detecting landslides, particularly in rugged
mountainous areas [48].

Figure 8 shows the time-series deformation along the radar LOS based on the SBAS
method. From April 2018 to Sep 2018, there was no obvious cumulative deformation in
the slope area. Subsequently, the obvious cumulative deformation signals occurred. In the
middle part of the slope, in particular, the cumulative deformation gradually increased,
and the deformation rate remained 5.6 mm/month. By July 2019, the total cumulative
displacement reached 80 mm. Subsequently, the deformation rate of the region increased
to 6.3 mm/month, and the cumulative deformation reached 160 mm by 21 April 2020. In
contrast, the deformation rate in the upper part of the slope was relatively small. From July
2019, the average deformation rate was 2.1–2.5 mm/month.

Figures 9 and 10 display the LOS velocity and cumulative displacement along the
longitudinal profile of the slope. It can be observed that the lithology of the upper part
of the slope is Carboniferous and Permian basalt and limestone (C + P). The deformation
rate in this area is relatively small, with a range of about −30 to −10 mm/year, and the
cumulative displacement is between −20 and −60 mm (Figure 10). The lithology of the
middle part of the slope body is Devonian phyllite with quartzite (Dwg1, Dwg2). In the
middle part of the slope, the deformation rate increases rapidly, with an average of about
−60 mm/year. The maximum deformation rate is −86 mm/year, and the cumulative
displacement is between −120 and −160 mm (Figure 10). With the decrease in slope
height, the deformation rate gradually decreases. At the toe of the slope, the cumulative
displacement is almost 0 (Figure 10).

Figure 11 shows the deformation rates on three latitudinal profiles of the slope. Evi-
dently, the deformation rate has a decreasing trend from the middle to each side. In the
upper and foot parts of the slope, the rate is relatively small, with an average ranging
from −20 mm/year to −10 mm/year. By comparison, the middle part with the largest
displacement is about 200 m wide, in which the deformation rate is about 70 mm/year,
implying that this area is unstable where the lithology is Devonian phyllite with quartzite
(Dwg1, Dwg2).
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5.2. Prediction of Potential Unstable Rock Mass

Combined with UAV images, we selected the above-mentioned potential unstable
rock mass (motion rate < −70 mm/year) to simulate the kinematic and accumulation
characteristics. The area of this rock mass is 46,000 m2 (Figure 12a). Based on the “volume-
area” power law [49], the volume was estimated to be 550,000 m3 with an average thickness
about 12 m. To evaluate the influence of different material properties on the movement and
deposit characteristics, we conducted a sensitivity analysis using different simulations sets;
in each, a single parameter was varied while others took the fixed values of the defined
variation range. Table 1 lists the ranges of input parameters. The setting of rheological
parameters was estimated by following previous studies [22,50,51]. The simulation results
showed that Chèzy coefficients and fluid rate influence the model output, including the
sliding velocity and movement process of unstable rock mass, but the predicted landslide
boundaries and depositing characteristics of the landslide are similar. Compared with the
Chèzy efficiency, fluid rate has less effect on the accumulation distribution and movement
characteristics [47]. Overall, for the Chèzy coefficient and fluid rate, reasonable parameters
based on previous studies [22,47,50,51] ensure the accuracy of the simulation results. Thus,
in the text, we discuss one of the simulation results with the Chèzy coefficient and fluid
rate of 200 m·s−2 and 10 m·s−1, respectively. More details about the sensitivity analysis
can be found in the Supplementary Materials.

Figure 12 illustrates the simulated velocity of the potentially unstable rock mass. The
whole sliding process lasts about 100 s. At 10 s, the material in the source area starts to
slide down from the shear outlet. At 30 s, the mass rushes down streams with a high
velocity of more than 30 m·s−1. At 40 s, a small amount of material begins to reach the foot
of the slope, while the remainder of the material extends downward at a high speed. At
60 s, the landslide materials gradually accumulate on the riverbed, and the sliding velocity
decreases rapidly. At 80 s, most mass is deposited at the foot of the slope, blocking the river
channel and forming a barrier dam. Little material remains on the slope surface. At 100 s,
the accumulation process ends.
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Table 1. Values of investigated parameters used for MassMov2D.

Parameter Value

Chèzy (Turbulent) coefficient (m·s−2) 200, 400, 600, 800, 1000
Internal friction angle (◦) 25

Fluid rate (m·s−1) 5, 10, 15, 20

6. Discussion
6.1. Possible Triggering Factors of Old Landslides

In the study area, many old landslides are present along the banks of the Zagunao
River, of which some deposits and unstable slopes had large continuous displacement
after the 2008 Wenchuan Mw7.9 earthquake [24]. The most frequent landslides in this
area occurred in the Devonian and Silurian strata, particularly Devonian phyllite with
quartzite (Dwg1, Dwg2) [27]. The InSAR data show that most areas with high motion rates
are located in this stratum (Dwg1, Dwg2) (Figure 13). From the meteorological station of
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the study area, we collected the data of average monthly rainfall in the Xuecheng area [27],
and analyzed the relationship between the LOS deformation rate and precipitation at five
randomly selected PS points near point 6 (locations are shown in Figure 6a) (Figure 14).
The results show that there is an obvious correlation between the LOS deformation rate
and rainfall (Figure 14). In rainy seasons, particularly from May to July, the deformation
rate was relatively high. From May to July in 2018, the deformation rate in some periods
was as large as 1 mm/day (Figure 14). Considering the geological and rainfall conditions
of the area, our research suggests that the possible driving factors of reactivation of the
XC landslide include: (1) Weathering of hard basalt and conglomeratic limestone (C + P)
is slower than that of soft phyllite (Dwg1, Dwg2). Thus, the slope of the hard rock area is
steeper than that of the soft rock area, and a greater surface water flow is concentrated in
the gentle slope area. Figure 2 shows that the densest hydrological paths are in the middle
part of the old landslide. This implies that the flow regime may be confined to the gentle
slope area, resulting in a significant increase in groundwater level in response to rainfall.
(2) The water can soften phyllite, of which the mechanical strength decreases greatly, and is
thus prone to slope instability under gravity. The rainfall is abundant and concentrated in
the study area, which can greatly reduce the strength of this stratum (Dwg1, Dwg2), and
then induce new slope instability. (3) Finally, river erosion can cause vacant surfaces on
both sides of the river, the lowering the landslide’s stability. Figure 3 shows the eroded
landslide toe and some small-scale collapses developed at the toe of the old landslide,
which indicates that the landslide mass has experienced erosion on the concave bank of the
river over a long period.
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6.2. Impacts of Potential Failure

Both of the banks of the Zagunao River are steep slopes, where many old landslides
may be reactivated by heavy rainfall or seismic shaking [25]. The simulation of this work
suggests that the unstable rock mass could collapse and form a barrier dam at the Zagunao
river with an area of about 0.02 km2 (Figure 15). The maximum thickness of the dam
is 16 m, and it has an accumulated length of about 800 m along the river. Based on the
accumulation characteristics of the barrier dam, the average thickness of the main dam
body was estimated to be about 13 m. Then we delineated the scope of the upstream
dammed lake using 0.5 m DEM data. Based on ArcGIS, the possible upstream lake area
was measured to be 2.5 × 104 m2, and the volume of the impoundment lake was calculated
to be 1.5 m × 105 m3. Constrained by the narrow valley, some high-speed sliding mass may
cross the river and extend to the opposite bank. As a result, the slide may destroy roads
and buildings on both sides of the Zagunao River. In addition, because the barrier dam
may block the river, the precipitation and surface runoff could flow into the gully, resulting
in the rise of the upstream water level, which may threaten the residents. A natural disaster
chain of “landslide–barrier lake–flooding” may easily occur in this area [52,53]. After the
occurrence of landslides, their deposits may block rivers and form landslide dams. Due
to flooding caused by rainstorms, the upstream water level rises rapidly, thus forming
a barrier lake. In the western mountainous areas of China, the mountain disaster chain
events linking landslides, barrier lakes, and outburst floods have occurred frequently in
recent years, such as the 2018 Baige landslide [54] and 2000 Yigong landslide [55], which
resulted in high casualties or significant economic loss.
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6.3. Application Prospects for InSAR and UAV Techniques

A large number of monitoring results show that the deformation of the ancient land-
slide is often characterized by creep slip, and the InSAR technique can effectively capture
the slow creep deformation signals before the occurrence of the landslides [8,32,56]. As a
result, numerous scholars have identified ancient landslides using the InSAR technique
and high-resolution aerial photos over large areas [15,57,58]. Based on the high-quality
long-time displacement information, the cumulative displacement–time curve of the typical
monitoring points can be obtained, which can be used to help discriminate the evolution
stage or predict the stability of ancient landslides [57]. This work is of significance to
reactivation monitoring and early identification of ancient landslides. In addition, high-
precision remote sensing images and terrain data based on UAV flight surveys can be
conducive to the identification of the landslide boundary, scarp, and fissures [58]. The sur-
face deformation information obtained using InSAR and UAV techniques can significantly
improve the early identification and evolution analysis of ancient landslides at a large
scale [57]. In addition, InSAR and UAV techniques can also be used to trace the historical
deformation evolution and analyze the potential inducing factors based on actual landslide
events [59,60]. This is of significant value for the analysis of landslide triggering factors
and post-disaster stability assessment.
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7. Conclusions

This work used two InSAR techniques, PS and SBAS, to monitor the reactivation of a
large-scale old landslide in the eastern margin of the Tibetan plateau. Its deformation rate,
potential sliding boundary, and driving factors were studied using the Sentinel-1A dataset
and UAV data. In addition, a hypothetical collapse body was numerically simulated to
predict the potential hazard of this old slope failure. Furthermore, relationships between
the LOS deformation rate and the precipitation were analyzed. The main conclusions are
as follows.

(1) Both InSAR techniques can provide useful information about the landslide, and SBAS
can produce smoother and more abundant displacement time series data. From April
2018 to April 2020, the deformation in the middle of the slope was the largest, and
the cumulative displacement was between −120 and −160 mm, with an average LOS
deformation rate of −70 mm/year.

(2) A strong correlation exists between the LOS deformation rate and rainfall. In rainy
seasons, particularly from May to July, the deformation rate was relatively high. From
May to July in 2018, the deformation rate reached 1 mm/day.

(3) The whole sliding process of the hypothetical collapse body lasts about 100 s, and
leads to the collapse and formation of a barrier dam at the Zagunao river. Constrained
by the narrow valley, the occurrence of a landslide in this area may cause the natural
disaster chain of “landslide–barrier lake–flooding”, thus posing a significant threat
to upstream and downstream areas. As a result, this possible hazard should receive
greater attention.

Our result shows that the application of Sentinel-1 images and InSAR techniques to
landslide monitoring is an effective and low-cost method. The combination of the UAV
and InSAR techniques can be beneficial for the investigation of inaccessible landslide areas.
In future research, more monitoring information from different sources, such as Global
Navigation Satellite System (GNSS) data, can be added as a supplement to the InSAR
results to verify the long-term deformation characteristics of the old landslide. In addition,
further field investigations should be carried out to improve the analysis of the occurrence
time and failure mechanism of the old landslide.
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