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Abstract: Characterizing roads is important for conservation since the relationship between road
use and ecological impact can vary across species. However, road use is challenging to monitor
due to limited data and high spatial-temporal variability, especially for unpaved roads, which often
coincide with critical habitats. In this study, we developed and evaluated two methods to characterize
off-highway road use across a large management area of grizzly bear (Ursus arctos) habitat using:
(1) a ‘network-based’ approach to connect human activity hotspots identified from social media
posts and remotely detected disturbances and (2) an ‘image-based’ approach, in which we modeled
road surface conditions and travel speed from high spatial resolution satellite imagery trained with
crowd-sourced smartphone data. To assess the differences between these approaches and their utility
for characterizing roads in the context of habitat integrity, we evaluated how behavioural patterns of
global positioning system (GPS)-collared grizzly bears were related to road use characterized by these
methods compared to (a) assuming all roads have equal human activity and (b) using a ‘reference’
road classification from a government database. The network- and image-based methods showed
similar patterns of road use and grizzly bear response compared to the reference, and all three
revealed nocturnal behaviour near high-use roads and better predicted grizzly bear habitat selection
compared to assuming all roads had equal human activity. The network- and image-based methods
show promise as cost-effective approaches to characterize road use for conservation applications
where data is not available.

Keywords: spatial ecology; geotagged social media data; circuit theory; road ecology; road use;
telemetry; human disturbance; transportation

1. Introduction

Roads are one of the primary drivers of human-caused environmental change affecting
terrestrial and aquatic ecosystems globally [1]. There is growing recognition that the
ecological implications of roads are complex and far-reaching, and an entirely new scientific
field of road ecology has emerged to better understand the direct and indirect effects of
roads on ecological systems and wildlife populations [2]. In particular, there is mounting
evidence that indirect and cumulative effects of roads on wildlife behaviour and health may
be especially pervasive [2]. Central to this understanding is the need to characterize roads
according to their physical attributes (e.g., width, road surface) and how they are used
by people (e.g., traffic volume, travel speed, vehicle type). Although physical attributes
tend to be simple to measure and are frequently documented during construction, road use
characteristics related to human activity are challenging to measure and can be spatially
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and temporally variable. This is especially true in human dominated landscapes where
roads are needed to extract natural resources [3,4].

Road use can dramatically alter direct and indirect impacts on wildlife, irrespective of
its physical footprint. Direct effects may include the increased accessibility of landscapes
by users, which may increase wildlife mortality from hunting, poaching or road accidents.
Indirect effects may include reduced landscape connectivity and permeability, which can
make it difficult for wildlife populations—especially species with large home ranges—to
access resources, disperse, or find mates [2,5,6]. For example, in areas where grizzly bear
populations are fragmented by roads, limited connectivity can reduce genetic diversity
of the metapopulation and therefore threaten the viability of small sub-populations [7].
Similar results have been found for other species (e.g., [8]). The thresholds of road use
at which these direct and indirect impacts occur are likely different across species and
landscapes [1], making it imperative to develop practical methods to characterize and
quantify road use for mitigation and conservation applications.

There is evidence that North American populations of brown bear (Ursus arctos;
hereafter grizzly bear) residing in human dominated landscapes are negatively affected by
both the direct and indirect impact of roads [5], making them a useful case study to develop
and evaluate methods to characterize road use. For example, roads used for recreation and
resource extraction activities are frequently associated with high-value habitat that attracts
grizzly bears [5,9–11], which can increase the risk of human-caused mortality [3,12–14].
This risk is related to both the attractiveness of roadside habitats, as well as the type and
intensity of human activity occurring along the road [15]. There is some evidence that if
road traffic is high enough, grizzly bears may begin to avoid roaded areas altogether [12,16],
especially during the day [17] and in certain seasons [5]. If so, bears may be forgoing critical
food resources, which can lead to negative impacts on body condition and survival [9,18].

Widespread efforts to track wildlife movement—e.g., using collars equipped with
global positioning systems (GPS)—have provided insight into the fine-scale behavioural
patterns of how individual animals use habitats across large geographic areas. However,
data on road characteristics covering equivalent extents is rarely available and is difficult
to update frequently to match animal GPS locations. These challenges are even more
pronounced for unpaved rural roads, which are often developed for natural resource ex-
traction purposes, but also publicly accessible. Previous studies looking at the behavioural
response of wildlife to unpaved roads rarely characterize details about the roads, and
instead treat them as equal (e.g., [3,4,19]) or focus on relatively small areas for which
road characteristic data can be measured on the ground (e.g., [17,20]). Monitoring road
characteristics using ground data is difficult to scale up across space and time. Industrial
and forestry road networks are especially challenging given that they change frequently to
access new locations and roads may be deactivated after resource extraction activities are
complete [21].

As the field of road ecology grows, and questions increase in urgency and focus
around the placement and use of roads by people, there is the need to develop consistent
methods to accurately estimate road characteristics and associated human activity at land-
scape scales relevant to managers. Large remote sensing archives (e.g., satellite imagery)
and other free databases (e.g., social media posts) can provide not only the location of
roads [22], but new information to track patterns of human behaviour, which in turn can
help to characterize roads. For example, data from social media platforms have been used
to estimate geographic distribution of tourism and recreation in urban areas [23,24], in na-
tional parks and protected areas [25,26] and at the global scale [27]. Data from smartphone
apps have been used to track commuter patterns [28] and road surface quality [29]. Satellite
imagery has been used to estimate the quality [30] and safety [31] of roads. However, to
the best of our knowledge, these datasets and methodologies have not been combined to
characterize unpaved roads in a way applicable to wildlife conservation efforts.

In this study, we sought to address the need for characterizing human activity on unpaved
roads in critical wildlife habitat. Specifically, we introduce two novel methods to classify off-
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highway, unpaved roads across a large management area of grizzly bear habitat in Alberta,
Canada using remote sensing, social media, and crowd-sourced data collected from mobile
devices. The first method was a ‘network-based’ approach using circuit theory to estimate
the intensity of human activity across the road network by connecting hotspots identified
from social media posts, public databases, and remotely detected disturbances. The second
method was an ‘image-based’ approach, in which we modeled road surface conditions and
travel speed from spectral attributes derived from high spatial resolution satellite imagery that
was trained with crowd-sourced data voluntarily collected from smartphones.

Our primary research objectives were threefold. First, we described the two novel
methods (network-based and image-based) to characterize road use in critical wildlife habitat
where traffic data is not available. Second, we compared these two methods to each other
and a ‘reference’ road classification derived from a detailed public database managed by the
provincial government. We note that the reference classification does not represent a true
ground-truth, but rather represents the best currently available characterization approach,
which is known to be imperfect yet is still rarely available for most regions. Thus, it serves as an
informative comparison. Third, we evaluated the utility of all three characterization methods
in the context of modeling wildlife (i.e., grizzly bear) behaviour and habitat use compared to
the assumption that all off-highway roads have equal human activity.

An in-depth evaluation of how roads and road use influence grizzly bear behaviour
and habitat use was beyond this scope of this study, and has been covered elsewhere
(e.g., [3,5,17,19,32]). Rather, we sought to understand the degree to which the three road
characterization approaches (network-based, image-based and reference) captured infor-
mation about roads that is meaningful when evaluating their impact on wildlife, and
specifically whether the two new approaches (network-based, and image-based) yielded
useful characterizations in the absence of detailed road data (e.g., the reference classifi-
cation). Since grizzly bears are expected to elicit behavioural shifts in response to traffic,
including increased nocturnal activity [17], we therefore evaluated if the three road char-
acterizations influenced daytime and nighttime movement and habitat selection patterns
observed in grizzly bears based on GPS collar locations. For comparison of the three charac-
terization approaches, each approach placed individual road segments into rankings of low,
medium, or high human activity levels, which are described in the subsequent sections.

2. Materials and Methods
2.1. Study Area

This study focused on unpaved roads within the Yellowhead Bear Management Area
(BMA 3), covering approximately 28,774 km2 in west-central Alberta, Canada for an interior
population of grizzly bears. The area follows a distinct east–west gradient with the western
extents comprised of alpine and sub-alpine sections of the Canadian Rocky Mountains,
whereas central and eastern sections are comprised of montane forest as well as upper and
lower foothills [33]. The central and eastern portions outside of Jasper National Park are
highly fragmented by unpaved road networks constructed for oil and gas exploration, agri-
culture, timber harvesting, coal mining, and wildfire suppression (Figure 1). Recreational
activities are varied and widespread throughout the region and include hiking, camping,
hunting, biking and off-road motorsports (e.g., ATVs, motorcycles). Many of the unpaved
roads have ‘unimproved’ surfaces and are built for short term resource extraction activities
rather than permanent access, and recreation activities along these roads may be inhibited
by gates, barriers, seasonal closures or complete road deactivation once industrial activities
cease. Other unpaved roads built as throughways to towns or to access mines are more
permanent with improved gravel surfaces, ongoing maintenance and uninhibited access.
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Figure 1. Map of the road network within the study area in western Alberta, Canada.

2.2. Reference Classification
2.2.1. Provincial Road Data

The Government of Alberta maintains an authoritative and publicly available database
of roads classified into 15 categories—five paved categories and 10 unpaved categories.
We downloaded the road network encompassing the entire study area (Figure 1) from the
GeoDiscover Alberta data portal in April 2018. About 13,800 km of unpaved roads existed
within the study area, making up 85% of all roads. The road network data was split into
individual segments at each road junction or intersection. These segments became the unit
of classification for all three classification approaches.

2.2.2. Classification Method

For the reference classification, we grouped the ten unpaved road categories into a
three-class ranking based on the authors’ knowledge of the area and the provincial road
database, to be compared with the network- and image-based classifications. We ranked
“two-lane gravel roads” as high use, “one-lane gravel roads” as medium use, and all
other unpaved road classes (“unimproved”, “truck-trail”, “temporary”, “unclassified”,
“road”, “winter-road”, “ford-winter-xing”, “ferry-route”) as low use. The two- and one-lane
gravel roads tend to be permanent access routes while the other classes tend to represent
temporary or unmaintained roads. Two-lane roads generally connect population centres
while one-lane roads serve as ancillary branches to access the temporary or unmaintained
roads, which are typically constructed for forestry activities and are often abandoned or
decommissioned after logging is complete.

2.3. Network-Based Classification
2.3.1. Human Activity Data

For use in the network-based classification, we derived locations of human activity
representing three types: (1) general activities (e.g., recreation and commerce); (2) oil and
gas exploration and development; and (3) forest harvesting. The latter two represent the
main natural resource extraction activities that occur in the region. We located general
activities from posts to multiple social media platforms, specifically: Flickr, Facebook,
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Google and Wikilocs. We chose to combine platforms in order to capture a larger number
of users, and account for the possibility of different usage patterns and activity types for
different platforms [26].

In addition to locations of activity, we also quantified the intensity of activity at each
location as follows. For Flickr data, we used their application programming interface (API)
to extract photos for every centre-point in a 0.005-degree grid over the study area and
counted the number of unique users that had posted photos within 500 m of each point. For
Facebook data, we used their API to search for every named location within the study area
and extracted the coordinates and the number of ‘check-ins’ for each location. For Google
data, we used their API to locate every named place in the study area and then programmed
a web browser to extract the number of reviews for each named place. For Wikilocs, a
website of user-shared trails locations and information, we manually downloaded each
available GPS track in the study area, extracted the start location of the track and the
number of times the track had been downloaded. Initial locations and intensity values for
each social media platform are shown in Supplementary Materials: Figure S1.

We filtered all locations to select those within 1 km of an unpaved road and ‘snapped’
the remaining locations to the nearest unpaved road. Therefore, posts within 1 km of each
other were combined into a single location with a summed intensity value. We scaled the
intensity values to the maximum of the study area for each respective social media platform,
and combined posts from the four platforms into a single overall intensity value (Figure
2a). This was done to account for the fact that we did not restrict the time frame of location
or intensity data, but rather included all data available on the date that data extraction
occurred (approximately December 2018). The data, therefore, represent the cumulative
activity across the landscape from when social media use became widespread (roughly
2005~2010) through approximately 2018. By combining datasets only after scaling each
dataset separately, we sought to account for the fact that some platforms have been around
longer than others and had different numbers of locations with data (Supplementary
Materials: Table S1).

To identify locations of oil and gas activity, we extracted active well sites from the
Alberta Biodiversity Monitoring Institute’s 2016 Human Footprint database [34] (Figure 2b).
For locations of recent forest logging, we used satellite-detections of forest harvesting that
occurred between 2014 and 2016 from the Landsat-derived forest change detection product
originally developed in 2015 by [35] and updated in 2018 (Figure 2c).

2.3.2. Classification Method

We used “circuit theory” to develop a road classification approach based on the
connection between known locations of human activity along the road network. Circuit
theory is a connectivity model based on the movement of electricity through a connected
network and has been applied across a variety of fields [36]. The circuit is simply a network
of nodes connected by resistors. In our case, the nodes are locations of human activity and
the resistors are the road network. When voltage is applied across a resistor (i.e., road)
connecting two nodes (i.e., activity locations), the amount of current that flows between
the two nodes is a function of the voltage applied, the resistance between the two nodes
and the configuration of resistors between them. We used an open source software called
‘Circuitscape’ to apply circuit theory using spatial raster grids [37]. Specifically, we used
Circuitscape version 4.0, programmed in Julia [38], which enabled processing at 5 m spatial
resolution [39]. For a more detailed description of how circuit theory is applied to spatial
raster grids, we refer readers to [36,37].

For each of the three types of activity, we iteratively applied voltage between each
activity source and each of the activity locations (i.e., nodes; Figure 2). For general activities
derived from social media posts, we defined sources as any post with an intensity >10th
percentile that also overlaid nighttime lights visible in satellite imagery captured by the
Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS)
(Figure 2a and Supplementary Materials: Figure S1e). For oil and gas and logging activities,
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we defined sources as the two largest population centers in the study area, which are where
most workers live and where the two main sawmills are located (Figure 2b,c).
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Input voltage was always held constant and a mask was applied to the study area
such that the road network had a constant resistance of 1.0 and all grid cells outside the
road network had infinite resistance (value of 0), which effectively allowed current to only
flow along the road network. This meant that the initial current output of the Circuitscape
algorithm was based solely on the spatial configuration of the activity sources, the activity
locations and the road network. However, in the case of the current derived from the
social media locations, the current output was then weighted by multiplying the current
by the intensity value of the activity location used for each iteration. We summed the
currents produced for each activity type and extracted this value for each road segment
(Supplementary Materials: Figure S2). We then split the road segments into three categories
using the summed current values, still for each activity type, based on percentiles of all
observed summed values within each activity type as follows: low ≤ 10th percentile >
medium < 90th percentile ≥ high. Finally, we combined the three activities into a single
ranking: if two or more of the individual activity rankings were low, the overall ranking
was low use; if two or more were high, the overall ranking was high use; otherwise, the
overall ranking was medium use.
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2.4. Image-Based Classification
2.4.1. App-Based Road Data

We collected data on road surface conditions and travel speed for a subset of the study
area using a free mobile app called RoadLab-Pro, originally developed by the World Bank
(see progressana.com accessed on 28 June 2021). When activated, the app uses the GPS
receiver in a mobile device to automatically track location and travel speed and uses the
device’s accelerometer to estimate road surface roughness. Six different users working for
industrial and non-profit organizations operating in the region agreed to collect data for this
project during daily work routines between June 2018 and March 2019 (e.g., checking oil
and gas well sites, conducting wildlife surveys, etc.). Data coverage totalled approximately
1000 km of roads and 771 unique road segments, which we used as training data for the
image-based classification.

2.4.2. Satellite Data

For use in the image-based classification, we obtained orthorectified (Level 3A) Rapid-
Eye satellite imagery acquired between 8 August and 17 September 2017. The RapidEye
constellation of commercial satellites produces moderately high-resolution images (5 m
pixels) with the capability of frequent imaging (revisit time of 1.0–5.5 days) over large
areas [40], which is a useful platform for road monitoring in rural areas [21]. RapidEye im-
agery provides five bands covering the visible blue (440–510 nm), green (520–590 nm) and
red (630–685 nm) wavelengths, as well as a red-edge band (690–730 nm) and a near-infrared
band (NIR; 760–850 nm) that are each highly sensitive to green vegetation.

We mosaicked the RapidEye imagery into a single multi-band image, thus representing
conditions during late summer 2017. From the multi-band RapidEye imagery, we generated
a suite of seven vegetation indices (Table 1) related to vegetation cover and soil composition
in forested environments [41,42], with the expectation that variation in vegetation and
soil reflectance would be associated with road surface conditions and margins that, in
turn, are associated with use intensity. For example, heavily used roads are required to
be constructed with gravel and have wider margins cleared of tall vegetation. Lightly
used or temporary roads are more likely to be unimproved tracks cut into the soil with
narrower margins and vegetation regrowth on or along the road surface. We also generated
four terrain variables from a 30 m digital elevation model produced from the National
Aeronautics and Space Administration (NASA) Shuttle Radar Topography Mission (SRTM)
(Table 1). In addition to the simple terrain variables of elevation and slope, we included
insolation (a measure of primary energy received from the sun accounting for variation
in elevation and aspect; calculated in ArcMap 10.6) and a topographic wetness index (a
measure of near- and at-surface water accumulation) under the assumption that these
represent patterns of snow melt and soil conditions which in turn influence where different
types of road are constructed. For example, primary roads may be less likely to traverse
a steep north slope which will hold snow and may become impassable in winter. We
calculated descriptive statistic metrics for the seven vegetation indices and four terrain
variables for a 25 m buffer around each road segment using Feature Extraction 2.7 (FETEX)
software [43] (Supplementary Materials: Table S2). The 25 m buffer was used to account
for roads of differing widths, road margins, and spatial errors that may exist in the GPS-
derived road vector data and orthorectified satellite imagery. The FETEX 2.7 software
was developed to characterize and classify agricultural parcels, but is applicable to any
vector overlay and provides a computationally efficient means to extract a variety of
spatial metrics. In addition to the descriptive statistics from the vegetation indices and
terrain variables, we also used FETEX 2.7 to compute textural and semi-variogram metrics
(Supplementary Materials: Table S2) from the NIR band, which is sensitive to green
vegetation. Within the FETEX program, we set the parcel perimeter buffer to 2 pixels and
did not specify a minimum parcel size. For the texture metrics extraction, we set the grey-
level co-occurrence matrix (GLCM) grey levels at 64 and for the semi-variogram metrics
extraction we set the lag size to 20 pixels and the random pixels percentage to 15. All other

progressana.com
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settings were left as defaults see [43]. Semi-variogram metrics detail the spatial patterns of
pixel values, and are useful when performing classification from high resolution imagery in
forested landscapes [44,45]. We expected that these metrics would be helpful to distinguish
wider roads with homogenous surfaces and margins (i.e., lower roughness, higher speeds)
from narrower roads with variable surfaces that may be occluded by overstory vegetation
(i.e., higher roughness, lower speeds).

Table 1. Vegetation indices from RapidEye imagery and terrain metrics used for feature extraction as
inputs to the random forest model for the Image-based classification.

Variable Description Formula

Vegetation indices
NDVI Normalized Difference Vegetation Index NIR−Red

NIR+Red
NGRDI Normalized Green-Red Difference Index Green−red

Green+Red
RECI Red-Edge Chlorophyll Index NIR−Red

(NIR+Red)−RedEdge

RENDVI Red-Edge Normalized Difference
Vegetation Index

NIR−RedEdge
NIR+RedEdge

RG-ratio Red/Green Ratio Red
Green

SUM Sum of visible bands Blue + Red + Green
BARESOIL Bare Soil Index Red+Blue−Green

Red+Blue+Green
Terrain variables

DEM Elevation (m)
INSOL Insolation
SLOPE Slope (degrees)

TWI Topographic Wetness Index TWI = ln
(

f
tan s

)
*

* where, f = upslope contributing area; and s = slope.

2.4.3. Classification Method

Using training data collected from RoadLab Pro and the FETEX metrics derived from
RapidEye imagery as predictors, we classified speed and roughness of road segments using
supervised random forest classifications programmed with the caret package in R [46]. Prior
to modelling, continuous speed and roughness training data were grouped into three discrete
classes (low, medium, and high) based on visual inspections of histograms of the distribution
of each variable. The three speed classes were separated at 40 and 65 kph (Supplementary
Materials: Figure S3) and the roughness classes at 2.2 and 3.4 (unitless index values; Supple-
mentary Materials: Figure S4). Predictions were made for all road segments longer than 250
m. For segments shorter than 250 m, we assigned the majority predicted value of the longest
segment they adjoined. The final three-class road classification of low use, medium use and
high use combined the speed and roughness classifications by first ranking each separate
prediction from 1–3 (low to high), then summing the two rankings, and finally re-ranking the
summed values as low use = 2–3, medium use = 4, and high use = 5–6.

Prior to classification, Pearson’s correlation coefficient (r) was used to assess multi-
collinearity of all spectral predictors. A single metric from groups of highly correlated
variables (r > 0.8) were included as predictors in classifications, resulting in a total of
38 possible predictors remaining from the initial 106 candidate predictors. In order to
reduce data dimensionality all predictor metrics were standardized to have a mean of 0 and
standard deviation of 1 [47,48]. All models were generated using 10-fold cross-validation
and were assessed based on the overall accuracy using the out-of-bag error estimate [49].

2.5. Statistical Analysis
2.5.1. Road Classification

We first compared the classification agreement between the network-based, image-
based and reference approaches. Since classification was performed at the level of indi-
vidual road segments, but segments can differ in length, we calculated the classification
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agreement as a function of road length (i.e., the total km of road segments with class
agreement or disagreement between approaches).

2.5.2. Grizzly Bear Response to Roads

We obtained GPS locations for 56 grizzly bears collected between March and Octo-
ber from 2014 to 2017, resulting in a total of 83 unique “bear-years” (i.e., an individual
bear observed in a given year; bears observed for multiple years were considered as mul-
tiple bear-years). Grizzly bears were captured and collared by biologists from the fRI
Research Grizzly Bear Program (Hinton, Alberta) as part of long-term research and to
inform provincial recovery efforts. Individuals were fit with Followit Iridium satellite
collars programmed to collect locations every 30 min or hourly. All animal capture and
handling followed the Canadian Council of Animal Care Guidelines and were permitted
annually through the University of Saskatchewan Animal Care Committee. See [50] for
detailed information about grizzly bear capture and handling.

We evaluated population level movements and habitat selection of grizzly bears
relative to non-classified roads (“Any road”) and roads classified using the three methods
described above. More specifically, we compared how movement rate changed and habitat
selection varied by time of day—nocturnally and diurnally—for each road class as a
function of distance to road. We predicted that grizzly bears would alter their behaviour
when using areas within ~1000 m of high-use roads by increasing nocturnal activity due to
some perceived risk attributed to human activity levels. If grizzly bears were responding
to high-use roads in this manner, we expected movement rates would change and selection
would be stronger at night [17].

For each bear-year, when 10 or more consecutive GPS relocations were available, we
calculated the movement rate (m/hR) and turning angle between each relocation (i.e., step)
using the amt package in R [50]. To analyze changes in typical movement patterns near
roads of different classes, we first modeled movement rate across all relocations using a
generalized additive model (GAM). Grizzly bear movement tended to follow a diurnal
pattern, with reduced activity at night and increased movement during the day, especially
in the morning and evening [51], and some variation between age-sex-reproductive classes
(Figure 3). Movement also tended to be greater when the turning angle between steps was
low, i.e., when grizzly bears are moving more linearly (Figure 3). Based on these observed
trends, we modeled movement rate as a function of age-sex-reproductive class, hour of
the day and turning angle. We smoothed hour of the day using a cyclic cubic regression
spline and included an interaction with age-sex-reproductive class. We cosine-transformed
turning angle and used a cubic regression spline for smoothing.

Once this model was created, we analyzed deviations from expected movement rates
(i.e., model residuals) within 1000 km of unpaved roads in general (i.e., “Any road’”),
and for each class within each of the three road-use classifications approaches. We were
particularly interested in how deviations differed during the day and at night to determine
if grizzly bears appeared to be more nocturnal around high-use roads.

We also analyzed habitat selection of grizzly bears at the level of the home range
(third-order) by generating 100% minimum convex polygons (MCPs) for each bear and
year. Because we were interested in grizzly bears’ response to unpaved roads, we clipped
out areas of the home range where paved roads were closer than unpaved roads. We then
created separate datasets for those GPS locations that occurred during day-time hours,
which included twilight, versus those that occurred during night based on sunrise, sunset,
and civil twilight tables [52]. For each dataset and use location, we generated 10 random
‘available’ locations within each MCP and extracted the distance to the nearest road of
each of the three classes and for each classification approach. We then transformed each
distance variable using an exponential decay of the form 1-(e-αd) where d was the distance
in meters and α was set to either 0.02 (fine scale, within ~200 m) or 0.002 (large scale, within
~2000 m). In doing so, the effects of roads would be localized to within meters (fine scale)
or hundreds of meters (large scale). To ensure that our sample population of grizzly bears
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had each road type available, we calculated for each animal the proportion of available
locations where the nearest road was classified as low, medium, or high. We then removed
those individuals that did not have all three road classes available or where availability
was less than 5%.
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We used generalized linear mixed-effects models (GLMM) to estimate population-
level RSF model coefficients with the lme4 package in R version 3.6.2 [53,54]. To ensure
independence of our sample population and account for unbalanced sample sizes, we
specified animal ID as a random intercept for all models [55]. For each dataset (i.e., day
and night) and scale, we fit (1) a null (intercept-only) model, (2) a model that included
distance to road without classification as a fixed effect, and (3) a model that also included
a random slope and intercept for distance to road by road classification type. We used
Akaike information criteria (AIC) scores to identify the model that best fit the data, with
the best fitting model identified as that having the lowest AIC score and was not within
two AIC units of a model with fewer parameters [56].

3. Results
3.1. Road Classification

Overall accuracies for speed and roughness were 66% and 55%, respectively (Table 2).
For both speed and roughness, the semi-variogram metrics were the most important in
the models, comprising five of the ten most important variables for each (Supplementary
Materials: Figures S5 and S6). The vegetation indices tended to be more important than
the terrain metrics. The most frequently high-ranking vegetation indices were BARESOIL
(Bare Soil Index) and RENDVI (Red-Edge Normalized Difference Vegetation Index). DEM
(Elevation) was the only terrain metric appearing in the 10 most important variables.
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Table 2. Confusion matrix for predicting roughness and speed for individual road segments (n = 771) using RapidEye
satellite imagery trained with data collected with the RoadLab-Pro app. Values are the total km of road segments classified
into each category.

Roughness Speed

Observed User’s
Accuracy Observed User’s

Accuracy

Predicted Low Med High Predicted Low Med High

Low 127.7 57.7 15.9 63% Low 23.3 23.0 5.0 45%
Med 108.7 286.1 135.4 54% Med 89.5 389.6 118.2 65%
High 8.6 38.3 38.2 45% High 0.0 44.4 122.9 73%

Producer’s
Accuracy 52% 75% 71% 55% Producer’s

Accuracy 21% 85% 48% 66%

Generally, all three classifications estimated the length of road in each ranking to be
low > medium > high, however, the spatial patterns of road rankings differed between
the classifications (Table 3, Figure 4). Overall pairwise class agreement for the three
classifications ranged from 50–55%. The reference classification resulted in fewer total km
of roads classified as high use (838 km) compared to the network-based (1973 km) and
the image-based (2314 km) classifications. There was poor class agreement for high use
between the network- and image-based methods (<40%), and more of the road network
that ranked as high in the reference classification was ranked as high in the Image-based
classification (73%) compared to the network-based classification (60%). The majority of
the other road segments ranked as high by the image- and network-based approaches were
ranked as medium in the reference classification. The image-based classification had less
medium use roads (4132 km) compared to the network-based and reference classifications
(5548 km and 5572 km, respectively). Across all three classifications, there was more inter-
classification between medium and low rankings compared to medium and high rankings,
and it was rare (<5%) for a road segment to be low in one classification and high in another
(Table 3).

Table 3. Three-way confusion matrix showing class agreement between the network-based, image-based and reference
road characterization approaches for the three classes low use, medium use and high use. Values are in km of road segments
classified to each road use. Agreement is calculated as the percent of the total km of road segments for a given row or
column that were classified the same between the two respective approaches.

Network-
Based

Reference Image-Based

Low Med High Total Agreement Low Med High Total Agreement

Low 4436 1849 10 6295 70% 4189 1710 396 6295 67%
Med 2582 2645 321 5548 48% 2687 1819 1043 5548 33%
High 387 1079 507 1973 55% 494 603 876 1973 31%
Total 7405 5573 838 13,816 7370 4132 2314 13,816

Agreement 60% 47% 60% 55% 57% 44% 38% 50%

Image-
Based
Low 4934 2391 45 7370 67%
Med 1989 1960 182 4132 47%
High 482 1221 611 2314 53%
Total 7405 5573 838 13,816

Agreement 67% 35% 73% 54%
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Figure 4. Map the final classifications for all unpaved roads for (a) the network-based method, using circuit theory to
connect activity locations for recreation, oil and gas extraction and logging; (b) the image-based method using RapidEye
satellite imagery trained with road surface roughness and travel speed collected from a mobile app; and (c) the reference
classification derived from the Government of Alberta provincial database, where classes were defined as: high = “o-lane
gravel roads”; medium = “one-lane gravel roads”; low = and all other unpaved road classes (“unimproved”, “truck-trail”,
“temporary”, “unclassified”, “road”, “winter-road”, “ford-winter-xing”, “ferry-route”).

3.2. Grizzly Bear Response To Roads
3.2.1. Grizzly Bear Movement

Analysis of grizzly bear movement rates within 1000 m of roads showed evidence of
increased nocturnal activity. Compared to typical movement rates across the entire study
area, when grizzly bears were within 1000 m of any unpaved road (i.e., not classified),
movement was slightly greater than expected at night and slightly less than expected
during the day (Figure 5). Within 1000 m of high use roads, the trend was more pronounced
for all three classifications, and it was strongest for high use roads as classified by the
image-based approach (Figure 5). In this case, the deviation from expected movement rates
was 3–4 times higher compared to the medium- and low-use roads.
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3.2.2. Grizzly Bear Selection

Our sample population to fit GLMM models consisted of 23 and 21 grizzly bears
and 56,575 and 26,003 GPS relocations for the day and night datasets, respectively. Our
preliminary evaluation indicated that irrespective of the specific road classification method,
models fit better where road class was considered. Because of this, we used AIC to compare
only the three classification methods for each dataset to identify the model that best fit the
data (Table 4). We also compared the effects of model coefficients for all road classification
methods and unclassified roads (Figure 6 and Figure S7).

Table 4. Comparison of generalized linear mixed-effects models describing the habitat selection of
grizzly bears based on road classification method, time of day and scale using Akaike information
criteria scores (AIC), where lower AIC scores indicates better model fit within a group. ∆AIC is the
difference between the AIC score of that model and the lowest AIC score of the group. AICw is the
AIC weight (0–1 possible), an indication of the probability that a given model is the best model of
the group. Sample sizes: Night = 21 grizzly bears (23,003 “used” locations), Day = 23 grizzly bears
(56,575 “used” locations).

Time of Day Scale Model AIC ∆AIC AICw

Night 200 m Network-based 521,640.7 142.0 0.00
Image-based 521,704.5 78.2 0.00

Reference 521,562.5 0.0 1.00
2000 m Network-based 514,291.2 1636.5 0.00

Image-based 514,291.2 1190.8 0.00
Reference 514,291.2 0.0 1.00

Day 200 m Network-based 1,135,300 116.9 0.00
Image-based 1,135,165 252.2 0.00

Reference 1,135,048 0.0 1.00
2000 m Network-based 1,123,326 984.5 0.00

Image-based 1,123,326 1610.4 0.00
Reference 1,123,326 0.0 1.00
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Figure 6. The relative probability of grizzly bear habitat selection as a function of road distance at the 2000 m scale by time
of day (rows), classification method (columns) and whether roads were classified (colored lines; Low, Medium, or High
human activity) or non-classified (dashed line; Any road).

Based on model AIC scores and weights (AICw), the reference classification method
best fit the data (i.e., lowest AIC score) regardless of time of day and scale (Table 4). Between
the network- and image-based classifications, the network-based method better fit the data
during the day and the image-based better fit the data at night regardless of scale.

The relative probability of habitat selection was highest near high use roads for all
three classification approaches at the 2000 m decay scale (Figure 6). For the reference
and image-based classifications, selection was higher near low-use roads compared to
medium-, whereas the opposite was true for the network-based approach. When roads
were not classified, the probability of selection was similar to low-use roads classified by the
reference and image-based methods, and the medium-use roads from the network-based
method. All trends were generally similar, although less pronounced, at the 200 m scale
(Supplementary Materials: Figure S7).

4. Discussion

We found that the three road classification methods had moderate class agreement and
showed similar broad spatial patterns of road use. Despite some inconsistencies, all three
methods improved grizzly bear habitat selection modelling compared to using unclassified
roads. Additionally, grizzly bears showed similar selection and behavioural responses
across the three methods: greater selection near high use roads irrespective of time of day,
but a stronger shift in movement rate near high use roads between daytime (lower) versus
nighttime (higher) compared to low and medium use roads.
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4.1. Road Classification

While the reference is not a true ground-truth, it is encouraging that the network- and
image-based approaches based on remote observation showed at least some consistency
with the reference classes—more than half of the nearly 14,000 km of unpaved roads in
the study area were characterized into the same class across the three methods (Table 3).
The Government of Alberta has devoted immense resources to produce and maintain a
provincial database covering a wide range of road types, and there are few places in the
world with such detailed information on unpaved rural and resource roads. However, even
when such detailed road data are available, they may not be maintained at a frequency to
permit analysis of temporal changes, which may be critical to habitat monitoring (e.g., [21]).
For example, data inconsistencies can arise when data are collected at different time
periods or in different jurisdictions. The network- and image-based approaches developed
in this study show promise as cost-effective methods to characterize road use for wildlife
conservation applications, although more work is needed to better understand their relative
strengths and weaknesses. The relatively consistent response of grizzly bears in our models
using all three methods suggests that the road segments for which there was consistent
classification agreement are influencing grizzly bear behaviour in this region and even
imperfect characterization may be sufficient to improve wildlife modeling.

Within this study area, given the lack of traffic data associated with rural roads across
the region, it is not possible to determine with certainty whether any of the classifications
represent human road use better than the others. The fact that all three show some
agreement and provide more information than treating all unpaved roads as equivalent
(e.g., Figure 5, Table 4) suggests that each of the methods could be used or adapted to the
data availability of a given application. Each classification approach comes with advantages
and disadvantages. For example, the reference classification is a simple approach when
existing road databases provide additional attribute information that can be used as a
proxy for road use activity. This study suggests that, in this region, the reference classes are
appropriate elements to include when building grizzly bear habitat models for management
purposes, and future research in this region should explore how other species respond to
the reference classes. We encourage future studies to test classification systems available
for other regions from public or open source datasets.

When pre-existing road classes are not available, or data are found to be inadequate or
outdated, the image-based approach is likely the most objective and easily replicable across
regions since it relies on spectral information derived from satellites and ground data that
can be collected using widely available technology. The fact that the spatial distribution of
high-, medium-, and low-use roads predicted using this approach was similar to the other
two approaches suggests that there is a relationship between spectral reflectance patterns
of roads captured by satellite and broad patterns of human activity.

The accuracy of predicting surface roughness and travel speed using moderately-high
resolution RapidEye imagery and the FETEX-derived spectral variables was relatively
low (Table 2), although we note that accurate predictions of road roughness and travel
speed were not primary objectives in this study. However, this shows that more work
is needed to predict these individual road features. Deep learning algorithms of higher
spatial resolution imagery, both of which are becoming increasingly accessible, would likely
improve results. Currently, there are few examples of successful satellite-based monitoring
of road conditions (e.g., [30]), and while this study shows promise, more work is needed to
develop highly accurate predictions. The development of such predictions could enable
cost-effective monitoring of changes in road use over time, as well as other applications for
monitoring road conditions for the purpose of maintenance or emergency response plan-
ning. Our study suggests that capturing spatial spectral variability (e.g., FETEX-derived
semi-variogram metrics) may be particularly useful for characterizing unpaved roads with
remotely sensed imagery at this spatial scale. It is important to note that classifications
developed for one region may not be applicable to another region due to differences in
road surface materials, as well as differences in the relationships between travel speed,
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road roughness, spectral reflectance and human activity. Furthermore, additional research
is needed to better understand the conditions under which spatial spectral variability is
related to road use and conditions. For example, the relationship may not hold in desert
conditions where roadside vegetation is sparse or non-existent, or in urban conditions
where roadsides are highly variable and managed for objectives unrelated to road use.

The network-based approach provides a framework from which to build innovative
methods to translate the vast amount of spatially explicit human activity information
shared on social media and available in other public and open databases into meaningful
information to improve our understanding of human-environment interaction. Our ap-
plication of Circuitscape—an algorithm developed to predict habitat connectivity—is a
novel approach to quantifying road network activity. The method is uniquely designed
to capture pinch points in the road network and, when parametrized with data of known
locations of human activity (i.e., social media data), may be especially useful for identifying
high-use road segments.

While social media databases represent a massive and rapidly growing source of infor-
mation on the nature and intensity of human activity, such datasets are not without their lim-
itations and potential biases. Age, socio-economic condition and other geo-demographics
likely influence patterns in social media use, which may differ across platforms [26,57,58].
People engaging in activities where location is sensitive (e.g., hunting, fishing) may be
less likely to make geo-tagged posts, whereas photogenic events such as blooming flowers
or wildlife sightings could lead to a disproportionate number of posts relative to visitors
at specific locations [26]. The latter may help explain why less of the road network was
classified as low use with the network-based approach compared to the image-based and
reference methods. A biased under-classification of low-use roads may also explain the
reversed pattern in relative habitat selection between low and medium use roads in the
network-based approach compared to the other two methods.

Different data sources will likely capture different activities. We sought to combine data
from multiple social media platforms, along with satellite data and public records, in order
to account for a wide range of activities. However, combining data through scaling and
classification requires subjective decisions to be made about the relative contribution of each
dataset to overall human activity and what level of activity is considered “high” or “low”.

4.2. Grizzly Bear Response to Roads

Our results suggest that incorporating road classification into habitat models provides
additional information to explain grizzly bear response to roads compared to treating all
roads as equal. We observed different patterns of movement and habitat selection for
roads with different predicted human activity levels. Grizzly bears appear to be more
active near high use roads at night, as indicated by greater movement rates (Figure 5) and
stronger selection (Figure 6) for all classification approaches. Indeed, a recent study of more
than 2500 individuals showed that grizzly bears inhabiting human-dominated landscapes
do not necessarily avoid areas with greater human activity, but rather shift toward more
nocturnal behavioural patterns [59]. Our results support this conclusion and suggest that
the deviation from typical diel movement observed in Figure 5 does not reflect avoidance of
high use roads, but rather distinct behavioural patterns. For example, low movement rates
during the day could be an indication of foraging behaviour, or more cautious movements
near high use roads, and rapid movement at night may indicate that grizzly bears are
using these as travel corridors during that time. The fact that the probability of selection is
greatest near high use roads (Figure 6 and Supplementary Materials: Figure S7) suggests
that foraging, rather than caution, may be driving the lower daytime movement rates
observed near high use roads. This selection of high use roads contrasts with findings
by [17] in southern Alberta, where they found grizzly bears avoided roads with high
traffic volumes (>100 vehicles per day) during the day. It is possible that traffic volumes
on roads classified as high use in our study are still lower than those in more populated
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southern Alberta, or that the human activity datasets in our study do not fully capture
traffic patterns.

Nonetheless, it is concerning that grizzly bears may be especially attracted to high
use roads for foraging. Studies in western Alberta and eastern British Columbia have
shown that more than 85% of all human-caused grizzly bear mortalities occurred within
about 100 m of a road (most were shot, not hit by vehicles) [5]. If high use roads are
more strongly associated with grizzly bear space-use, this could increase the likelihood of
negative human–bear interactions. It is possible that high use roads are more attractive to
bears as a result of site selection, disturbance, or for both reasons. Roads with greater traffic
require wider road margins, resulting in more disturbance and more light penetration,
both which can lead to enhanced production of grizzly bear foods [11]. Roadkill of small
mammals and ungulates, which can attract bears, may be more abundant along the high use
roads in this study area. While these roads are expected to have the greatest travel speeds
and traffic volumes of all unpaved roads in the area, speed and traffic are still moderate or
low compared to highways and our study shows they do not elicit avoidance in grizzly
bears. Such roads with moderate traffic volume, but insufficient to elicit avoidance, are
expected to have the largest number of ungulate and small mammal carcasses due to these
animals behavioural response to roads [60]. Larger and more frequently travelled roads
may also be more likely to be constructed within already existing attractive habitat, for
example in flatter terrain and along riparian corridors, which are preferred by grizzly
bears [11,61]. By incorporating spatially explicit estimates of food resources (e.g., from
satellite imagery and modeling) along with road classifications into analyses of grizzly
bear movement, future studies may reveal whether thresholds of human activity and food
resources at which grizzly bear behaviour changes exist. A better understanding of the
timing and nature of potential co-occurrence of grizzly bears and people along roads would
enhance the toolkit of land managers to set policies such as temporary and permanent road
access closures [5], site selection and construction guidelines for new road development
and public outreach and education.

Analysis at finer temporal scales would likely yield a more nuanced understanding of
human activity along road networks and their influence on wildlife behaviour. In this study,
we used GPS collar data for grizzly bear movements from 2014–2017, and sought to represent
cumulative human activity for approximately this period (i.e., active oil and gas wells in 2016,
forest logging from 2014–2016 and cumulative social media activity as of late 2017). While our
analysis of grizzly bear behaviour tested the assumption that human activity varied between
daytime and nighttime, it is also expected that human activity would vary seasonally and
year-to-year. All the datasets used in this study could be analyzed for separate years, while
most of the social media datasets could also be analyzed sub-annually since they contain
timestamps. Analyzing oil and gas or logging activity at sub-annual temporal scales would be
more challenging since data on the timing of activities that may drive more frequent traffic or
large-truck traffic are not available, although separate analysis for each human activity by type
may show different broad scale grizzly bear responses based on the type of traffic associated
with each activity. Such analysis was beyond the scope of this study, which had the primary
objective of describing and comparing the newly developed road characterization methods.
However, it is important to note that analysis at finer temporal scales and by type of human
activity may reveal different patterns of human activity and grizzly bear behaviour in this
study area.

5. Conclusions

This study demonstrated that remotely sensed and crowd-sourced datasets can be
used to estimate human use of unpaved roads within critical wildlife habitat to better
understand the behaviour of threatened wildlife and quantify impacts. We found evidence
of nocturnal behaviour by grizzly bears near high-use roads that was not evident when
roads where unclassified. Perhaps most importantly, for grizzly bears in this study area,
including any of the three classifications examined for this research improved the fit of
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movement and habitat selection models. This underscores the importance of characterizing
road attributes related to indirect effects on wildlife (e.g., human activity), even for unpaved
rural roads. When existing road databases include road attribute information (i.e., the
reference in this study), this can be explored to develop proxies for the hypothesized
indirect effects specific to a region. When such information is not available, the network-
based and image-based classifications developed in this study provide examples of how
emerging large datasets can be utilized for wildlife research and conservation where
infrastructure development is widespread.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13132547/s1, Table S1: Number of data observations for each social media platform used
to derive locations of recreation activity in the Network-based classification; Table S2: Codes and
description of the spectral, textural and semi-variogram based features produced by the FETEX
2.7 software. Figure S1: Initial locations and scaled intensity values for each social media dataset
in the study area (a) Flikr, (b) Facebook, (c) Google, and (d) Wikilocs. Note that only locations
within 1 km of roads were used in final analysis (see Section 2.3.1 and Figure 2). Panel (e) shows the
locations of nighttime lights (2006-2015 average) detected from imagery acquired by the Defense
Meteorological Satellite Program/Operational Linescan System (DMSP/OLS). Figure S2: Current
flow outputs from the Circuitscape algorithm along the road network for (a) recreation activity
represented by social media posts, (b) oil and gas activity represented by active well sites and (c)
recent forest logging activity detected by satellite. Higher current flow along a given road segment
was interpreted as greater human activity. Activity sources where travelers to activity locations
are likely to have originated, and are thus the source nodes to which each activity location (i.e.,
destination node) was iteratively connected during the Circuitscape runs for each respective activity
type. Figure S3: Histogram of road travel speeds calculated by the RoadLab-Pro app for all road
segments with data. The low cutoff (40 km/hr) and high cutoff (65 km/hr) represent the manually
selected speeds at which to define speed classes for the Random Forest training (low < 40 < medium
< 65 < high). Based on these cutoffs, 18% of the training data was classified as low, 53% as medium
and 29% as high. Figure S4: Histogram of road surface roughness (unitless index) calculated by the
RoadLab-Pro app for all road segments with data. The low cutoff (2.2) and high cutoff (3.4) represent
the manually selected roughness values at which to define roughness classes for the Random Forest
training (low < 2.2 < medium < 3.4 < high). Based on these cutoffs, 30% of the training data was
classified as low, 47% as medium and 23% as high. Figure S5: Variable importance estimates for the
top 20 variables in the final trained Random Forest algorithm predicting road travel speed. Variable
abbreviation descriptions can be found in Table S2; Figure S6: Variable importance estimates for the
top 20 variables in the final trained Random Forest algorithm predicting road surface roughness.
Variable abbreviation descriptions can be found in Table S2. Figure S7: The relative probability of
grizzly bear habitat selection as a function of road distance at the 200 m scale by time of day (rows),
classification method (columns) and whether roads were classified (colored lines; Low, Medium, or
High human activity) or non-classified (dashed line; Any road).

Author Contributions: Conceptualization, S.P.K. and N.C.C.; Methodology, S.P.K., T.A.L. and
T.R.H.G.; Software, S.P.K., T.A.L. and T.R.H.G.; Validation, S.P.K., T.A.L. and T.R.H.G.; Formal
Analysis, S.P.K. and T.A.L.; Investigation, S.P.K.; Resources, N.C.C. and G.B.S.; Data Curation, S.P.K.,
T.A.L. and G.B.S.; Writing-Original Draft Preparation, S.P.K.; Writing-Review and Editing, S.P.K.,
T.A.L., T.R.H.G., N.C.C. and G.B.S.; Visualization, S.P.K.; Supervision, N.C.C. and G.B.S.; Project
Administration, N.C.C. and G.B.S.; Funding Acquisition, N.C.C. and G.B.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Grizzly-PAW project (NSERC File: CRDPJ 486175–15,
Grantee: N.C. Coops, FRM, UBC), in collaboration with fRI Research and FRIAA, Alberta Newsprint
Company, Canfor, Cenovus, Repsol, Seven Generations Energy, Shell Canada, TransCanada Pipelines,
Teck Resources, West Fraser, Westmoreland Coal, and Weyerhauser. More information can be found
at http://paw.forestry.ubc.ca/ (accessed on 28 June 2021).

Institutional Review Board Statement: All animal capture and handling followed the Canadian
Council of Animal Care Guidelines and were permitted annually through the University of Saskatchewan
Animal Care Committee.

https://www.mdpi.com/article/10.3390/rs13132547/s1
https://www.mdpi.com/article/10.3390/rs13132547/s1
http://paw.forestry.ubc.ca/


Remote Sens. 2021, 13, 2547 19 of 21

Informed Consent Statement: Not applicable.

Data Availability Statement: GPS collar data and raw locational RoadLab-Pro data are not publicly
available due to privacy and safety concerns. Non-sensitive data (e.g., summarized social media
locations and summarized road condition data) can be made available upon request.

Acknowledgments: We thank fRI Research Grizzly Bear Program in Hinton, Alberta for all their
support in collecting bear GPS collar data and the many biologists involved in collecting and
compiling field data. We thank staff at fRI Research, Westmoreland Coal, Shell Canada and Canfor
for their voluntary work to collect road data with the RoadLab-Pro app during their work routines.
We also thank the many partners who supported the project over many years and thus allowed
long-term datasets.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Benítez-López, A.; Alkemade, R.; Verweij, P.A. The impacts of roads and other infrastructure on mammal and bird populations:

A meta-analysis. Biol. Conserv. 2010, 143, 1307–1316. [CrossRef]
2. Bennett, V.J.; Betts, M.G.; Smith, W.P. Toward Understanding the Ecological Impact of Transportation Corridors; U.S. Department of

Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2011.
3. Boulanger, J.; Stenhouse, G.B. The impact of roads on the demography of grizzly bears in Alberta. PLoS ONE 2014, 9, e115535.

[CrossRef] [PubMed]
4. Prokopenko, C.M.; Boyce, M.S.; Avgar, T. Characterizing wildlife behavioural responses to roads using integrated step selection

analysis. J. Appl. Ecol. 2017, 54, 470–479. [CrossRef]
5. Proctor, M.F.; McLellan, B.N.; Stenhouse, G.B.; Mowat, G.; Lamb, C.T.; Boyce, M.S. Effects of roads and motorized human access

on grizzly bear populations in British Columbia and Alberta, Canada. Ursus 2019, 2019, 16–39. [CrossRef]
6. Koen, E.L.; Bowman, J.; Sadowski, C.; Walpole, A.A. Landscape connectivity for wildlife: Development and validation of

multispecies linkage maps. Methods Ecol. Evol. 2014, 5, 626–633. [CrossRef]
7. Proctor, M.F.; Paetkau, D.; McLellan, B.N.; Stenhouse, G.B.; Kendall, K.C.; Mace, R.D.; Kasworm, W.F.; Servheen, C.; Lausen,

C.L.; Gibeau, M.L.; et al. Population fragmentation and inter-ecosystem movements of grizzly bears in Western Canada and the
northern United States. Wildl. Monogr. 2012, 1–46. [CrossRef]

8. Moraes, A.M.; Ruiz-Miranda, C.R.; Galetti, P.M.; Niebuhr, B.B.; Alexandre, B.R.; Muylaert, R.L.; Grativol, A.D.; Ribeiro, J.W.;
Ferreira, A.N.; Ribeiro, M.C. Landscape resistance influences effective dispersal of endangered golden lion tamarins within the
Atlantic Forest. Biol. Conserv. 2018, 224, 178–187. [CrossRef]

9. Boulanger, J.; Cattet, M.; Nielsen, S.E.; Stenhouse, G.; Cranston, J. Use of multi-state models to explore relationships between
changes in body condition, habitat and survival of grizzly bears Ursus Arctos horribilis. Wildl. Biol. 2013, 19, 274–288. [CrossRef]

10. Graham, K.; Boulanger, J.; Duval, J.; Stenhouse, G. Spatial and temporal use of roads by grizzly bears in west-central Alberta.
Ursus 2010, 21, 43–56. [CrossRef]

11. Roever, C.L.; Boyce, M.S.; Stenhouse, G.B. Grizzly bears and forestry. I: Road vegetation and placement as an attractant to grizzly
bears. For. Ecol. Manage. 2008, 256, 1253–1261. [CrossRef]

12. Mace, R.D.; Waller, J.S.; Manley, T.L.; Lyon, J.L.; Zuuring, H. Relationships among grizzly bears, roads and habitat in the Swan
Mountains, Montana. J. Appl. Ecol. 1996, 33, 1395–1404. [CrossRef]

13. Benn, B.; Herrero, S. Grizzly bear mortality and human access in Banff and Yoho National Parks, 1971–98. Ursus 2002, 13, 213–221.
14. Nielsen, S.E.; Herrero, S.; Boyce, M.S.; Mace, R.D.; Benn, B.; Gibeau, M.L.; Jevons, S. Modelling the spatial distribution of

human-caused grizzly bear mortalities in the Central Rockies ecosystem of Canada. Biol. Conserv. 2004, 120, 101–113. [CrossRef]
15. Nielsen, S.E.; Stenhouse, G.B.; Boyce, M.S. A habitat-based framework for grizzly bear conservation in Alberta. Biol. Conserv.

2006, 130, 217–229. [CrossRef]
16. Gibeau, M.L.; Herrero, S. Roads, rails and grizzly bears in the Bow River Valley, Alberta. In Proceedings of the State of Florida

DOT Symposium, Fort Myers, FL, USA, 9–12 February 1998.
17. Northrup, J.M.; Pitt, J.; Muhly, T.B.; Stenhouse, G.B.; Musiani, M.; Boyce, M.S. Vehicle traffic shapes grizzly bear behaviour on a

multiple-use landscape. J. Appl. Ecol. 2012, 49, 1159–1167. [CrossRef]
18. Hertel, A.G.; Swenson, J.E.; Bischof, R. A case for considering individual variation in diel activity patterns. Behav. Ecol. 2017, 28,

1524–1531. [CrossRef]
19. Kite, R.; Nelson, T.; Stenhouse, G.; Darimont, C. A movement-driven approach to quantifying grizzly bear (Ursus arctos) near-road

movement patterns in west-central Alberta, Canada. Biol. Conserv. 2016, 195, 24–32. [CrossRef]
20. Scrafford, M.A.; Avgar, T.; Heeres, R.; Boyce, M.S. Roads elicit negative movement and habitat-selection responses by wolverines

(Gulo gulo luscus). Behav. Ecol. 2018, 29, 534–542. [CrossRef]

http://doi.org/10.1016/j.biocon.2010.02.009
http://doi.org/10.1371/journal.pone.0115535
http://www.ncbi.nlm.nih.gov/pubmed/25532035
http://doi.org/10.1111/1365-2664.12768
http://doi.org/10.2192/URSUS-D-18-00016.2
http://doi.org/10.1111/2041-210X.12197
http://doi.org/10.1002/wmon.6
http://doi.org/10.1016/j.biocon.2018.05.023
http://doi.org/10.2981/12-088
http://doi.org/10.2192/09GR010.1
http://doi.org/10.1016/j.foreco.2008.06.040
http://doi.org/10.2307/2404779
http://doi.org/10.1016/j.biocon.2004.02.020
http://doi.org/10.1016/j.biocon.2005.12.016
http://doi.org/10.1111/j.1365-2664.2012.02180.x
http://doi.org/10.1093/beheco/arx122
http://doi.org/10.1016/j.biocon.2015.12.020
http://doi.org/10.1093/beheco/arx182


Remote Sens. 2021, 13, 2547 20 of 21

21. Kearney, S.P.; Coops, N.C.; Sethi, S.; Stenhouse, G.B. Maintaining accurate, current, rural road network data: An extraction and
updating routine using RapidEye, participatory GIS and deep learning. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102031. [CrossRef]

22. Wang, W.; Yang, N.; Zhang, Y.; Wang, F.; Cao, T.; Eklund, P. A review of road extraction from remote sensing images. J. Traffic
Transp. Eng. Engl. Ed. 2016, 3, 271–282. [CrossRef]

23. Yan, Y.; Kuo, C.L.; Feng, C.C.; Huang, W.; Fan, H.; Zipf, A. Coupling maximum entropy modeling with geotagged social media
data to determine the geographic distribution of tourists. Int. J. Geogr. Inf. Sci. 2018, 32, 1699–1736. [CrossRef]

24. Wu, X.; Wood, S.A. Photos, tweets, and trails: Are social media proxies for urban trail use? J. Transp. Land Use 2017, 10, 789–804.
[CrossRef]

25. Mancini, F.; Coghill, G.M.; Lusseau, D. Using social media to quantify spatial and temporal dynamics of nature-based recreational
activities. PLoS ONE 2018, 13, e0200565. [CrossRef]

26. Tenkanen, H.; Di Minin, E.; Heikinheimo, V.; Hausmann, A.; Herbst, M.; Kajala, L.; Toivonen, T. Instagram, Flickr, or Twitter:
Assessing the usability of social media data for visitor monitoring in protected areas. Sci. Rep. 2017, 7, 1–11. [CrossRef]

27. Wood, S.A.; Guerry, A.D.; Silver, J.M.; Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep.
2013, 3, 1–7. [CrossRef]

28. Vich, G.; Marquet, O.; Miralles-Guasch, C. Suburban commuting and activity spaces: Using smartphone tracking data to
understand the spatial extent of travel behaviour. Geogr. J. 2017, 183, 426–439. [CrossRef]

29. Forslöf, L.; Jones, H. Roadroid: Continuous road condition monitoring with smart phones. J. Civ. Eng. Archit. 2015, 9, 485–496.
[CrossRef]

30. Cadamuro, G.; Muhebwa, A.; Taneja, J. Assigning a grade: Accurate measurement of road quality using satellite imagery. ArXiv
2018, arXiv:abs/1812.01699.

31. Najjar, A.; Kaneko, S.; Miyanaga, Y. Combining satellite imagery and open data to map road safety. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence, AAAI, San Francisco, CA, USA, 4–9 February 2017; pp. 4524–4530.

32. Roever, C.L.; Boyce, M.S.; Stenhouse, G.B. Grizzly bears and forestry. II: Grizzly bear habitat selection and conflicts with road
placement. For. Ecol. Manag. 2008, 256, 1262–1269. [CrossRef]

33. Achuff, P.L. Natural Regions, Subregions and Natural History Themes of Alberta: A Classification for Protected Areas Management—
Updated and Revised; Alberta Environmental Protection, Parks Services: Edmonton, Alberta, 1994.

34. ABMI. ABMI Human Footprint Inventory: Wall-to-Wall Human Footprint Inventory; ABMI: Edmonton, AB, Canada, 2016.
35. Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Regional detection, characterization, and attribution of

annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 2015, 170, 121–132.
[CrossRef]

36. McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and
conservation. Ecology 2008, 89, 2712–2724. [CrossRef] [PubMed]

37. McRae, B.H.; Shah, V.B.; Mohapatra, T.K. Circuitscape 4 User Guide. The Nature Conservancy. 2013. Available online:
http://www.circuitscape.org (accessed on 1 October 2019).

38. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98.
[CrossRef]

39. Anantharaman, R.; Hall, K.; Shah, V.; Edelman, A. Circuitscape in Julia: High Performance Connectivity Modelling to Support
Conservation Decisions. ArXiv 2019, arXiv:1906.03542.

40. Tyc, G.; Tulip, J.; Schulten, D.; Krischke, M.; Oxfort, M. The RapidEye mission design. Acta Astronaut. 2005, 56, 213–219. [CrossRef]
41. Hunt, E.R.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote

sensing leaf chlorophyll content at the Canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 103–112. [CrossRef]
42. Abdollahnejad, A.; Panagiotidis, D.; Surový, P. Forest canopy density assessment using different approaches—Review. J. For. Sci.

2017, 63, 107–116. [CrossRef]
43. Ruiz, L.A.; Recio, J.A.; Fernández-Sarría, A.; Hermosilla, T. A feature extraction software tool for agricultural object-based image

analysis. Comput. Electron. Agric. 2011, 76, 284–296. [CrossRef]
44. Goodbody, T.R.H.; Coops, N.C.; Hermosilla, T.; Tompalski, P.; McCartney, G.; MacLean, D.A. Digital aerial photogrammetry for

assessing cumulative spruce budworm defoliation and enhancing forest inventories at a landscape-level. ISPRS J. Photogramm.
Remote Sens. 2018, 142, 1–11. [CrossRef]

45. Goodbody, T.R.H.; Coops, N.C.; Hermosilla, T.; Tompalski, P.; Crawford, P. Assessing the status of forest regeneration using
digital aerial photogrammetry and unmanned aerial systems. Int. J. Remote Sens. 2018, 39, 5246–5264. [CrossRef]

46. Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; R Core Team; et al. Caret:
Classification and Regression Training 2020. R Package Version 6.0-86. Available online: https://rdrr.io/cran/caret/ (accessed on
28 June 2021).

47. Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and
a solution. BMC Bioinform. 2007, 8. [CrossRef] [PubMed]

48. Van den Berg, R.A.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations:
Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 1–15. [CrossRef]

49. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]

http://doi.org/10.1016/j.jag.2019.102031
http://doi.org/10.1016/j.jtte.2016.05.005
http://doi.org/10.1080/13658816.2018.1458989
http://doi.org/10.5198/jtlu.2017.1130
http://doi.org/10.1371/journal.pone.0200565
http://doi.org/10.1038/s41598-017-18007-4
http://doi.org/10.1038/srep02976
http://doi.org/10.1111/geoj.12220
http://doi.org/10.17265/1934-7359/2015.04.012
http://doi.org/10.1016/j.foreco.2008.06.006
http://doi.org/10.1016/j.rse.2015.09.004
http://doi.org/10.1890/07-1861.1
http://www.ncbi.nlm.nih.gov/pubmed/18959309
http://www.circuitscape.org
http://doi.org/10.1137/141000671
http://doi.org/10.1016/j.actaastro.2004.09.029
http://doi.org/10.1016/j.jag.2012.07.020
http://doi.org/10.17221/110/2016-JFS
http://doi.org/10.1016/j.compag.2011.02.007
http://doi.org/10.1016/j.isprsjprs.2018.05.012
http://doi.org/10.1080/01431161.2017.1402387
https://rdrr.io/cran/caret/
http://doi.org/10.1186/1471-2105-8-25
http://www.ncbi.nlm.nih.gov/pubmed/17254353
http://doi.org/10.1186/1471-2164-7-142
http://doi.org/10.1007/BF00058655


Remote Sens. 2021, 13, 2547 21 of 21

50. Cattet, M.; Boulanger, J.; Stenhouse, G.; Powell, R.A.; Reynolds-Hogland, M.J. An evaluation of long-term capture effects in
ursids: Implications for wildlife welfare and research. J. Mammal. 2008, 89, 973–990. [CrossRef]

51. Signer, J.; Fieberg, J.; Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat
selection analyses. Ecol. Evol. 2019, 9, 880–890. [CrossRef] [PubMed]

52. Graham, K.; Stenhouse, G.B. Home range, movements and denning chronology of the grizzly bear (Ursus arctos) in west-central
Alberta. Can. Field Nat. 2014, 128, 223–234. [CrossRef]

53. Munro, R.H.M.; Nielsen, S.E.; Price, M.H.; Stenhouse, G.B.; Boyce, M.S. Seasonal and diel patterns of grizzly bear diet and activity
in west-central Alberta. J. Mammal. 2006, 87, 1112–1121. [CrossRef]

54. Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 1. [CrossRef]
55. R Core Team. R: A Language and Environment for Statistical Computing; Version 3.6.0.; R Foundation for Statistical Computing:

Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 28 June 2021).
56. Gillies, C.S.; Hebblewhite, M.; Nielsen, S.E.; Krawchuk, M.A.; Aldridge, C.L.; Frair, J.L.; Saher, D.J.; Stevens, C.E.; Jerde, C.L.

Application of random effects to the study of resource selection by animals. J. Anim. Ecol. 2006, 75, 887–898. [CrossRef]
57. Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach, 2nd ed.;

Springer Science & Business Media: New York, NY, USA, 2002; ISBN 978-0-387-22456-5.
58. Hausmann, A.; Toivonen, T.; Slotow, R.; Tenkanen, H.; Moilanen, A.; Heikinheimo, V.; Di Minin, E. Social media data can be used

to understand tourists’ preferences for nature-based experiences in protected areas. Conserv. Lett. 2018, 11, 1–10. [CrossRef]
59. Hausmann, A.; Toivonen, T.; Heikinheimo, V.; Tenkanen, H.; Slotow, R.; Di Minin, E. Social media reveal that charismatic species

are not the main attractor of ecotourists to sub-Saharan protected areas. Sci. Rep. 2017, 7, 1–9. [CrossRef]
60. Lamb, C.T.; Ford, A.T.; McLellan, B.N.; Proctor, M.F.; Mowat, G.; Ciarniello, L.; Nielsen, S.E.; Boutin, S. The ecology of human-

carnivore coexistence. Proc. Natl. Acad. Sci. USA 2020, 117, 17876–17883. [CrossRef] [PubMed]
61. Jacobson, S.L.; Bliss-Ketchum, L.L.; De Rivera, C.E.; Smith, W.P. A behavior-based framework for assessing barrier effects to

wildlife from vehicle traffic volume. Ecosphere 2016, 7, 1–15. [CrossRef]

http://doi.org/10.1644/08-MAMM-A-095.1
http://doi.org/10.1002/ece3.4823
http://www.ncbi.nlm.nih.gov/pubmed/30766677
http://doi.org/10.22621/cfn.v128i3.1600
http://doi.org/10.1644/05-MAMM-A-410R3.1
http://doi.org/10.18637/jss.v067.i01
https://www.R-project.org/
http://doi.org/10.1111/j.1365-2656.2006.01106.x
http://doi.org/10.1111/conl.12343
http://doi.org/10.1038/s41598-017-00858-6
http://doi.org/10.1073/pnas.1922097117
http://www.ncbi.nlm.nih.gov/pubmed/32632004
http://doi.org/10.1002/ecs2.1345

	Introduction 
	Materials and Methods 
	Study Area 
	Reference Classification 
	Provincial Road Data 
	Classification Method 

	Network-Based Classification 
	Human Activity Data 
	Classification Method 

	Image-Based Classification 
	App-Based Road Data 
	Satellite Data 
	Classification Method 

	Statistical Analysis 
	Road Classification 
	Grizzly Bear Response to Roads 


	Results 
	Road Classification 
	Grizzly Bear Response To Roads 
	Grizzly Bear Movement 
	Grizzly Bear Selection 


	Discussion 
	Road Classification 
	Grizzly Bear Response to Roads 

	Conclusions 
	References

