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Abstract: Phenology shifts over time are known as the canary in the mine when studying the
response of terrestrial ecosystems to climate change. Plant phenology is a key factor controlling
the productivity of terrestrial vegetation under climate change. Over the past several decades, the
vegetation in the three-river headwaters region (TRHR) has been reported to have changed greatly
owing to the warming climate and human activities. However, uncertainties related to the potential
mechanism and influence of climatic and soil factors on the plant phenology of the TRHR are poorly
understood. In this study, we used harmonic analysis of time series and the relative and absolute
change rate on Google Earth Engine to calculate the start (SOS), end (EOS), and length (LOS) of
the growing season based on MOD09A1 datasets; the results were verified by the observational
data from phenological stations. Then, the spatiotemporal patterns of plant phenology for different
types of terrain and basins were explored. Finally, the potential mechanism involved in the influence
of climatic and soil factors on the phenology of plants in the TRHR were explored based on the
structural equation model and Pearson’s correlation coefficients. The results show the remotely
sensed monitoring data of SOS (R2 = 0.84, p < 0.01), EOS (R2 = 0.72, p < 0.01), and LOS (R2 = 0.86,
p < 0.01) were very similar to the observational data from phenological stations. The SOS and LOS of
plants possessed significant trends toward becoming advanced (Slope < 0) and extended (Slope > 0),
respectively, from 2001 to 2018. The SOS was the earliest and the LOS was the longest in the Lancang
River Basin, while the EOS was the latest in the Yangtze River Basin owing to the impact of climate
change and soil factors. Meanwhile, the spatial patterns of SOS, EOS, and LOS have strong spatial
heterogeneity at different elevations, slopes, and aspects. In addition, the results show that the drivers
of plant phenology have basin-wide and stage differences. Specifically, the influence of soil factors
on plant phenology in the Yangtze River Basin was greater than that of climatic factors, but climatic
factors were key functional indicators of LOS in the Yellow and Lancang river basins, which directly
or indirectly affect plant LOS through soil factors. This study will be helpful for understanding the
relationship between the plant phenology of the alpine wetland ecosystem and climate change and
improving the level of environmental management.

Keywords: plant phenology; spatiotemporal patterns; structural equation model; Google Earth
Engine; Three-River Headwaters region
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1. Introduction

The global climate has been warming gradually over the past several decades, which
has important impacts on vegetation phenology in ecological systems [1–3]. Vegetation
phenology acts as a sensitive and precise indicator that responds to climate warming and
has become an important topic in the fields of climate and ecology [4,5]. Studies have
shown that changes in spring and autumn plant phenology caused by climate change can
differentially alter the length of the growing season and affect water, carbon, and energy
fluxes between the atmosphere and the terrestrial biosphere [6]. Increased carbon uptake
stimulated by an extended growing season has the potential to mitigate climate change [7].
Therefore, elucidating the trends in plant phenology can improve our understanding of the
influence of climate change on ecosystem productivity, carbon cycling, and energy flow.

Although many studies have investigated plant phenology, little attention has been
paid to alpine wetland ecosystems [8,9]. As the largest alpine wetland ecosystem in
the world, the Three-River Headwaters region (TRHR) is considered the premonitory
region of global climate change. It is worth noting that increasing human activities and
global climate warming have led to severe ecological degradation in the TRHR, such
as vegetation degradation, soil erosion, desertification, lake and wetland decline, and
glacial retreat [10,11]. Because of the unique geographical location and climate of TRHR,
a large number of researchers have studied this area. For example, Han et al. studied
the relationship between plant greening and climate factors based on plant phenologi-
cal site data, and the results showed that the trend for the time of plant greening was
ahead–postpone–ahead–postpone [12]. Li explored the phenology response of plant to
hydrothermal conditions from 1999 to 2010 based on SPOT NDVI, and the results indicated
that the increase of cumulative precipitation and temperature of response time make SOS
delayed [13]. Chen et al. used SPOT NDVI to explore the spatiotemporal patterns of plant
phenology during 2000–2013, and the results showed that the SOS advanced, EOS delayed,
and LOS extended [14]. Hence, it is a good idea to select the TRHR as a study area to
explore the changes in plant phenology under climate change, which will improve our
understanding of changes in plant phenology in alpine wetland ecosystems. Increased
warming trends and frequent extreme events caused by climate change have produced
significant impacts on many ecosystems, such as changes in vegetation phenology, grass-
land degradation, wetland shrinkage, and encroachment upon farmlands [15]. Currently,
many research studies have focused on the response of vegetation phenology to specific
climate factors, including temperature, precipitation, and shortwave radiation. The results
indicated that interaction between temperature, shortwave radiation, and water has caused
various impacts on vegetation activities in different regions [16–18]. For example, the SOS
arrived 2.5 days earlier, and the EOS was delayed by 1 day for every 1 ◦C increase in the
temperature across 19 European countries [19]. The onset time of 70.1% of vegetation
in the growth season was delayed by 2.7 days because of winter precipitation in boreal
forests [20]. Shortwave radiation plays a potential role in regulating vegetation growth in
humid tropical or subtropical regions [21]. However, many factors can affect vegetation
growth. Some changes in vegetation growth are caused by changes in climatic factors, but
the soil factor (i.e., total soil C, N, and K) also affects vegetation dynamics because of the ef-
fects of soil conditions on the production of new cells that control plant photosynthesis [22].
For example, increasing the N input to land terrestrial ecosystems can promote vegetative
growth and accelerate respiration in plants and soil microorganisms [23]. In fact, plants
are very sensitive to resource conditions and tend to adjust their growth rates according to
changing environments at different time scales [24]. A change in soil nutrient availability
and mobility can change the photosynthetic rate of vegetation, which ultimately deter-
mines the difference in vegetative growth [25]. Therefore, it is important to understand the
underlying mechanisms of how soil resources affect vegetative growth, especially under
global climate change. Furthermore, traditional multivariate analysis ignored the total
effects associated with the interaction between variables and only focused on the direct
effects of predictors on the response variables [24]. Simultaneously, the interaction between
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variables often has a greater impact on response variables. Hence, it is necessary to analyze
the direct or indirect effects of a particular variable on another variable to study the factors
that influence plant phenology.

In this study, we extracted plant phenological information based on MOD09A1
datasets with Google Earth Engine; the accuracy of the extracted plant phenology results
was verified by using the station data of plant phenology; our main aims are: (1) investi-
gating spatiotemporal characteristics of plant phenology (2) and analyzing the potential
influence mechanism of climate and soil factors on the plant phenology of TRHR.

2. Materials and Methods
2.1. Processing

The flow chart of research ideas for this paper is as follows (Figure 1). First, we
calculated the plant phenology according to the following steps: (1) the NDVI of the TRHR
was calculated from MOD09A1 datasets in Google Earth Engine; (2) next, bare soil, sparse
vegetation, and evergreen forest pixels were eliminated according to certain requirements;
(3) then, the NDVI datasets were smoothed by harmonic analysis of time series (HANTS);
(4) we used relative and absolute rates of change to calculate plant phenology (SOS and
EOS) based on the NDVI datasets smoothed by HANTS; (5) the phenological data obtained
by remote sensing monitoring were verified by using the observation data of phenological
stations. Then, we analyzed the spatiotemporal dynamic pattern of plant phenology on
different types of terrain and basins. Finally, we explored the potential influence mechanism
of climate and soil factors on the phenology of the TRHR based on the structural equation
model (SEM) and Pearson correlation coefficients.
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Figure 1. Flow chart of research ideas for this paper. NDVI, HANTS, SOS, EOS, LOS, DEM, MMT, 
MMP, MMH, MMR, MMST, MMSM, pH, and TN indicate the normalized difference vegetation 
index, harmonic analysis of time series, start of the growing season, end of the growing season, 
length of the growing season, digital elevation model, monthly mean temperature, monthly mean 
precipitation, monthly mean relative humidity, monthly mean shortwave radiation, monthly mean 
soil temperature, monthly mean soil moisture, pH (H2O), and total N, respectively. 

  

Figure 1. Flow chart of research ideas for this paper. NDVI, HANTS, SOS, EOS, LOS, DEM, MMT,
MMP, MMH, MMR, MMST, MMSM, pH, and TN indicate the normalized difference vegetation
index, harmonic analysis of time series, start of the growing season, end of the growing season,
length of the growing season, digital elevation model, monthly mean temperature, monthly mean
precipitation, monthly mean relative humidity, monthly mean shortwave radiation, monthly mean
soil temperature, monthly mean soil moisture, pH (H2O), and total N, respectively.

2.2. Study Area

The TRHR (31◦39′N–37◦10′N, 89◦24′E–102◦27′E) is located in the hinterland of the
Tibetan Plateau and in southern Qinghai Province of China (Figure 2). As the source area
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for the Yellow, Lancang, and Yangtze rivers, the TRHR supplies approximately 40 billion m3

of water downstream every year. It serves as an important source of freshwater resources
in China and Asia and is often referred to as the “Chinese water tower” [26]. The TRHR
spans 22 counties and covers an area of about 3.95 × 105 km2, and the elevation increases
from 1987.5 m in the southeast to 6714.5 m in the northwest, with an average elevation
over 4000 m. In 2010, the main land-use types in the TRHR were grassland (68.4%), desert
(16.0%), wetland (9.4%), shrub (4.6%), and forest (0.3%), where alpine steppe and alpine
meadow were the main types of grassland [27]. The TRHR has major extensive wetlands
in China, with abundant lake, river, glacier, and mountain snow resources, and supports
the largest alpine wetland ecosystem in the world. Moreover, the TRHR is an important
ecological functional zone, a typical ecologically fragile area in China, and is quite sensitive
to climate change.
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Figure 2. Maps of the study area: (a) Tibetan Plateau in China; (b) Three-River Headwaters region on
the Tibetan Plateau; (c) locations of meteorological, phenological stations, alpine steppe, and alpine
meadow in and near the Three-River Headwaters region.

The TRHR experiences a typical plateau continental climate with large daily tem-
perature differences, small annual temperature differences, intense radiation, and a large
number of sunshine hours [28]. The TRHR has cool and dry winters with wet and warm
summers, mainly caused by the influence of the Asian monsoon and high elevation [29].
Meanwhile, the annual average precipitation in the THRH gradually increased from
northwest (262.2 mm) to southeast (772.8 mm), primarily concentrated between June and
September owing to the influence of the warm and humid air currents in the southern
Bay of Bengal [28,30]. Furthermore, the annual average temperature, sunshine hours,
and evaporation of TRHR ranging −5.6 to 7.8 ◦C, 2300 to 2900 h, and 730–1700 mm,
respectively [14,26].

2.3. Data Sources
2.3.1. MOD09A1 Data

The main vegetation types in the TRHR are alpine steppe and alpine meadow. These
do not have high amounts of vegetation coverage, with the highest values of NDVI being
less than 0.6. Therefore, there are no areas where vegetation is so saturated that the
NDVI cannot be accurately expressed. Hence, NDVI was selected in this paper for use in
analyzing plant phenological characteristics. Based on a previous study, this paper selected
MOD09A1 data products because they have a high temporal resolution, which can provide
us with better detailed information related to vegetation growth. The NDVI time-series



Remote Sens. 2021, 13, 2528 5 of 17

data came from the Google Earth Engine (https://developers.google.com/earth-engine/
datasets/catalog/MODIS_006_MOD09A1 (accessed on 20 July 2020)), with a temporal
resolution of 8 days and a spatial resolution of 500 × 500 m. In order to improve the
calculated phenological results accurately, we used the following rules for data processing.
(1) NDVI was calculated based on the MOD09A1 band using Equations (1) and (2). To
eliminate the influence of bare soil, sparse vegetation, and evergreen forest, the pixels of
NDVI data in this study had to meet the following requirements: (a) the average value of
NDVI should be more than 0.2 in April–October; (b) the maximum value of annual NDVI
shall exceed 0.30; (c) the annual maximum value shall occur from July to September; and
(d) the average value of NDVI in winter shall be less than 0.4. (3) The NDVI data with a
temporal resolution of 1 day was obtained by using HANTS to fit the data, which were
processed in steps 1 and 2 (Figure 3a).
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NDVI time-series change curve of 8 days after smooth treatment. The vertical axis of the left side is the NDVI value, and the
vertical axis of the right side is the change rate of NDVI. For comparison, the change rate of NDVI has been zoomed in
integer times, the ratio of absolute change value is 1000, and the ratio of relative change rate is 100.

2.3.2. Phenological Observation Data

Vegetation phenological observation data (2001–2013) of the THRH used in this study
were extracted from the ten-day datasets on crop growth and farmland soil moisture
in China, which were obtained from the Chinese Meteorological Administration (http:
//data.cma.cn/ (accessed on 12 October 2020)). We selected the phenological stations
according to the principle that the vegetation type around each station is grassland. Finally,
we selected five phenological observation stations (Figure 2c).

2.3.3. Climate Datasets

The meteorological data were selected from the monthly cumulative precipitation,
monthly mean relative humidity, and monthly mean air temperature from April to October
during 2001 to 2018 for 51 nationally standard meteorological stations in and near the
TRHR (Figure 2c), which were provided by the Chinese Meteorological Administration
(http://data.cma.cn/ (accessed on 5 July 2020)). Some observational data were missing
and had non-uniformity characteristics owing to the influence of changes in meteorological
stations and in instruments used to observe. Thus, the regression equation of time series
and the homogeneity test of variance were used to fill in the missing values and test
for data homogeneity at first in this paper. The commonly used spatial interpolation
methods include inverse distance weighted, co-kriging, and thin plate splines (TPS). After
comparative experiments, the monthly accumulated precipitation and monthly mean
relative humidity were interpolated by the co-kriging method in ArcGIS10.5 software
(ESRI, Redlands, CA, USA), with 500 × 500 m resolution. Furthermore, the TPS method of

https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD09A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD09A1
http://data.cma.cn/
http://data.cma.cn/
http://data.cma.cn/
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Anusplin software (Centre for Resource and Environmental Studies, Australian National
University, Canberra, Australia) was adopted to interpolate the monthly mean temperature
at a resolution of 500 × 500 m.

In this study, time-series shortwave radiation data were acquired from the European
Centre for Medium-Range Weather Forecasts website (https://cds.climate.copernicus.eu/
cdsa-pp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview (accessed on 5 July
2020)), with a temporal resolution of one month and a spatial resolution of 0.1◦ × 0.1◦.

2.3.4. Soil Characteristics Database

In order to explore the influence of soil physical and chemical attributes on plant
phenology, we used a database of soil characteristics that was produced by the Land–
Atmosphere Interaction Research Group at Sun Yat-sen University (http://globalchange.
bnu.edu.cn/home (accessed on 25 October 2020)). The database included information
on total N (g/100 g), total P (g/100 g), total K (g/100 k), soil organic matter (g/100 g),
alkali-hydrolysable N (mg/kg), available P (mg/kg), available K (mg/kg), cation ex-
change capacity (me/100 g), porosity (cm3/100 cm3), bulk density (g/cm3), and pH (H2O).
Furthermore, soil moisture and soil temperature data were obtained from Google Earth
Engine (https://developers.google.com/earth-engine/datasets/catalog/NASA_FLDAS_
NOAH01_C_GL_M_V001#bands (accessed on 25 October 2020)) with a spatial resolution
of 0.1◦ × 0.1◦ and temporal resolution of one month.

2.3.5. Digital Elevation Model

Digital Elevation Model (DEM) data were collected from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER
GDEM) Version 3, which was provided by the US National Aeronautics and Space Admin-
istration’s Earth Data website (https://earthdata.nasa.gov/ (accessed on 30 October 2020)),
with a spatial resolution of 30 m. For this study, the DEM data were processed with ArcGIS
10.5 to obtain the slope, elevation, and aspect.

2.4. Methods
2.4.1. Extraction of Plant Phenological Information

(1) NDVI

In this study, on the basis of NDVI that is estimated by the MOD09A1 band informa-
tion, we calculated the SOS and EOS using the method of the relative and absolute rates of
NDVI change, respectively. The NDVI is defined by [31]:

NDVI = (ρNIR − ρRed)/(ρNIR + ρRed), (1)

where ρNIR and ρRed are the spectral reflectance values calculated in the near-infrared and
red bands, respectively.

(2) Determination of the SOS and EOS

We used the maximum relative and minimum absolute rates of change in NDVI to
calculate the SOS and EOS based on previous studies [14]. The equations of these rates of
change can be expressed by:

NDVIrate_rel =
NDVIt+1 − NDVIt

NDVIt
, t ∈ [1, 2, . . . , 365], (2)

NDVIrate_abs = NDVIt+1 − NDVIt, t ∈ [1, 2, . . . , 365], (3)

where NDVIrate_rel and NDVIrate_abs are the relative and absolute rates of change, respectively.
The specific calculation process is as follows. First, we calculated the time (T) when the

maximum value appears based on the NDVI time-series data. The NDVI curve was divided
into a rising (0, T) and a descending (T, 365) stage. Second, based on Equations (2) and (3),

https://cds.climate.copernicus.eu/cdsa-pp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsa-pp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
http://globalchange.bnu.edu.cn/home
http://globalchange.bnu.edu.cn/home
https://developers.google.com/earth-engine/datasets/catalog/NASA_FLDAS_NOAH01_C_GL_M_V001#bands
https://developers.google.com/earth-engine/datasets/catalog/NASA_FLDAS_NOAH01_C_GL_M_V001#bands
https://earthdata.nasa.gov/
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the maximum relative and minimum absolute rates of change were calculated by using
the NDVI time-series data. Then, the thresholds of SOS and EOS were determined based
on the maximum relative and minimum absolute rates of change, respectively. Third, if
the NDVI value was greater than the SOS threshold at time 0 to T, the corresponding date
of the year was regarded as the SOS. Similarly, if the NDVI value of some pixels was less
than the EOS threshold at time T to 365, the corresponding day of the year plus one was
regarded as the EOS (Figure 3b).

2.4.2. The Spatiotemporal Pattern of Plant Phenology

(1) Linear Regression Analysis

We adopted a linear regression analysis to analyze the monotonic trend of the vegeta-
tion phenology and indicators [32,33]. The trend slope in a multi-year regression equation
represents the amount of inter-annual change and can be found using the least squares
method as follows:

Slope =
n·∑n

t=1 t·Xt −∑n
t=1 t ∑n

t=1 Xt

n·∑n
t=1 t2 − (∑n

t=1 t)2 , (4)

where Slope refers to the inter-annual trend, n is the number of years of the study, and the
Xt is the value of this variable in the t-th year. When the slope is positive or negative, this
indicates an increasing or decreasing trend, respectively.

(2) Standard Deviation Analysis

Standard deviation is a measure of the degree of data dispersion that can reflect the
stability or fluctuation of variables [34]. For this study, the stability or fluctuation of plant
phenology was calculated by standard deviation based on the pixel scale. The calculation
formula is as follows:

Si =

√
1
n

n

∑
i=1

(
Xi − X

)2, (5)

where Si indicates the standard deviation of an X dataset. When the Si value is larger, the
distribution of the data is more discrete and has a larger range of fluctuation. In contrast,
when the Si value is smaller, the distribution of the data is more concentrated and the range
of fluctuation is smaller.

2.4.3. Driving Force Analysis

(1) Pearson Correlation Coefficient

For this paper, we used correlation analysis to determine the relationship between
the plant phenology (SOS, EOS, and LOS) and other factors. A higher value indicates a
stronger correlation; otherwise, it means a weaker correlation [28,35]. The relevant formula
is as follows:

Rxy =
∑n

i=1[[xi − x]·[yi − y] ]√
∑n

i=1 [[xi − x]2·[yi − y]2]
, (6)

where Rxy is the correlation coefficient between x and y, n is the number of years during the
study, xi and yi are the two sets of variables, and x and y are the mean values of variables.

(2) Structural Equation Model

SEM is a method used to analyze the relationship between variables based on a
covariance matrix of variables, which includes maximum likelihood, synthesis of factor,
and path analyses [24]. It pre-sets the dependence relationship between the factors in the
system based on the researcher’s prior knowledge, which can judge the strength of the
relationship between the factors and can fit and judge the overall model. In addition, SEM
has several advantages. For example, the direct or indirect effects of a particular variable
on another variable can be partitioned by SEM, and SEM estimates and reports the total
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path coefficient to present the strengths of these multiple effects [36]. Since the change in
SOS and EOS eventually lead to the change in LOS, this paper only used SEM to explore
the potential influence mechanism of climate and soil factors on LOS in the TRHR.

3. Results
3.1. The Verification of Vegetation Phenological Results

For this study, a regional plant phenological dataset was developed based on data
acquired from 2001 to 2018. Figure 4 shows that the remote sensing monitoring data of
SOS (R2 = 0.84, p < 0.01), EOS (R2 = 0.72, p < 0.01), and LOS (R2 = 0.86, p < 0.01) have strong
similarity with the phenological observation data. Specifically, the times of SOS monitored
by remote sensing and observed by phenological stations are distributed near a straight line
(Y = X). However, the times of EOS and LOS observed by remote sensing and phenological
stations are generally distributed above the straight line (Y = X). This showed that the time
product of SOS is highly consistent with the values observed at phenological stations, but
the time product of EOS is delayed when compared with that of phenological stations; in
addition, the LOS product of remote sensing monitoring is longer than observed at the
phenological station (Figure 4).
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Figure 4. The comparison between remote sensing monitoring data (RSMD) and phenological observation data (POD):
(a) start of the growing season (SOS); (b) end of the growing season (EOS); (c) length of the growing season (LOS).

3.2. Spatiotemporal Pattern of Plant Phenology

During the study period, the spatiotemporal trends and standard deviations of SOS,
EOS, and LOS had a heterogeneous geographical distribution from 2001 to 2018. The
spatial distribution of the multiyear mean SOS primarily occurred between day 100 and
150, and the multiyear average SOS arrived before day 100 in the low-elevation river valley
areas of the Yellow and Lancang river basins and appeared after day 150 in some high-
elevation or high-latitude areas of the Yangtze River Basin (Figure 5a,d). Similarly, the high
value (>16 day/year) of standard deviation for SOS principally occurred in the Lancang
River Basin and the southwestern part of the Yangtze River Basin, with the lowest value
(<8 day/year) in the center of the Yangtze River Basin and the southeastern part of the
Yellow River Basin (Figure 5g). We also found that the Yellow River Basin had the earliest
SOS, and the time is in advance (Figure 5j). Furthermore, the spatial distribution of the
multiyear average EOS was mainly observed from day 265 to 283, the multiyear average
EOS arrived before day 265 in the northeast of the Yellow River Basin, and appeared
after day 280 in the center of the Yangtze River Basin (Figure 5b,e). The high value of the
standard deviation of EOS was mainly in the Yangtze and Lancang river basins (Figure 5h).
In addition, we also compared the temporal trend of EOS in different basins; the earliest
EOS was in the Lancang River Basin and the latest in the Yangtze River Basin (Figure 5k).
Last, the spatial distribution of the multiyear average LOS was mainly between day 120 and
160, while the multiyear average LOS was longer than day 150 in some areas of the Yellow
and Lancang river basins (Figure 5c,f). The high value of the standard deviation of LOS
was mainly distributed in the Lancang and Yangtze river basins (Figure 5i). Furthermore,
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we also found that the Lancang River Basin had the longest LOS, which is becoming longer
over time (Figure 5l).
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frequency distribution of SOS, EOS, and LOS, respectively; (g–i) standard deviation for the SOS, EOS, and LOS, respectively;
(j–l) temporal variation characteristics of vegetation phenology of (A) Yangtze, (B) Yellow, and (C) Lancang river basins in
SOS, EOS, and LOS, respectively. The different letters above the box plots indicate significant differences among different
basins at p < 0.05. The green boxplots indicate the overall distribution characteristics of SOS, EOS, and LOS values in
different basins. The yellow boxplots indicate the overall distribution characteristics of the trend of SOS, EOS, and LOS
values in different basins.

For this study, SOS, EOS, and LOS have different distributions at different elevations,
slopes, and aspects in the THRH (Figure 6). Specifically, the SOS generally showed an
upwards (0.001 day/m, R2 = 0.17, p > 0.01) trend with an increase in elevation (Figure 6a).
This phenomenon indicates that with an increase in elevation, the SOS is delayed. In con-
trast, EOS and LOS decreased (0.002 day/m, R2 = 0.34, p > 0.01 and 0.003 day/m, R2 = 0.84,
p < 0.01, respectively) as elevation increased, which represents that the time of EOS and
the LOS advance and shorten with an increase in elevation, respectively (Figure 6b–c).
Furthermore, SOS and EOS decreased significantly (0.32 day/◦, R2 = 0.93, p < 0.01 and
1 day/◦, R2 = 0.85, p < 0.01, respectively) with an increase in slope (Figure 6d–e). This
indicates that the time of SOS and EOS advance with an increase in slope. However, the
relationship between LOS and slope was the opposite of that between SOS or EOS and
slope. The LOS was prolonged (0.2 day/◦, R2 = 0.94, p < 0.01) with an increase in slope
(Figure 6f). Last, we find the north-facing slopes had the lowest value of SOS but had the
highest value of EOS and LOS. The results showed that the times of SOS, EOS, and LOS
were the earliest, latest, and longest, respectively, on the north slope.
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3.3. Linking Climatic and Soil Factors to Plant Phenology

The correlation coefficients between plant phenology connected to the principal cli-
mate characteristics along with soil physical and chemical factors were significant at
p < 0.01 (Table 1). In the Yangtze River Basin, our results show that the SOS was positively
correlated with monthly mean shortwave radiation (MMR; 0.73**), pH (0.50**), and to-
tal phosphorus (TK) (0.44**) but negatively correlated with monthly mean precipitation
(MMP; −0.68**), available nitrogen (AN; −0.39**), monthly mean relative humidity (MMH;
−0.38**), and monthly mean soil moisture (MMSM; −0.37**). Furthermore, the correlation
coefficients between EOS and MMP, pH, TK, and MMR were −0.45**, 0.40**, 0.41**, and
0.44**. Finally, we found that LOS was significantly negatively correlated with pH (−0.46**)
and TK (−0.37**), but LOS was significantly positively correlated with MMR (0.53**), MMH
(0.52**), and AN (0.38**) during the growing season.

In the Yellow River Basin, significant positive relationships were observed between
SOS and monthly mean temperature (MMT; 0.50**), monthly mean soil temperature (MMST;
0.48**), MMR (0.50**), and MMSM (0.31**). However, the EOS was significantly negatively
correlated with MMSM (−0.39**) and AN (−0.32**) and significantly positively correlated
with pH (0.37**). In addition, we found that LOS was significantly negatively correlated
with MMR (−0.55**), MMT (−0.46**), and MMST (−0.43**).

In the Lancang River Basin, the results indicated that there were significant positive
correlations between the SOS and AK (0.50**), MMT (0.65**), MMST (0.55**), MMR (0.53**),
and MMSM (0.43**). In addition, we found that the EOS was significantly negatively
correlated with MMST (−0.41**), MMT (−0.43**), MMR (−0.36**), and MMP (−0.33**).
Meanwhile, we also found that the correlation coefficients between LOS and MMH, MMT,
MMST, MMR, and AK were 0.41**, −0.69**, −0.65**, −0.58**, and −0.50** (Table 1).
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Table 1. The relationships between plant phenology and the principal climate factors along with soil physical and chemical factors at different stages (SOS, EOS, and LOS) in the Yangtze
River Basin, Yellow River Basin, and Lancang River Basin.

MMST MMH MMT MMP MMSM AN AP TN SOM CEC TP AK POR MMR PH TK BD

SOS a −0.06 ** −0.38 ** −0.13 ** −0.68 ** −0.37 ** −0.39 ** −0.31 ** −0.24 ** −0.22 ** −0.23 ** 0.04 ** 0.09 ** −0.03 * 0.73 ** 0.50 ** 0.44 ** 0.06 **
SOS b 0.48 ** −0.16 ** 0.50 ** −0.04 ** 0.31 ** −0.04 ** 0.10 ** 0.09 ** 0.09 ** 0.12 ** 0.14 ** 0.15 ** −0.19 ** 0.50 ** 0.09 ** 0.10 ** −0.05 **
SOS c 0.55 ** −0.36 ** 0.65 ** 0 0.43 ** 0.31 ** 0.35 ** 0.29 ** 0.23 ** 0.26 ** 0.05 0.50 ** −0.26 ** 0.53 ** −0.09 ** 0.12 ** −0.08 **
EOS a 0.22 ** −0.16 ** 0.10 ** −0.45 ** −0.27 ** −0.27 ** −0.17 ** −0.17 ** −0.16 ** −0.19 ** 0.08 ** 0.05 ** 0.02 0.44 ** 0.40 ** 0.41 ** 0.02
EOS b 0.24 ** −0.23 ** 0.20 ** −0.23 ** −0.39 ** −0.32 ** 0 −0.12 ** −0.07 ** −0.07 ** 0.05 ** 0.04 ** −0.21 ** 0.03 0.37 ** 0.01 −0.06 **
EOS c −0.41 ** 0.08 ** −0.43 ** −0.33 ** −0.22 ** −0.12 ** 0.13 ** 0.01 0.04 0.04 0.09 ** −0.12 ** 0.24 ** −0.36 ** 0.07 ** −0.26 ** −0.18 **
LOS a 0.17 ** 0.52 ** 0.21 ** 0.21 ** −0.02 0.38 ** 0.33 ** 0.24 ** 0.21 ** 0.21 ** −0.01 −0.09 ** 0.06 ** 0.53 ** −0.46 ** −0.37 ** −0.07 **
LOS b −0.43 ** 0.10 ** −0.46 ** 0.02 −0.02 −0.05 ** −0.10 ** −0.13 ** −0.11 ** −0.14 ** −0.13 ** −0.15 ** 0.14 ** −0.55 ** 0.01 −0.10 ** 0.04 **
LOS c −0.65 ** 0.41 ** −0.69 ** −0.08 ** −0.16 ** −0.32 ** −0.33 ** −0.28 ** −0.22 ** −0.25 ** −0.03 −0.50 ** 0.28 ** −0.58 ** 0.10 ** −0.15 ** 0.06 *

MMR, MMP, MMT, MMH, MMSM, and MMST indicate monthly mean shortwave radiation, precipitation, temperature, relative humidity, soil moisture, and soil temperature, respectively. AK, AN, AP, BD, CEC,
pH, POR, SOM, TK, TN, and TP represent available K, alkali-hydrolysable N, available P, bulk density, cation exchange capacity, pH (H2O), porosity, soil organic matter, total K, total N, and total P, respectively.
** and * indicate significance coefficients of less than p < 0.01 and p < 0.05, respectively. a,b and c represent the Yangtze River Basin, Yellow River Basin, and Lancang River Basin, respectively.
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The mechanisms involved in patterns in the length of the plant growing season in
different basins were explored using SEM. In general, the effect of soil factors on LOS is
greater than that of climate factors in the Yangtze River Basin. Specifically, AP, pH, and
TN had a significant effect on the LOS (p < 0.01), with scores of 0.30, −0.65, and −0.77,
respectively. However, the impact scores of MMR and MMH on LOS were only 0.35 and
0.33 (Figure 7a). Path analyses identified that climate factors, as a key functional indicator
of the LOS in the Yellow River Basin, had either direct or indirect effects via edaphic factors.
Specifically, the MMR (scored at −0.55), MMT (scored at −0.30), and MMST (scored at 0.54)
had significant effects on the LOS (Figure 7b). Furthermore, in the Lancang River Basin, the
effects of each variable on LOS were different (ranging from −0.52 to 0.25), which suggests
that the LOS might be co-determined by both the soil and climatic factors (Figure 7c). This
assumption was confirmed in that soil factors were significantly affected by climatic factors.
Specifically, the AK (scored at 0.41), AP (scored at 0.27), and AN (scored at 0.32) were
significantly (p < 0.01) influenced by MMT. Furthermore, AK and AP had a significant
interaction (scored at 0.58).

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 7. Mechanisms involved in the patterns of the length of the plant growing season in different 
basins. Structural equation modeling (SEM) was used to analyze the total effects of variables. The 
black and red solid lines represent positive and negative standardized SEM coefficients, respec-
tively, while the line thickness indicates the magnitude of these coefficients for the Yangtze (a), Yel-
low (b), and Lancang (c) river basins, respectively. MMR, MMT, MMH, and MMST represent 
monthly mean shortwave radiation, temperature, relative humidity, and soil temperature, respec-
tively. AN, AP, pH, TN, BD, POR, and AK represent alkali-hydrolysable N, available P, pH (H2O), 
total N, bulk density, porosity, and available K, respectively. 

4. Discussion 
4.1. Spatial–Temporal Patterns of Plant Phenology 

The time of the SOS experienced a significant downtrend (slope < 0), but the LOS in-
creased over time (slope > 0) during 2001–2018 in the Yellow River Basin (Figure 5j,l). The 
research showed that with the increase of annual mean precipitation, temperature, rela-
tive humidity, shortwave radiation, soil temperature, and soil moisture in the Yellow 
River Basin during the SOS and LOS period, the time of SOS and LOS became earlier and 
longer (Figure S3 and S5). The favorable water and heat environment provided important 
resources for vegetative growth [37,38]. Water supply determines whether the photosyn-
thesis occurs normally with an adequate CO2 concentration and sufficient light [24,39]. 
Meanwhile, water is also an indispensable intermediary used to ensure nutrient substance 
transport [24,40]. Therefore, the increased humidity, precipitation, and soil moisture 
played a crucial role in the advance of the timing of the SOS and the prolonged nature of 
the LOS. In addition to water, temperature is also an indispensable factor in vegetative 
growth. An increase in temperature could facilitate vegetative growth if plants do not en-
counter water limitation [4,40]. Furthermore, climate warming can stimulate the enzy-
matic activities involved in photosynthesis [24,41], accelerate the mineralization and de-
composition of organic matter [42], and extend the length of the vegetative growing sea-
son [7,43]. In general, the improvement of water and heat conditions visibly promoted the 
growth of vegetation in the TRHR. 

The multi-year (2001–2018) average time of the SOS, EOS, and LOS in the TRHR pre-
sented a discrepant geographical pattern. In general, the time of the plant SOS was earliest 
in the Lancang and western Yellow river basins, while the time of the plant EOS was latest 
in the middle of the Yangtze River Basin. The duration of the vegetation growing season 
was longest in the Lancang and western Yellow river basins (Figure 5a–c). This phenom-
enon is closely related to the distribution of climate in the TRHR. The TRHR's climate is 
dominated by the East Asian monsoon, because the Himalayan Mountain Range obstructs 

Figure 7. Mechanisms involved in the patterns of the length of the plant growing season in different
basins. Structural equation modeling (SEM) was used to analyze the total effects of variables. The
black and red solid lines represent positive and negative standardized SEM coefficients, respectively,
while the line thickness indicates the magnitude of these coefficients for the Yangtze (a), Yellow (b),
and Lancang (c) river basins, respectively. MMR, MMT, MMH, and MMST represent monthly mean
shortwave radiation, temperature, relative humidity, and soil temperature, respectively. AN, AP, pH,
TN, BD, POR, and AK represent alkali-hydrolysable N, available P, pH (H2O), total N, bulk density,
porosity, and available K, respectively.

4. Discussion
4.1. Spatial–Temporal Patterns of Plant Phenology

The time of the SOS experienced a significant downtrend (slope < 0), but the LOS
increased over time (slope > 0) during 2001–2018 in the Yellow River Basin (Figure 5j,l).
The research showed that with the increase of annual mean precipitation, temperature,
relative humidity, shortwave radiation, soil temperature, and soil moisture in the Yellow
River Basin during the SOS and LOS period, the time of SOS and LOS became earlier
and longer (Figures S3 and S5). The favorable water and heat environment provided
important resources for vegetative growth [37,38]. Water supply determines whether
the photosynthesis occurs normally with an adequate CO2 concentration and sufficient
light [24,39]. Meanwhile, water is also an indispensable intermediary used to ensure
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nutrient substance transport [24,40]. Therefore, the increased humidity, precipitation, and
soil moisture played a crucial role in the advance of the timing of the SOS and the prolonged
nature of the LOS. In addition to water, temperature is also an indispensable factor in
vegetative growth. An increase in temperature could facilitate vegetative growth if plants
do not encounter water limitation [4,40]. Furthermore, climate warming can stimulate the
enzymatic activities involved in photosynthesis [24,41], accelerate the mineralization and
decomposition of organic matter [42], and extend the length of the vegetative growing
season [7,43]. In general, the improvement of water and heat conditions visibly promoted
the growth of vegetation in the TRHR.

The multi-year (2001–2018) average time of the SOS, EOS, and LOS in the TRHR
presented a discrepant geographical pattern. In general, the time of the plant SOS was
earliest in the Lancang and western Yellow river basins, while the time of the plant EOS
was latest in the middle of the Yangtze River Basin. The duration of the vegetation growing
season was longest in the Lancang and western Yellow river basins (Figure 5a–c). This
phenomenon is closely related to the distribution of climate in the TRHR. The TRHR’s
climate is dominated by the East Asian monsoon, because the Himalayan Mountain Range
obstructs the Indian monsoon [44,45] and causes a gradual reduction in precipitation,
relative humidity, and soil moisture from southeast to northwest (Figures S2–S5). Likewise,
vegetative growth is easily affected by climate change in the TRHR as also supported
by previous studies [46,47]. Furthermore, the time of the plant SOS was delayed with
an increase in elevation, but the times of the EOS or LOS were advanced or shortened,
respectively, with an increase in elevation (Figure 6a–c). Possible reasons include the
following: the ecosystems of high elevation areas are fragile, and the vegetative growth
is vulnerable to extreme weather, such as extreme low temperature and frost. Another
possibility is that the perennial snowfall occurring in high elevation regions causes low
temperatures, which weaken the activity of soil microorganisms [14]. In contrast, with an
increase in slope, the time of the SOS and EOS are in advance, while the LOS is prolonged
(Figure 6d–f). The main reason for this result is that the areas with high slopes were mainly
concentrated in the Lancang and the south part of the Yellow river basins, which have
lower elevations (Figure S1). This provides reliable water and temperatures to guarantee
the normal operation of vegetative photosynthesis. Finally, the vegetation of shady slopes
started growing earlier in the growing season, ended later, and so had the longest growing
season (Figure 6g–i), mainly due to the strong illumination and high temperature that
accelerated soil organic matter mineralization and caused sunny slopes to have less soil
moisture [48]. However, the shady slopes have soft solar radiation, moist soil, less moisture
evaporation, and higher soil fertility [49,50].

4.2. The Response of the Plant Phenology to Climate Change

Our results illustrate that the variations in soil resources (e.g., pH and soil total N)
that support vegetative growth, together with the climatic conditions that were suitable for
vegetative growth, co-explained the phenological differences in plants from different basins.
Specifically, the Yangtze River Basin is affected by the East Asian monsoon and elevation
(Figure S1a), insufficient water supply, and relatively low temperatures, and low levels
of soil nutrients constrained the growth of vegetation at the start of the growing season
(Figures S2–S3). The air and soil temperatures are relatively low with less precipitation
and soil moisture from April to May, which is not enough to support the transport of
nutrients in plants, soil nutrient absorption by roots, and photosynthesis [24,51]. With the
increased temperature, winter snow, permafrost, and glaciers have begun to melt slowly,
and mineralization and decomposition of organic matter are accelerated [52,53] so that
warmer temperatures provide plants with earlier opportunities to germinate [32]. However,
the Yellow and Lancang river basins have higher temperatures and more shortwave
radiation and precipitation than other areas owing to the lower elevation (Figures S1–S5).
The increase in precipitation significantly increased soil carbon and N content, making
it easier for plants to absorb nutrients owing to an increase in leaf stomatal conductance
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and photosynthesis [24,54]. This may explain why temperature is more important for seed
germination than water at the start of the growing season in the Yangtze River Basin, while
water and heat are equally important for seed germination in the Yellow and Lancang river
basins. In addition, the Yangtze River Basin lies in a high elevation area, which has thin
air, strong solar radiation, and a long sunshine season (Figure S3). At high elevations, the
decomposition of soil litter slows, which promotes the accumulation of organic matter due
to the low temperatures caused by snow cover, which, in turn, slows the activity of soil
microorganisms [14]. Thus, the growing season ends relatively late in the Yangtze River
Basin. An interesting question arises: why were the soil factors having a greater impact
on LOS in the Yangtze River Basin when compared with the Yellow and Lancang river
basins (Table 1 and Figure 7)? Here, we propose one explanation. The precipitation, air
temperature, relative humidity, soil moisture, and soil temperature showed a decreasing
trend from southeast (the Yellow River Basin) to northwest (the Yangtze River Basin) in
the TRHR because of the influence of the monsoon and elevation (Figures S2–S5). This
situation led to low air temperature and less precipitation in the Yangtze River Basin, which
does not provide enough energy for the growth of plants. At this time, the melting of
permafrost and glaciers and the mineralization of soil organic matter provide energy for
plant growth. However, the Yellow and the Lancang river basins have high air temperature,
soil temperature, precipitation, and soil moisture, which can provide sufficient energy for
plant growth.

4.3. Limitations of the Current Study

Despite the achievements in this study, large uncertainties still exist. In addition to
NDVI, multiple vegetation indices can be used to reflect vegetation dynamics, such as
EVI and LAI [1,34]. Note that the calculated plant phenology results may be vary based
on the differences in resolution and quality of datasets using different vegetation indices.
Furthermore, the present smoothing methods of remote sensing time series data have
great differences in the model structure, which may result in great differences among the
extracted plant phenology results [55,56]. Meanwhile, although the smoothing method used
for the remote sensing time series is the same, different smoothing parameters also cause
different results. Although the guidelines for some smoothing methods suggested using
default parameter values when they were proposed, the best parameter values may vary
because of the different growth trajectories of vegetation at specific sites, which lead to a
difference in plant phenology in various regions and with different vegetation types [57,58].
Moreover, many methods can be used to extract plant phenological information, and they
all have a certain level of applicability. Therefore, different methods may lead to different
conclusions regarding the same question [56]. As mentioned above, it is necessary to further
check whether the plant phenological results calculated from different datasets, smoothing
methods of remote sensing time series, smoothing parameters, and phenology extraction
methods provide the same or similar results and to improve the credibility of the results.
Furthermore, there are many factors that affect plant phenology. Some changes in phenology
are caused by climatic and soil factors; other decisive factors have shown effects on plant
phenology, such as flash floods and extreme drought. Hence, more attention should be paid
to the relationship between plant phenology and natural disasters in future studies.

5. Conclusions

In the present study, we calculated plant phenology information in the TRHR based
on the MOD09A1 dataset using the method of HANTS and the relative and absolute rates
of change on Google Earth Engine. Meanwhile, the extracted plant phenology results
were verified using plant phenology station data. Then, we explored the spatiotemporal
patterns of plant phenology based on linear regression and standard deviation analyses.
Finally, the potential influence mechanism of climatic and soil factors on phenology was
analyzed using Pearson correlation coefficients and an SEM model. The verification of
plant phenological results shows that our results were well-correlated with observational
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data acquired by phenological stations; the determination coefficients of SOS, EOS, and
LOS stages were 0.84, 0.72, and 0.86, respectively. The temporal variation of the SOS and
LOS indicated that the SOS advanced while the LOS extended. As for spatial patterns, the
SOS was the earliest and the LOS was the longest in the Lancang River Basin, while the
EOS was the latest in the Yangtze River Basin. Furthermore, the spatial distributions of
SOS, EOS, and LOS have strong spatial heterogeneity at different elevations, slopes, and
aspects. The potential influence mechanism of climatic and soil factors on the phenology
indicated that plant phenology in the Yangtze River Basin is mainly affected by soil factors,
while that in the Yellow and Lancang river basins is mainly impacted by climatic factors.
The results of this study revealed the spatiotemporal patterns of plant phenology of the
TRHR and emphasize the important role of soil factors, precipitation, and temperature
in controlling plant phenological dynamics. These findings might help to reveal the
mechanisms of potential impacts on plant phenology in alpine wetland ecosystems and
provide a theoretical basis for ecosystem management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13132528/s1, Figure S1: Topographic features of Three-River Headwaters region: (a) el-
evation; (b) slope; (c) aspect; and (d) topographic relief, Figure S2. The monthly means for (a) soil
temperature, (b) soil moisture, (c) relative humidity, (d) temperature, (e) precipitation, (f) shortwave
radiation in the Yangtze (A), Yellow (B), and Lancang (C) river basins in different periods. Horizontal
lines in box plots denote the 95th, 75th, 50th, 25th, and 5th percentiles from top to bottom; the
rectangles represent the average values, Figure S3. Spatial pattern of (a, d, g, j, m, and p), standard
deviation (b, e, h, k, n, and q) and temporal trend (c, f, i, l, o, and r) for the monthly mean temperature,
precipitation, relative humidity, shortwave radiation, soil temperature, and soil moisture at the start
of the growing season, Figure S4. Spatial pattern of (a, d, g, j, m, and p), standard deviation (b, e, h, k,
n, and q), and temporal trend (c, f, i, l, o, and r) for the monthly mean temperature, precipitation,
relative humidity, shortwave radiation, soil temperature, and soil moisture at the end of the growing
season, Figure S5. Spatial pattern (a, d, g, j, m, and p), standard deviation (b, e, h, k, n, and q), and
temporal trend (c, f, i, l, o, and r) for the monthly mean temperature, precipitation, relative humidity,
shortwave radiation, soil temperature, and soil moisture in length of the growing season.
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