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Abstract: Aerial imaging technologies have been widely applied in agricultural plant remote sensing.
However, an as yet unexplored challenge with field imaging is that the environmental conditions,
such as sun angle, cloud coverage, temperature, and so on, can significantly alter plant appearance
and thus affect the imaging sensor’s accuracy toward extracting plant feature measurements. These
image alterations result from the complicated interaction between the real-time environments and
plants. Analysis of these impacts requires continuous monitoring of the changes through various
environmental conditions, which has been difficult with current aerial remote sensing systems.
This paper aimed to propose a modeling method to comprehensively understand and model the
environmental influences on hyperspectral imaging data. In 2019, a fixed hyperspectral imaging
gantry was constructed in Purdue University’s research farm, and over 8000 repetitive images of
the same corn field were taken with a 2.5 min interval for 31 days. Time-tagged local environment
data, including solar zenith angle, solar irradiation, temperature, wind speed, and so on, were also
recorded during the imaging time. The images were processed for phenotyping data, and the time
series decomposition method was applied to extract the phenotyping data variation caused by the
changing environments. An artificial neural network (ANN) was then built to model the relationship
between the phenotyping data variation and environmental changes. The ANN model was able
to accurately predict the environmental effects in remote sensing results, and thus could be used
to effectively eliminate the environment-induced variation in the phenotyping features. The test
of the normalized difference vegetation index (NDVI) calculated from the hyperspectral images
showed that variance in NDVI was reduced by 79%. A similar performance was confirmed with the
relative water content (RWC) predictions. Therefore, this modeling method shows great potential for
application in aerial remote sensing applications in agriculture, to significantly improve the imaging
quality by effectively eliminating the effects from the changing environmental conditions.

Keywords: aerial hyperspectral images; plant phenotyping features; environment variation; time
series decomposition; artificial neural networks

1. Introduction

Recent years have seen the rapid growth of remote sensing applications in the field of
agriculture [1–3]. The advent and advances of low-weight and low-cost imaging platforms,
and smart imaging devices resulted in the improved capability of the agricultural data
collection. With various sensors such as red-green-blue (RGB), hyperspectral, and thermal
cameras carried by these platforms, plant phenotypic properties are captured in images
that largely facilitate the process of crop analyses, such as accessing plant biomass, nutrient
level, diseases stresses, etc. [1,4–10]. However, the changing environmental conditions have
been reported to significantly impact the imaging results [11]. The intensity of remotely
sensed images changes greatly based on when and where the image was captured [12–14].
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One source of the variation arises from the complicated interactions between the camera’s
sensitivity, camera’s view angle, plant canopy geometry, solar zenith angle, solar azimuth
angle, and shadows [15–18]. Another source of variation results from plants’ endogenous
stress responses to the environmental conditions, with complicated interactions between
their genetic backgrounds, external environments, and treatments [15,19]. All of these,
collectively regarded as the environment-induced variation in phenotyping features, affect
plants’ final reflectance characteristics.

To reduce the impacts from environment variation, a relatively simple method involves
standardizing or fixing the sampling time of the day and restricting imaging to clear
conditions without cloud coverage [3,20,21]. Bellvert and Girona [22] suggested that the
field phenotypic data should be collected around noon under clear weather conditions.
Similarly, unmanned aerial vehicles (UAV) imaging is preferably performed at midday
to ensure consistent data collection and analysis [22]. These restrictions could reduce the
environmental impacts on the data, but they also significantly inhibit the imaging window
and flexibilities. Practically speaking, performing the imaging at a fixed time is difficult, as
many procedures, such as equipment setup, need to be completed before imaging and the
field environment is naturally uncontrollable and unpredictable. These challenges often
result in the collection of remote sensing data at different times of the day under varying
environmental conditions. Therefore, the correction of the impact of different imaging
time and varying environmental conditions to improve the quality of agricultural remote
sensing is critically important to study.

Most aerial remote sensing systems require imaging white reference panels beside
the target plants so that the sensing data are calibrated against reference values to remove
the illumination variation between images [23]. White reference calibration is effective in
compensating different lighting conditions, but these reference images do not precisely
reflect the bidirectional reflectance (BRDF) on the leaf surface. Variations from the changes
in leaf angles and the plant’s endogenous responses remain. An existing calibration method,
the combined PROSPECT leaf optical properties model and SAIL canopy bidirectional
reflectance model (PROSAIL) [24], enables the prediction of the plant canopy spectral
reflectance changes caused by the changing environmental conditions [17,24]. However,
the model usually does not meet the accuracy requirement in plant phenotyping remote
sensing [25]. Furthermore, the PROSAIL prediction theoretically requires three input
variables, including leaf structure parameter, photosynthetic pigment concertation, and
water content, which are difficult and costly to measure in remote sensing practices [26].

Another potential solution arises from the use of different regression methods to
predict and compensate for the environmental effects. For example, a correction model
with the polynomial regression method was developed to predict the crop reflectance as a
function of solar zenith angle, time of day, and instantaneous clearness index (ICI). The
capability of the model in reducing the diurnal variation with green normalized difference
vegetation index (GNDVI) and some individual bands [27] was tested. However, that
model only calibrates the imaging time and ambient lighting factors, while many more
environmental condition changes, such as temperature and wind speed, also impact the
imaging result. Moreover, the plant data was collected on a small portion of the leaf
by a handheld radiometer with four bands, which may not properly simulate airborne
remote sensing platforms carrying hyperspectral or multispectral cameras. The simple
polynomial regression model could successfully describe the changes in data over three
consecutive days. However, it may fail to represent the general pattern on other days
when the plants are at different stages of their growth cycle. Therefore, a comprehensive
environmental impact analysis for general aerial remote sensing images is still critically
needed. This analysis requires the continuous collection of crop images at various plant
stages through different environmental conditions, a task that has proven challenging with
existing airborne remote sensing systems.

On the modeling method side, the artificial neural network (ANN) models, as opposed
to conventional regression models, has received considerable attention because of its ability



Remote Sens. 2021, 13, 2520 3 of 17

to learn the features directly from the raw data without prior knowledge and human effort
in feature design [28]. Due to their better data utilization capacity, ANN models have
outperformed conventional methods for solving regression problems in many ways [29].
For example, researchers have achieved high accuracies and efficiencies on modeling
multivariable and time-series datasets [30–32]. Given the previous successful applications,
an ANN model can prove a reliable and efficient alternative for modeling the environment-
induced effects in remote sensing data.

This article introduced the research work of correcting the aerial remote sensing results
by modeling and analyzing the effects from the changing field environmental conditions,
such as sun radiation, solar zenith angle, humidity, temperature, and wind speed. There
are three major objectives in the work of this article:

1. Collect time-series hyperspectral images of two varieties of corn plants with three
nitrogen treatments from V4 to R1 every 2.5 min throughout the whole growing
season, along with synchronized environmental condition data.

2. Build a prediction model for the environment-induced variation in each of the mea-
sured phenotyping features (e.g., NDVI and RWC) with time-series decomposition
and ANN method.

3. Evaluate the performance of the trained ANN models and their effects in removing
the environmental noise by comparing the variances in the phenotyping features (e.g.,
NDVI and RWC) before and after the model correction.

2. Materials and Methods
2.1. Experiment Design and Data Collection

To analyze the environmentally induced variation in phenotyping data, hyperspectral
images of the crops and environmental data were collected from a corn field in the Pur-
due University Agronomy Center for Research and Education (ACRE). Two genotypes
(B73 × Mo17 and P1105AM) of corn (Zea mays L.) were grown in the summer of 2019. Each
genotype was treated with three different nitrogen (N) solutions: high N with 56 kg/ha
(32 mL, 28-0-0 in 1L water), medium N with 28 kg/ha (16 mL, 28-0-0 in 1L water), and
low N with 0 kg/ha (water). In total, six experimental plots existed, with one of two
corn genotypes treated with one of three nitrogen levels; each plot had around 25 plant
replicates. The abbreviation for each experimental plot is listed in Table 1.

Table 1. Abbreviations of plant plots with different nitrogen treatments and genotypes.

Plant Groups Genotypes N Treatments Abbrev

1 B73 × Mo17 (Genotype 1) High G1H
2 B73 × Mo17 (Genotype 1) Medium G1M
3 B73 × Mo17(Genotype 1) Low G1L
4 P1105AM (Genotype 2) High G2H
5 P1105AM (Genotype 2) Medium G2M
6 P1105AM (Genotype 2) Low G2L

1–6 combined All combined All combined All

Hyperspectral images of corn plants were continuously acquired using the Purdue
field VNIR hyperspectral imaging gantry system [33]. To capture the instant environmental
effects on the images, imaging frequency was set at 2.5 min. Starting from the vegetative
growth stage, V4, the continuous imaging occurred for 31 consecutive days until the plants
reached the reproductive stage, R1 (Figure 1). Every day, imaging started at 8:00 am
and ended at 7:30 pm. In total, we collected 8631 hyperspectral images of the same crop
field (Table 2) for this study. After data collection, the hyperspectral images were further
processed to measure the plant phenotyping features of interest, including the reflectance
spectrum, NDVI, and predicted RWC for each experimental plot. The reflectance spec-
trum was obtained from the averaged data of plant tissues using the image segmentation
algorithm highlighted in [34]. The NDVI was calculated from the spectrum by following



Remote Sens. 2021, 13, 2520 4 of 17

Equation (1) [35,36]. The plant’s RWC was predicted with the pretrained partial least
squares regression (PLSR) model [33].

NDVI =
R800nm − R650nm

R800nm + R650nm
(1)
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Figure 1. Field VNIR hyperspectral platform at Purdue University. It consists of a VNIR hyperspectral
imaging sensor (MSV-101-W, Middleton Spectral Vision, Middleton, WI, USA) and a local weather
station (Ambient Weather, Chandler, AZ, USA). The gantry platform is seven meters high and capable
of scanning all or part of a 50-by-5 m strip field under a wide range of weather conditions.

Table 2. Hyperspectral images and environmental data collection.

Data Collection Sampling Days # Samples Variables

Hyperspectral images 31 8631 VNIR Spectra: 376–1044 nm
with 1.22 nm interval.

Environmental data 31 8631

Air temperature (◦C)
Sun radiation (W/m2)

Wind speed (m/s)
Solar zenith angle (degree)

Humidity (%)
Diurnal time (min)

In addition to the hyperspectral imaging data, a local miniature weather station
(Ambient Weather, Chandler, AZ, USA) was installed within the experimental plots to
collect real-time time-tagged environmental data. The environmental data included air
temperature (°C), solar radiation (W/m2), wind speed (m/s), sun zenith angle (degree),
humidity (%), and diurnal time (min) (Table 2).

2.2. Time Series Decomposition for Environment-Induced Variation

The phenotyping data from 31 days were collected to provide enough images under
various environmental conditions. However, besides the instant environmental effects, the
plant growth change and other day-by-day gradual weather changes also contributed to
the variation among the images. These different components of variation need to be clearly
separated before we can focus on modeling the instant environmental effects. As most of the
field environment factors fluctuate over the course of a single day [37,38], we hypothesized
that the higher frequency environment-induced variation could be identified by removing
the lower frequency variation as the day-to-day trend. Thus, a time series decomposition
method was applied, decomposing the original time-series phenotyping signal into two
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major parts: day-to-day trend (Tt) and daily instant changes (Dt) (Equation (2)). More
specifically, Tt is calculated with the locally estimated scatterplot smoothing (LOESS)
method [39]. By fitting a non-parametric regression curve on the scattered plot of the data,
the day-to-day changing trend can be extracted from the raw signal [40]. This trend mostly
reflects the changes in the plant growth stage and general weather conditions over the
31 days of imaging. The daily instant changes (Dt) were calculated by subtracting the
day-to-day trend (Tt) from the raw signal. Dt contains the higher frequency variation
components mostly caused by the plant’s circadian behavior and environmental condition
changes such as sun angle, solar radiation, and temperature changes during the day. In
this study, Dt was used as the output of the proposed model.

Raw time series measurements = Tt + Dt (2)

2.3. Environmental Data Transformation and Selection

To generate more discriminatory power in higher-dimensional feature spaces besides
the original environmental variables (temperature, solar zenith angle, wind speed, etc.)
for improved model accuracy, a feature transformation was performed by taking the
square and square root of the measurements of the original environment factors [41].
These new non-linear variables have proven more effective in modeling environment
variation [27]. Finally, the transformed variables were combined with the original variables
for further processing.

After transformation, the features were selected to remove the irrelevant input of some
environmental variables to reduce overfitting. This also lowered the difficulty of future
applications, with fewer measurements required. A single-factor correlation analysis was
performed. Each of the original or transformed environment variables was fitted with the
calculated environment-induced variation in phenotyping data (daily instant changes Dt in
Equation (2)) in a linear regression model. The adjusted R2, which indicates the relevance
of each feature to the estimated environmental variation, was calculated. A higher adjusted
R2 meant a variable was more relevant [42]. By comparing the adjusted R2 of each variable,
we determined the final list of input environmental variables for the model.

2.4. Data Quality Check

Training data quality is critically important for a supervised machine learning model.
The data quality was checked before training the model, and the outlier data was re-
moved [43]. For each phenotyping feature (NDVI and predicted RWC, etc.), the daily
measurements between the upper inner fence (Q3+1.5IQR) and lower inner fence (Q1-
1.5IQR) were kept [43]. IQR is the interquartile range, which equals the difference between
the 75th (Q3) and 25th (Q1) percentiles. Meanwhile, image data before 10:00 am and after
5:30 pm was also removed, as it demonstrated extreme variance and noise [33]. Using the
NDVI as an example, we employed the training data sizes shown in Table 3 to train the
ANN model.

Table 3. Data pool after data quality check.

Datasets Number of Samples before
the Quality Check

Number of Samples after the
Quality Check

G1H 8631 5070
G1M 8631 5092
G1L 8631 5083
G2H 8631 5108
G2M 8631 5084
G2L 8631 5093
All 51,789 30,530
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2.5. Artificial Neural Network (ANN) Model
2.5.1. Architecture

The architecture of the proposed model is based on a feed-forward multi-layer percep-
tron (MLP) network, a class of ANN models (Figure 2). Due to their adjustable architecture,
MLP models are particularly flexible. This flexibility increases the suitability of MLP for
regression prediction problems where a real-valued quantity is predicted, given a set of
inputs such as time-series data [44]. In this study, after some speed-accuracy tradeoff
pretests on model performance, the proposed ANN architecture was configured with a
four-layer model containing an input layer, two hidden layers, and an output layer. After
each hidden layer, the Leaky ReLU activation was performed to add non-linear properties
to the function [45]. The selected environmental variables served as input for the model,
whereas the Dt environment-induced variation of selected phenotyping features was the
output. To accelerate learning and lead to a faster convergence, both input and output
data were normalized for modeling purposes [46], while the final prediction results were
denormalized back to the original scale of the phenotyping feature.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 17 
 

 

Table 3. Data pool after data quality check. 

Datasets 
Number of Samples before 

the Quality Check 
Number of Samples after 

the Quality Check 
G1H 8631 5070 
G1M 8631 5092 
G1L 8631 5083 
G2H 8631 5108 
G2M 8631 5084 
G2L 8631 5093 
All 51,789 30,530 

2.5. Artificial Neural Network (ANN) Model 
2.5.1. Architecture 

The architecture of the proposed model is based on a feed-forward multi-layer per-
ceptron (MLP) network, a class of ANN models (Figure 2). Due to their adjustable archi-
tecture, MLP models are particularly flexible. This flexibility increases the suitability of 
MLP for regression prediction problems where a real-valued quantity is predicted, given 
a set of inputs such as time-series data [44]. In this study, after some speed-accuracy 
tradeoff pretests on model performance, the proposed ANN architecture was configured 
with a four-layer model containing an input layer, two hidden layers, and an output layer. 
After each hidden layer, the Leaky ReLU activation was performed to add non-linear 
properties to the function [45]. The selected environmental variables served as input for 
the model, whereas the ܦ௧ environment-induced variation of selected phenotyping fea-
tures was the output. To accelerate learning and lead to a faster convergence, both input 
and output data were normalized for modeling purposes [46], while the final prediction 
results were denormalized back to the original scale of the phenotyping feature. 

 
Figure 2. The ANN architecture: Input layer (15 neurons); Hidden layer 1 (100 neurons, followed with Leaky ReLU); 
Hidden layer 2 (1000 neurons, followed with Leaky ReLU); Output layer (1 neuron). 

2.5.2. Training and Optimization   
To train the network with minimum overfitting, the training process followed a five-

fold cross-validation scenario. We randomly divided the whole dataset into five roughly 
equal subsets. In the first iteration, the first subset was used to test the model and the rest 
aided in training the model. This process was repeated until each subset has been used as 

Figure 2. The ANN architecture: Input layer (15 neurons); Hidden layer 1 (100 neurons, followed with Leaky ReLU);
Hidden layer 2 (1000 neurons, followed with Leaky ReLU); Output layer (1 neuron).

2.5.2. Training and Optimization

To train the network with minimum overfitting, the training process followed a five-
fold cross-validation scenario. We randomly divided the whole dataset into five roughly
equal subsets. In the first iteration, the first subset was used to test the model and the rest
aided in training the model. This process was repeated until each subset has been used
as the testing set. During training, the loss function was Mean Square Error (MSE). The
network was initialized with the Kaiming weights [47]. All the ANN models were trained
using the Adam optimizer [48].

The accuracy of the model was optimized by adjusting the learning rate, batch size,
and the number of epochs. The learning rate controls the rate or speed at which the model
learns [49]. The batch size establishes the accuracy of the error gradient estimate when
training neural networks [50,51]. The number of epochs impacts the ability of the model to
be generalized by determining how many times the model trains on the same data. Finally,
by comparing the accuracy (R2 and RMSE) of models with different combinations of the
learning rate, batch size, and number of epochs, the model parameters with a batch size of
600 for 120 epochs with learning rate at 1e-3 were chosen for this study.
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2.6. Performance Evaluation
2.6.1. Evaluation Metrics

The performance of all the developed models was evaluated and compared with the
coefficient of determination (R2) and root mean square error (RMSE) between the prediction
results and the original measurements. Meanwhile, we also compared the daily variances
of the selected phenotyping features (e.g., NDVI) before and after the model correction. A
two-sample t-test was performed to check if daily variance in features fell significantly.

2.6.2. Multi-Model Comparison Analysis across Genotypes and Nitrogen Treatments

The impacts of nitrogen treatments and genotypes on the ANN modeling were also
investigated to determine whether a separate ANN model was needed for each case or
if one general ANN model could fit the different treatments and genotypes. The ANN
model of each experimental plot was trained separately (Table 3) and was tested on the
other treatments and genotypes. We also built a general ANN model containing the entire
sample data to provide a unified and general “all-in-one” correction approach. With the
group-to-group cross-validation on each of the datasets, the R2 and RMSE of each model’s
performance in the other datasets were examined to evaluate the generalization of models
across genotypes and nitrogen treatments. For example, if the ANN model (ALL) resulted
in similar outcomes as the individual plot models (G1H, G1M, G1L, G2H, G2M, G2L) for
each plant plot, this unified model would be adopted. Otherwise, different models should
be adopted separately for each different case. The aim was to find the most appropriate
correction solution as the best balance between ease of use and accuracy.

2.6.3. Phenotyping Features for Testing the Model and Workflow

To demonstrate the detailed modeling procedures and performance evaluation, NDVI
was chosen as the first example as it represents one of the most common plant features in
remote sensing [52]. We also then tested the same ANN architecture and workflow on the
RWC to validate the generalization of the proposed method.

2.7. Software and Computation

All the imaging processing work was implemented with Matlab R2018a software [53].
The modeling work was performed in the Python version 3.7.2 software environment [54].
The ANN model was implemented in PyTorch 0.4.1 [55]. The time-series data was analyzed
and manipulated using Pandas [56] and Numpy [57]. The figures were drawn with
Seaborn [58] and Matplotlib [59]. The Matlab and Python computations were all executed
on a ThinkPad workstation P300 (Lenovo PC international, Morrisville, Morrisville, NC,
USA) equipped with 16-gigabytes (GB) of random-access memory (RAM), a 3.70 GHz
Intel® Xeon™ E1270 processor, and Nvidia GTX 1070 GPU.

3. Results
3.1. Time Series Decomposition Result

The time-series data of raw NDVI was successfully decomposed into the day-to-day
trend (Tt) and daily instant changes (Dt) (Figure 3). The raw NDVI plot (row 1 in Figure 3)
captured the variation in NDVI over the daytime period, with gaps indicating the time
between 5:30 in the afternoon until 10:00 next day without imaging data. The raw NDVI
plot showed a clear and repetitive V-shaped pattern for each day, which was caused by
environment variation during imaging. The day-to-day trend, Tt (row 2 in Figure 3),
represented the changes of plant growth stage and plant health conditions. As plants
mature, the NDVI was expected to increase until the reproductive stage. Meanwhile, the
two big dips along the Tt curve precisely captured the impacts from two severe temperature
drops in the West Lafayette area. This kind of long-term environmental impact was not
included in the proposed analysis.
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Figure 3. The NDVI of the sample dataset (G1H) from the V4 stage to the R1 stage. The raw NDVI plot was decomposed
into the day-to-day trend (Tt) and the periodic change (Dt). The red boxes are the days with incomplete data measurements
due to the extreme weather conditions, which are DAP 36, 37, 58, 59, and 60.

On the other hand, the daily instant changes (Dt) (row 3 in Figure 3) showed clear
periodical changes with V shapes. Due to the extreme weather conditions, parts of the data
were missing on DAP 36, 37, 58, 59, and 60. Overall, Dt remained substantially consistent
through 31 days, while amplitude and minor skewness differences existed among the
Dt from different imaging days. For example, the Dt of DAP 42 demonstrates a smaller
amplitude than that of DAP 56. These differences were caused by different environmental
conditions, which would be addressed by the environmental correction model in this study.

3.2. Environmental Feature Selection and Range

The results of the single-factor correlation analysis for NDVI are shown in Figure 4.
The environmental variables were all correlated with the environment-induced variation
in NDVI, except for humidity and its derivatives. The adjusted R2 values for humidity
were almost 0, indicating no correlation found between humidity and NDVI changes. This
confirmed the findings from the previous literature that while plant-sensing data were
strongly impacted by environment factors such as air temperature, solar radiation, sun
zenith angle, and diurnal time [17,27,60], humidity was rarely reported to demonstrate a
similar impact. Thus, we removed humidity and its derivatives in the model. Finally, the
input feature for each modeling sample was a 1-by-15 vector consisting of air temperature,
solar radiation, wind speed, solar zenith angle, diurnal time, and their square or square
root values. Besides, the range in environmental conditions experienced by the modeling
data was shown in Table 4. These ranges illustrate the appropriate environmental condition
to apply the model.
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Larger adjusted R2 value means the variable is more correlated to the NDVI variation.

Table 4. The ranges in environmental conditions experienced by the modeling data during the
experiment.

Environmental Variables Min Max

Sun radiation (W/m2) 85.76 954.23
Diurnal time (min) 600 (at 10 a.m.) 1050 (at 5:30 p.m.)

Solar zenith angle (degree) 35.2 78.26
Air temperature (◦C) 11.79 33.27

Wind speed (m/s) 0 8.3
Humidity (%) 26.52 97.06

Note: Diurnal time counts from midnight, so the value at midnight is 0 min.

3.3. Performance of the ANN Models
3.3.1. Overall Performance

The R2 and RMSE measure the precision of the predicted environment-induced varia-
tion in NDVI. The environment-induced variation predicted by the ANN model for the
sample dataset (G1H) showed a fairly accurate linear relationship with the coefficient of
determination (R2) equal to 0.823 (Figure 5). The RMSE also demonstrated a relatively low
value of 0.00611. The prediction result was five-fold cross-validated.

The predicted environmentally induced variation was further used to correct the noise
caused by environmental effects in the raw NDVI signal. Figure 6 shows the NDVI corrected
by subtracting the predicted variation (Figure 5) from the raw NDVI. In Figure 6b, each
box represents the NDVI changes within a day. The trained ANN model largely eliminated
the daily variance in the NDVI, so the boxes of the corrected NDVI (Figure 6b) were much
more condensed compared with the original NDVI (Figure 6a). To facilitate the comparison,
we compared the variances of NDVI before and after model correction with a two-sample
t-test (Figure 7 and Table 5). The result confirmed that the daily variances in NDVI were
significantly reduced (p-value < 0.01) by 79% on average, thereby confirming the ability of
the proposed ANN model to effectively eliminate the environmentally induced effects on
the raw signal.



Remote Sens. 2021, 13, 2520 10 of 17Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 5. The five-fold cross-validated prediction results of environment-induced variation in NDVI 
for the sample dataset (G1H). The ANN prediction values show a significant correlation with R2 = 
0.823 and RMSE = 0.006. 

The predicted environmentally induced variation was further used to correct the 
noise caused by environmental effects in the raw NDVI signal. Figure 6 shows the NDVI 
corrected by subtracting the predicted variation (Figure 5) from the raw NDVI. In Figure 
6b, each box represents the NDVI changes within a day. The trained ANN model largely 
eliminated the daily variance in the NDVI, so the boxes of the corrected NDVI (Figure 6b) 
were much more condensed compared with the original NDVI (Figure 6a). To facilitate 
the comparison, we compared the variances of NDVI before and after model correction 
with a two-sample t-test (Figure 7 and Table 5). The result confirmed that the daily vari-
ances in NDVI were significantly reduced (p-value < 0.01) by 79% on average, thereby 
confirming the ability of the proposed ANN model to effectively eliminate the environ-
mentally induced effects on the raw signal. 

 
(a) 

 
(b) 

Figure 6. Box plots for the five-fold cross-validated correction result of the sample dataset (G1H). (a) The raw NDVI with 
huge daily variances across 31 days. (b) The ANN model corrected NDVI with much more condensed boxes. 

Figure 5. The five-fold cross-validated prediction results of environment-induced variation in NDVI
for the sample dataset (G1H). The ANN prediction values show a significant correlation with
R2 = 0.823 and RMSE = 0.006.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 5. The five-fold cross-validated prediction results of environment-induced variation in NDVI 
for the sample dataset (G1H). The ANN prediction values show a significant correlation with R2 = 
0.823 and RMSE = 0.006. 

The predicted environmentally induced variation was further used to correct the 
noise caused by environmental effects in the raw NDVI signal. Figure 6 shows the NDVI 
corrected by subtracting the predicted variation (Figure 5) from the raw NDVI. In Figure 
6b, each box represents the NDVI changes within a day. The trained ANN model largely 
eliminated the daily variance in the NDVI, so the boxes of the corrected NDVI (Figure 6b) 
were much more condensed compared with the original NDVI (Figure 6a). To facilitate 
the comparison, we compared the variances of NDVI before and after model correction 
with a two-sample t-test (Figure 7 and Table 5). The result confirmed that the daily vari-
ances in NDVI were significantly reduced (p-value < 0.01) by 79% on average, thereby 
confirming the ability of the proposed ANN model to effectively eliminate the environ-
mentally induced effects on the raw signal. 

 
(a) 

 
(b) 

Figure 6. Box plots for the five-fold cross-validated correction result of the sample dataset (G1H). (a) The raw NDVI with 
huge daily variances across 31 days. (b) The ANN model corrected NDVI with much more condensed boxes. 

Figure 6. Box plots for the five-fold cross-validated correction result of the sample dataset (G1H). (a) The raw NDVI with
huge daily variances across 31 days. (b) The ANN model corrected NDVI with much more condensed boxes.



Remote Sens. 2021, 13, 2520 11 of 17Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 7. Two-sample t-test between the variance of daily NDVI for the sample dataset (G1H) be-
fore and after ANN model correction. 

Table 5. The results of the two-sample t-test between the variance of daily NDVI before and after 
ANN model correction. 

Groups N Mean StDev SE Mean T-Value p-Value 
Raw NDVI 31 0.000230 0.000174 0.000031 

5.78 <0.01 Corrected 
NDVI 

31 0.0000472 0.0000248 0.0000045 

3.3.2. Multi-Model Comparison Analysis across Genotypes and Nitrogen Treatments 
The ANN models built for each dataset were tested on the other datasets to evaluate 

the drifts between different genotypes and nutrient treatments. For datasets from a differ-
ent genotype or treatment, the ANN model demonstrated a weaker prediction perfor-
mance compared to the results on dataset it had been trained with (Figure 8). Notably, the 
predictions were least accurate when the ANN models trained with nitrogen-stressed 
plots (G1M, G2M, G1L, and G2L) were applied to the high-nitrogen groups (G1H and 
G2H), as shown within the red boxes in the Figure 8. The results of the multi-model com-
parison indicate that the nitrogen stress levels on plants should be considered when mod-
eling the environment-induced variation in phenotyping features. Compared to the nitro-
gen treatments, the genotype difference demonstrated a minor impact. The R2 between 
plots with the same nitrogen treatment but different genotypes were between 0.59–0.79 
with RMSE between 0.009–0.013. The general ANN model (ALL) trained with the entire 
sample data performed well across the different genotypes and treatments with substan-
tially high R2 (0.617–0.843) and low RMSE values (0.008–0.0010). This allowed us to apply 
the same one ANN model (ALL) for diverse corn stages (already included in the model-
ing), genotypes, and treatments (validated in Figure 8). 

Figure 7. Two-sample t-test between the variance of daily NDVI for the sample dataset (G1H) before
and after ANN model correction.

Table 5. The results of the two-sample t-test between the variance of daily NDVI before and after
ANN model correction.

Groups N Mean StDev SE Mean T-Value p-Value

Raw NDVI 31 0.000230 0.000174 0.000031
5.78 <0.01Corrected NDVI 31 0.0000472 0.0000248 0.0000045

3.3.2. Multi-Model Comparison Analysis across Genotypes and Nitrogen Treatments

The ANN models built for each dataset were tested on the other datasets to evaluate
the drifts between different genotypes and nutrient treatments. For datasets from a different
genotype or treatment, the ANN model demonstrated a weaker prediction performance
compared to the results on dataset it had been trained with (Figure 8). Notably, the
predictions were least accurate when the ANN models trained with nitrogen-stressed plots
(G1M, G2M, G1L, and G2L) were applied to the high-nitrogen groups (G1H and G2H), as
shown within the red boxes in the Figure 8. The results of the multi-model comparison
indicate that the nitrogen stress levels on plants should be considered when modeling
the environment-induced variation in phenotyping features. Compared to the nitrogen
treatments, the genotype difference demonstrated a minor impact. The R2 between plots
with the same nitrogen treatment but different genotypes were between 0.59–0.79 with
RMSE between 0.009–0.013. The general ANN model (ALL) trained with the entire sample
data performed well across the different genotypes and treatments with substantially
high R2 (0.617–0.843) and low RMSE values (0.008–0.0010). This allowed us to apply the
same one ANN model (ALL) for diverse corn stages (already included in the modeling),
genotypes, and treatments (validated in Figure 8).
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3.4. Modeling of Environmentally Induced Variation in Predicted RWC

Besides NDVI, the environmentally induced variation in the predicted RWC was
also modeled and predicted. In Figure 9, the predicted and the measured variation were
strongly correlated, with a R2 of 0.791 and RMSE of 0.722%. With this model, the variance of
the corrected RWC was significantly reduced (p-value < 0.01) by 72% on average compared
to the raw predicted RWC data (Figure 10). The successful application of the same proposed
ANN architecture and decomposition method on the predicted RWC and NDVI indicated
that this method has the potential to be generally applied on other phenotyping features
that can be further explored. Moreover, the corrected predicted RWC plot (Figure 10b)
demonstrates a more obvious day-to-day trend than the raw predicted RWC (Figure 10a).
Therefore, with the environmental effects removed, plant remote-sensing researchers can
more accurately track the plant growth signals.
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4. Discussion

Environmental change impacts in crop aerial remote sensing images were quantita-
tively investigated with the proposed ANN modeling approach. Over 8000 hyperspectral
images of two varieties of corn with three nitrogen treatments were taken by the field
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imaging gantry at Purdue University over the 2019 growing season. The imaging covered
the plant stages from V4 to R1. Crop phenotyping features such as NDVI, RWC, and two
individual spectral bands (Red and NIR) were calculated from the imaging data. The
proposed ANN model was trained with synchronized hyperspectral imaging data and
environmental data (including sun radiation, solar zenith angle, diurnal time, temperature,
and wind speed) to understand the correlation of the variations between the two datasets.
A time-series decomposition method was applied to extract the phenotyping data variation
caused by the changing environments. By learning the relationship between the pheno-
typing data variation and environmental changes, the developed ANN model was able to
precisely predict the environmental effects on remote sensing results (i.e., 82.2% for NDVI),
and thus could be used to effectively eliminate the environment-induced variation in the
phenotyping features. The two-sample t-tests on the NDVI and predicted RWC of corn
plants showed that the daily variances in NDVI and predicted RWC were significantly
reduced by 79% and 72%, respectively. Thus, the ANN method can be used by remote
sensing professionals to adjust or correct raw imaging data for changing environments to
improve plant characterization.

The proposed ANN-based method showed a promising performance in modeling
the environment-induced variations in different plant phenotyping features. However,
the data used in the model was drawn from one single field test whose imaging data
was collected from Purdue’s field gantry system, which might induce systematic bias in
the model. External validation data from the other remote sensing platforms, such as
UAVs, are needed. In the next growing season, the proposed method will be validated
with images from a field UAV system as well as RGBN camera-based imaging sensor
(Ncam) [61]. Furthermore, this modeling method was developed based on corn images,
which might limit the scope of application. It is necessary to conduct more tests on more
diverse plant species (e.g., soybean, wheat, and rice). This will help further validate the
developed models, as well as improve the robustness of the prospective models.

In the future, we will also continue exploring training models for all the single spectral
bands to adjust/correct the whole spectrum data considering environmental variations.
Remote sensing users could benefit from the spectrum calibration model to correct the
prediction results from any plant feature prediction models.

5. Conclusions

In this paper, a new modeling method was successfully proposed to precisely pre-
dict the environmental effects on the hyperspectral imaging results (such as NDVI and
predicted RWC) in aerial crop remote sensing. Over 8000 hyperspectral images, together
with synchronized environment data, were collected over 31 days for field corn plants with
different nitrogen treatments and genotypes. Experimental results demonstrated that the
proposed ANN method could accurately predict the environment-induced variations in
the selected phenotyping features. For example, the trained model for NDVI achieved
promising predictive results for the sample dataset with an R2 of 0.822 and an RMSE of
0.00611 compared with the measured variation. The predicted values were used to correct
the raw phenotyping data, and the daily variance of NDVI was significantly reduced by
79%. The proposed method also achieved satisfactory results when tested on predicted
RWC (daily variance reduced by 72%). The applicability of the proposed method on two
different features highlighted its potential to correct the other phenotyping features of in-
terest. Based on these results, this proposed modeling method can help agricultural remote
sensing researchers to effectively eliminate the signal drifts caused by the environment
variation, which will drastically increase the accuracy of field plant sensing.
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