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Abstract: The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-
orbiting Partnership (S-NPP) satellite continually provides global observations used to retrieve over
20 VIIRS Environmental Data Record (EDR) products. Among them, the cloud mask product is
essential for many other VIIRS EDR products such as aerosols, ocean color, and active fire. The
reprocessed S-NPP VIIRS Sensor Data Record (SDR) data produced by NOAA/Center for Satellite
Applications and Research (STAR) have shown improved stability and consistency. Recently, the
VIIRS Enterprise Cloud Mask (ECM) has been reprocessed using the reprocessed VIIRS SDR data.
This study assesses the reprocessed ECM product by comparing the reprocessed cloud mask types
and cloud probability with those from the operational VIIRS ECM product. It found that the overall
differences are small. Most of the discrepancies occur between neighboring types at the cloud edge.
These findings help lay the foundation for the user community to understand the reprocessed ECM
product. In addition, due to the better quality of the reprocessed VIIRS SDR data that are utilized
to generate the reprocessed ECM product, it is expected that the reprocessed ECM product will
have better stability and consistency compared to the operational ECM products. Therefore, the
reprocessed ECM product is a useful benchmark for the user community.

Keywords: SNPP VIIRS cloud mask reprocessing; assessment of reprocessed cloud mask types and
cloud probabilities

1. Introduction

The Visible and Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi Na-
tional Polar-orbiting Partnership (S-NPP) satellite was successfully launched on 28 October
2011. VIIRS has 22 spectral bands, covering the wavelengths from 0.4 to 11.8 µm and
including 14 reflective solar bands (RSBs), seven thermal emissive bands (TEBs), and one
day–night band (DNB) [1,2]. VIIRS level-1 Sensor Data Record (SDR) data are used as
inputs to retrieve over 20 VIIRS Environmental Data Record (EDR) products, including
snow/ice cover, clouds, fog, aerosols, fire, smoke plumes, vegetation health, sea/land
surface temperature, ocean color, etc. All are required for environmental hazard monitoring
and are useful in crucial economic sectors, such as transportation, fishing, energy, and
agriculture, all of which impact human health [3].

VIIRS is performing very well on orbit since the Suomi NPP was launched. However,
there have been many updates in the SDR calibration parameters and algorithms over the
mission life [3–9]. The SDR products were in various levels of maturity during these years
as the SDR data were declared at the beta, provisional, and validated maturity levels in
April and October 2013, and March 2014, respectively. While long-term time series analysis
requires consistent calibrated VIIRS data records, the historical calibration changes lead
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to inconsistencies in the NOAA operational S-NPP VIIRS SDRs, which is not suitable for
climate change monitoring and detection. In order to make VIIRS observations more usable
for the science community, especially in climate study, S-NPP VIIRS SDRs from January
2012 to March 2020 have been reprocessed at NOAA/Center for Satellite Applications and
Research (STAR) using the latest calibration algorithms [5,6,8–12]. The reprocessed VIIRS
RSB SDR data removed the jumps and artificial oscillations caused by frequent changes
in the operational calibration algorithms, especially in the early days of the mission when
the algorithms were not mature [9,13,14]. The calibration is made consistent for the RSBs
because: (a) the solar irradiance model has been updated (the Thuillier 2003 solar irradiance
model [15] replaced the outdated model from Modtran previously); and (b) it reconciled
the long-term degradation trends based on several independent calibrations including
lunar calibration, Simultaneous Nadir Overpass (SNO) with MODIS, deep convective
clouds (DCC), and vicarious site series comparisons using the Kalman filtering model that
improves the time series consistency. For RSB M5 and M7, which are important to the
clouds and aerosols, there was a 1.5% and 2.0% bias in the operational VIIRS SDR based on
several studies. This has been corrected in the reprocessed VIIRS SDR. After reprocessing,
the bias related to warm-up cool-down events is removed [6,8,13,14], the absolute accuracy
for low light radiance has been largely improved for the DNB [10,13,14], the geolocation
accuracy with 3-sigma uncertainty is better than 200 m, and terrain correction for VIIRS
DNB was implemented to the days before 22 May 2015 [12]. A comprehensive summary
of the VIIRS reprocessing and its preliminary validation results are provided in [14]. The
reprocessed dataset is now available online from 2 January 2012 to 28 February 2017 (ftp:
//jlrdata.umd.edu/pub/SNPP_Reprocessing/SDR/VIIRS/Baseline) and will be archived
in the NOAA Comprehensive Large Array-data Stewardship System (CLASS) for end-users
to access [14].

The cloud mask (CM) is a fundamental cloud property that is essentially needed in
producing other EDR data products, such as aerosol properties, land surface reflectance,
land surface temperature, sea surface temperature (SST), normalized difference vegetation
index (NDVI), etc. Many cloud detection schemes using satellite observations have been
proposed in the past [16]. Some of them are focused on specific regions [17,18], some are
associated with specific EDR products, such as SST and vegetation properties [19,20], and
some are suitable for global applications and general purposes [21–23]. NOAA Enterprise
Cloud Mask (ECM) utilizes the Naïve Bayesian idea of clear/cloudy pixel detection that
is applied to combined solar reflective and infrared imager and sounder data from a
polar-orbiting satellite [24–26]. The high-resolution VIIRS cloud product (750 m) can help
resolve the small convective elements that are sub-pixel for the MODIS cloud products
(1km resolution) [27]. Moreover, MODIS will inevitably be replaced by VIIRS as it is getting
close to the end of its life.

Many studies have been carried out to assess and improve the existing cloud detection
algorithms. Okada et al. [28] and Nordkvist et al. [29] analyzed the cloud masking of
SeaWiFS in coastal waters. Haglolle et al. [30] tested a multi-temporal cloud detection
(MTCD) method for FORMOSAT-2 and LANDSAT, and proposed this method to be used
for SENTINEL-2 level 2 processing. Andrew and Melin [31] evaluated the performances
of different cloud mask schemes for the processing of NASA global ocean color data, and
found that, for limited extreme conditions, a combination of different cloud masks is needed.
Vermote et al. [32] analyzed the performance of the VIIRS cloud mask in surface reflectance
(SR). Franch et al. [33] analyzed the improved AVHRR surface reflectance/NDVI version
4 product from the cloud mask improvements. Coluzzi et al. [34] analyzed the Sentinel-
2 L1C cloud mask products under different biogeographic and cloudiness conditions.
Frey et al. [35] developed the Continuity MODIS-VIIRS Cloud Mask (MVCM) algorithm
to facilitate the continuity in the cloud detection between MODIS and VIIRS. Chi and
Zhang [36] proposed an improved VIIRS dynamic threshold cloud detection algorithm
(I-DTCDA) and compared its performance with that from the universal dynamic threshold
cloud detection algorithm (UDTCDA) and the VIIRS cloud mask.

ftp://jlrdata.umd.edu/pub/SNPP_Reprocessing/SDR/VIIRS/Baseline
ftp://jlrdata.umd.edu/pub/SNPP_Reprocessing/SDR/VIIRS/Baseline
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Recently, deep learning techniques have been applied for cloud detection. Chen
et al. [37] developed a neural network cloud mask algorithm based on radiative transfer
simulations and the validation results from collocated MODIS and the Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) data show better performances than the MODIS
cloud mask (MOD35 C6) over snow-covered areas in the mid-latitudes. Charles et al. [38]
used the CALIOP data that are collocated with VIIRS to train a neural network for VIIRS
cloud detection, and their model performs better in comparison with the VIIRS ECM
during the nighttime and in high latitudes where the surface is covered by snow or ice.
Sun et al. [39] built a data sample library from the observations of Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) with continuous bands between 400–2500 nm and used it
to simulate different sensors based on the spectral response function, then employed the
backpropagation (BP) neural network for cloud detection. Their results for VIIRS cloud
detection have an overall accuracy of greater than 90%.

The current operational VIIRS ECM algorithm has been well validated. Kopp et al. [40]
compared the first-year VIIRS cloud mask with CALIPSO and concluded that it satisfied the
accuracy requirements of 2%. Heidinger [24] found that the VIIRS ECM has a probability
of detection of 94%, a probability of missed clouds of 1%, a and probability of false cloud of
4% from the collocated CALIPSO data in 2012 and 2013. Comparison with the collocated
MODIS cloud mask product (MOD35/MYD35) also shows that the ECM is performing
well [24]. This study aims to evaluate the reprocessed VIIRS ECM products generated
from using the reprocessed S-NPP VIIRS SDR data at NOAA/STAR. It’s expected that the
reprocessed VIIRS SDR will affect the ECM products because the VIIRS ECM algorithm
employs observations of the VIIRS bands M5, M7, and M9–M16 and DNB observations
(Table 1) [24,25].

Table 1. VIIRS, ABI and SEVIRI bands used in the ECM algorithm.

VIIRS Band and
Wavelength (µm)

ABI Band and
Wavelength (µm)

SEVIRI Band and
Wavelength (µm)

M5 (0.672) 2 (0.64) 1 (0.64)

M7 (0.865)

M9 (1.378) 4 (1.37)

M10 (1.61) 5 (1.61) 3 (1.64)

M12 (3.70) 7 (3.90) 4 (3.92)

9 (6.93)

10 (7.34)

M14 (8.55) 11 (8.44) 7 (8.70)

M15 (10.763) 14 (11.21) 9 (10.80)

M16 (12.013) 15 (12.29) 10 (12.00)

DNB (0.7)

Reprocessing of VIIRS SDR has caused significant radiance changes for some bands.
The operational M5 and M7 have been biased compared to Aqua MODIS similar channel
observations. This bias has been corrected in the reprocessed SDR datasets with a reduction
of 1.5% and 2% for M5 and M7, respectively. Meanwhile, changing the solar irradiance
model in the reprocessed VIIRS SDR leads to a change in the radiance up to ~3% for some
of the RSBs [13]. Additionally, seasonal cycles in the degradation of the solar diffusor have
been corrected/smoothed in the reprocessed products compared to NOAA operational
products. Furthermore, the infusion of different RSB calibrator results from the on-board
solar diffusor, lunar view, deep convective cloud (DCC) histogram monitoring, and simul-
taneous nadir overpass (with MODIS) has been applied in the reprocessing RSB calibration.
These changes in calibration coefficients and algorithms have helped to generate consistent,
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improved radiance time series. How these changes in radiance values affect the cloud
mask products needs to be evaluated for further applications of the reprocessed ECM in
supporting generations of other EDRs.

The purpose of this paper is to compare the reprocessed S-NPP VIIRS ECM with the
operational one and analyze the differences between these two ECM products. The paper
is arranged as follows. Section 2 introduces the methodology for VIIRS ECM reprocessing.
Data used in this study are also introduced in Section 2. Comparisons of the cloud mask
types and cloud probability between the operational and reprocessed ECM products are
discussed in Section 3. Section 4 is the summary and conclusions.

2. Method and Data

The S-NPP VIIRS ECM algorithm adopts some tests and thresholds from several
other cloud mask algorithms, including those from the MOD/MYD35 MODIS cloud mask
from University of Wisconsin-Cooperative Institute for Meteorological Satellite Studies
(UW-CIMSS) [41], the Clouds and the Earth’s Radiant Energy System (CERES) MODIS
cloud mask from NASA Langley Research Center [42], the Cloud and Surface Parameter
Retrieval (CASPR) cloud mask used in the AVHRR Polar Pathfinder Extended (APP-x) [43],
and the GOES-R Baseline Cloud Mask [25].

To identify the cloud pixel that exhibits different characteristics from the clear-sky
condition, VIIRS ECM employs 10 spectral and spatial tests at the pixel level, including
Emissivity Referenced to the Tropopause (ETROP), the 11 µm Thermal Uniformity Test
(BT11STD), the 11 and 12 µm Split-Window Test (BTD11_12), the Daytime 4 and 11 µm
Thermal Contrast Test (BTD4_11_Day), the Nighttime 4 and 11 µm Thermal Contrast
Test (BTD4_11_Night), 0.63 µm Reflectance (Ref0.63), the Relative Visible Contrast Test
(RVCT), the Reflectance Ratio Test (Ref_ratio), the 1.38 µm Reflectance Test (Ref1.38), and
the Normalized Difference Snow Index (NDSI) test [26]. Figure 1 shows the flowchart of
the ECM algorithm. Each test produces a cloud or no cloud score, which is then used to
determine whether a pixel is cloudy or clear by constructing the ECM using the Naïve
Bayesian approach [24,26], which has been applied successfully to many complex detection
problems [44]. Table 1 lists the VIIRS, ABI, and SEVIRI bands used in the ECM algorithm.
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Figure 1. Flowchart of the ECM algorithm [26].

We used the STAR reprocessed VIIRS SDR [13,14] to generate the ECM products.
Generating VIIRS ECM requires the sensor data of the calibrated solar reflectance percent
(0–100%) for 0.63, 1.38, 1.64, 2.13 µm channels; longitude, latitude, calibrated radiances for
3.75 and 11.0 µm channels; calibrated lunar reflectance percent (0–100%) of the VIIRS; the
derived 3.75 µm channel emissivity; 3.75 µm channel solar energy; sensor viewing zenith
angle; solar zenith angle; relative azimuth angle; glint zenith angle; scattering angle; and
solar zenith angles. All the above primary sensor data were obtained from the reprocessed



Remote Sens. 2021, 13, 2502 5 of 11

VIIRS SDR data. The generation of ECM also requires ancillary data, including surface type,
surface elevation, land/coast/snow mask, ocean glint mask, numerical weather prediction
(NWP) data, and Community Radiative Transfer Model (CRTM) simulations [24–26]. Con-
sistent with the current operational ECM, we used the Optimum Interpolation Sea Surface
Temperature (OISST, [45]), the output from the Global Forecast System (GFS) at 0.5-degree
spatial resolution, CRTM 2.3, VIIRS Surface Type, and daily Interactive Multisensor Snow
and Ice Mapping System (IMS)/SSMI snow map [46]. In addition, the operational ECM
product was obtained from the NOAA/CLASS for the comparison tests in this study.

3. Results and Discussion

By applying the method with the ancillary and auxiliary data as described in Section 2
and running the operational ECM package using the S-NPP VIIRS reprocessed SDR data
as input, we have produced the reprocessed ECM for the period from 1 April 2018 to
11 March 2020. The retrieved cloud properties in the ECM products include four cloud
mask types (clear, probably clear, probably cloudy, cloudy), and cloud probability (0.0–1.0).
In this preliminary study, we investigated the differences between the operational and
reprocessed ECM products for the selected day on 1 May 2018 and chose six granules for
detailed comparisons in the cloud mask types and cloud probability. These six granules are
located close to the southeast corner of Australia and were chosen under the considerations
to (1) avoid the Antarctic region (60S~90S), because the accuracy of ECM in high latitudes
(>60o) is less than that between 60S and 60N [26], and (2) include both land and ocean
surfaces. There are 14,745,600 pixels included in the six granules on 1 May 2018.

3.1. Cloud Mask Type Comparison

Figure 2 shows the cloud types from the operational (Figure 2a) and reprocessed ECM
products (Figure 2b) separately, the pixels that have different cloud mask types (Figure 2c),
and the concurrent VIIRS true-color image (Figure 2d). The mismatched pixels are color-
coded in Figure 2c, based on the cloud types of the operational and reprocessed ECM
product for each pixel, and the number of each scenario is listed in Table 2. It is found that
99.77% (14,711,249 out of 14,745,600 pixels) of the cloud mask types are the same; 0.23%
(34,351 out of 14,745,600 pixels) are mismatched. Additionally, 99.97% (34,342 out of 34,351
pixels) of the mismatches occur between two neighboring types, i.e., “clear” and “probably
clear”, “probably clear” and “probably cloudy”, “probably cloudy” and “cloudy”. It is
also noticed from the zoomed-in plot (Figure 2e) that the mismatches of cloud mask types
mostly occur at the edge of the clouds (Figure 2d), and the zoomed-in plot (Figure 2e)
illustrates it more clearly.

For the whole day of 1 May (Table 3), consistent results are obtained. 99.776%
(2,481,513,523 out of the total 2,487,091,200 pixels) of the cloud mask types are the same,
and 0.224% (5,577,677 out of the total 2,487,091,200 pixels) are mismatched. In addition,
98.67% (5,505,148 out of 5,577,677) of the mismatches occur between two neighboring types.

Table 2. The number of pixels in different cloudy mask types for six granules of the operational and
reprocessed ECM products on 1 May 2018 (Total number of pixels: 14,745,600). The colors indicate
the different scenarios with the cloud mask type of the operational (in row) and reprocessed (in
column) ECM products.

Reprocessed
Operational Clear Probably Clear Probably Cloudy Cloudy

Clear 4,227,726 10,150 0 0
Probably Clear 1935 380,084 9156 0

Probably Cloudy 3 2049 515,177 8617
Cloudy 4 2 2435 9,588,262
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Figure 2. Cloud mask types of (a) the operational and (b) the reprocessed ECM products for six granules on 1 May 2018.
(c): pixels that have different cloud mask types between the operational and reprocessed ECM product. (d): Concurrent
VIIRS true-color image. (e): A zoomed-in plot of the pixels that have different cloud mask types overlaid on the VIIRS DNB
radiance (unit: W/cm2·sr−1) within the domain of (30S~40S, 130E~140E). The pixel is color-coded based on the cloud mask
type of the operational and reprocessed ECM products for each pixel, which is indicated in Table 2.
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Table 3. The number of pixels in different cloud mask types of the operational and reprocessed ECM
product on 1 May 2018 (total number of pixels: 2,487,091,200).

Reprocessed
Operational Clear Probably Clear Probably Cloudy Cloudy

Clear 739,311,193 1,424,287 18,845 4808

Probably Clear 732,226 149,238,446 1,141,409 41,737

Probably Cloudy 5117 587,786 185,431,688 1,071,928

Cloudy 385 2022 547,127 1,407,532,196

3.2. Cloud Probability Comparison

Figure 3 shows the cloud probability of the operational and reprocessed ECM products
separately, which indicates different cloud probability in the pixels. Again, it is noticed that
the mismatches of cloud probability mostly occur at the edge of clouds. Table 4 summarizes
the number of pixels in Figure 3 based on its cloud probability of the operational and repro-
cessed ECM products. It is found that 92.58% (13,651,150 out of the total 14,745,600 pixels)
of the cloud probability from these six granules are the same, and 7.42% (1,094,450 out of
the total 14,745,600 pixels) are mismatched. The changes in the VIIRS SDR data lead to
small differences in cloud probability, and 87.11% (12,844,713 out of 14,745,000 pixels) of the
pixels having cloud probabilities of exactly 0 or 1 are the same. On the other hand, 57.58%
(1,094,450 out of 1,900,887 pixels) of the pixels having cloud probabilities between 0 and 1
are different. Consistent results are obtained for the whole day of 1 May (figure omitted).
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Table 4. The number of pixels in different cloud probability for six granules of the operational and
reprocessed ECM products on 1 May 2018 (total number of pixels: 14,745,600). The number in the
bracket indicates the number of mismatches of cloud probability.

Reprocessed
Operational 0 (0, 0.5] (0.5, 1.0) 1.0

0 4,140,839 10,520 0 0

(0, 0.5] 1944 466,592
(292,216) 9156 0

(0.5, 1.0) 0 2058 1,396,398
(764,337) 10,843

1.0 0 0 3376 8,703,874

Examination of the cloud probability of the reprocessed ECM product with respect
to that of the operational ECM product for the mismatched pixels (Figure 4a) shows that,
for the majority (67.3%) of the mismatched pixels, the cloud probability of the operational
ECM product is larger than that of the reprocessed ECM product. In addition, 98.92%
(1,082,674 out of 1,094,450) of the mismatches have a difference in cloud probability of less
than 0.1, and 99.93% (1,093,666 out of 1,094,450) of the mismatches have a cloud probability
difference less than 0.2 (Figure 4b).
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4. Discussion and Conclusions

Using the newly reprocessed S-NPP VIIRS SDR data as inputs, we reprocessed the
VIIRS ECM product on the current operational ECM software platform for the period
of 1 April 2018 to 11 March 2020. This study assessed the cloud mask types and cloud
probability of the reprocessed VIIRS ECM product by comparing them to the operational
ECM product. It found that more than 99% of the pixels have the same cloud mask type, and
more than 90% of the pixels have the same cloud probability. Most of the mismatches occur
at the edge of clouds, and between two neighboring cloud mask types. The majority of the
cloud probability mismatches are within “cloud” or “clear” cloud mask types. Additionally,
about 99% of the mismatches have a cloud probability difference of less than 0.2. These
findings lay a foundation for the user community to understand the reprocessed ECM
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product. In addition, even though the difference to the operational ECM products seems to
be small, the reprocessed ECM product is a useful benchmark for the user community.

We expect that the reprocessed ECM products will inherit stability and consistency in
the reprocessed SDRs. It is expected that the time series of the cloud type for long-standing
clouds (e.g., the Intertropical Convergence Zone, the polar stratus clouds) will be different
between the operational and reprocessed ECM products. Future studies will be carried out
to investigate this aspect using more data.
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