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Abstract: Solving many phenotyping problems involves not only automatic detection of objects
in an image, but also counting the number of parts per object. We propose a solution in the form
of a single deep network, tested for three agricultural datasets pertaining to bananas-per-bunch,
spikelets-per-wheat-spike, and berries-per-grape-cluster. The suggested network incorporates object
detection, object resizing, and part counting as modules in a single deep network, with several
variants tested. The detection module is based on a Retina-Net architecture, whereas for the counting
modules, two different architectures are examined: the first based on direct regression of the predicted
count, and the other on explicit parts detection and counting. The results are promising, with the
mean relative deviation between estimated and visible part count in the range of 9.2% to 11.5%.
Further inference of count-based yield related statistics is considered. For banana bunches, the
actual banana count (including occluded bananas) is inferred from the count of visible bananas. For
spikelets-per-wheat-spike, robust estimation methods are employed to get the average spikelet count
across the field, which is an effective yield estimator.

Keywords: phenotyping problems; deep learning; parts-per-object count; object detection; robust
estimation

1. Introduction

This work handles a specific family of phenotyping problems: visual object’s part
counting, done by first detecting the objects in the image, and then counting their constitut-
ing parts. Such problems repeatedly arise in field phenotyping contexts. Examples include
counting the number of bananas in banana bunches [1], spikelets in wheat spikes [2,3],
berries per grape cluster [4], flowers on apple trees [5,6], leaves in potted plants [7,8], or
mangoes per-tree [9]. Specifically, in this work we address the first three above-mentioned
problems. Image examples with annotations for each task are shown in Figure 1.

Agricultural applications often incorporate robotic systems to reduce labor tensions,
especially in developing countries [10,11]. Such systems, as well as systematic yield
estimation, require reliable computer vision methods operating in field conditions [11–13].
This environment is highly challenging: crops vary significantly in shape, size, and color,
and there are significant illumination variance and occlusion problems [11]. The part
counting task addressed here has to be solved robustly in this complex environment.

In many cases, part count is an important yield indicator, and measuring it auto-
matically is important for yield prediction and breed selection [4,9,14,15]. Specifically,
spikelets counting provides yield quantification for wheat crop and thus can assist in crop
management [3]. The number of bananas in a bunch is related to bunch weight and thus
productivity [16]. For grapes, yield estimation of a vineyard can be performed using berry
detection [4,17] and counting [15]. These three very different problems are handled here
with the same algorithm, thus demonstrating that the proposed method is fairly general
and can handle different part-counting problems with minor adjustments. While such prob-
lems usually involve (object) detection and (part) counting, they should not be confused
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with single-stage counting or detection problems, and require a non-trivial combination of
them, as presented in this work.

Figure 1. Example images with ground truth annotations. Top left: Bananas in banana bunches.
Top right: Wheat spikelets in spikes. Bottom: Berries in grape bunches. Blue bounding boxes are
placed around measurable objects. Black dots are placed on countable parts. The target count number
(number of visible parts) is stated above each bounding box.

Object detection is a first step in several types of agricultural applications including
robotic harvesting and spraying [15,18,19], measurement of object properties [20–23], or
object (not parts) counting [24]. Object count is a common phenotype needed for tasks as
yield estimation [4,24–26], blossom level estimation for fruit thinning decisions [5,6,27], or
plant’s leaf counting for growth stage and health estimation [7,8,28,29].

The two tasks of detection and counting were approached with both traditional
computer vision techniques and deep Convolutional Neural Networks (CNNs). Specifically,
fruit detection systems using traditional techniques were presented in [10,13], and CNN-
based works can be found in [30,31]. One line of influential detection networks includes
two-stage networks like Faster R-CNN [32] or Mask R-CNN [33]. Another line of work
includes fully differentiable one-stage architectures. Early one-stage networks as YOLO [34]
and SSD [35] presented faster detectors, but with accuracy lower by 10–40% relative to
two-stage methods [36]. Later, one-stage networks like RetinaNet [36] and more recently
EfficientDet [37] were able to close the accuracy gap. An advanced version of YOLO, the
YOLOv3 model [38], was successfully augmented and applied recently for tomato [30] and
kiwi fruit [31] detection.

For counting, a successful work based on traditional techniques can be found in [39–41],
but CNNs designed for the task currently provide the state-of-the-art accuracy [42,43].

In general, deep learning methods can produce higher accuracy, but often require
a large annotated image sample and a long training schedule [11]. On the other hand,
CNNs avoid the tedious feature engineering process and are often able to provide general
solutions applicable to a family of different but related tasks.

The approach suggested in this work handles the object part counting with a two-
stage approach of (a) detecting the objects and (b) counting the parts in their detected
regions. However, the combination of these two stages into a single system raises several
questions. First, parts are much smaller than their containing objects, so scale difference
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should be accounted for. A second set of considerations arises w.r.t the combination of
object detection and part counting into a single network. Should the two modules share
components (like a shared backbone subnetwork)? Should they be trained together, end-
to-end, or independently? How should the detection confidence threshold, above which
objects are sent for counting, be determined? In this work, we explore the design space of
possible solutions for part-counting networks and find a good solution based on a single
network combining stages for a detector, scaling, and counting.

One may wonder why the “parts counting” task (which is essentially a “detect-
then-count” procedure) cannot be reduced into plain counting, by simply taking pictures
containing a single object in each image. Indeed, in principal this is possible. In some
agricultural contexts, the two-stage part-object nature was bypassed by using images of
a single centralized object [6,28,29]. However, solving a part counting problem by taking
images of single objects has significant disadvantages. The counting procedure needs to
be automated, rather than being done by a tedious manual approach. If a human has to
detect the objects and take single-object images, the process is partially manual. Therefore,
it is slower, costs more, and is less scalable than a fully automated system. Another option
is to have a robotic system first detecting the objects, than moving to a close position to
each object for taking a second image, isolating it from a wider scene. While this does not
involve human intervention, such a system is much more complex to develop, and it also
is likely to be slower than a system based on high resolution images containing multiple
objects. Therefore, for automatic and flexible field phenotyping, the solution of keeping
one object per image is significantly less scalable.

As we are interested in designing a unified network for the part counting task, we
rely on a one-stage architecture as a baseline detector in this work. Specifically, we chose
RetinaNet that introduced the use of a Feature Pyramid Network (FPN) [44] for handling
larger scale variability of objects and a “focal loss” variant which balances between positive
examples (which are few in a detection task) and negative examples.

As for the counting section, one influential approach for CNN-based counting is based
on explicit object localization: objects are first detected, then counted. The detection task can
be defined as detection of the object’s centers, and so the output is a density map showing
where objecthood probability is high [8,45]. In [2], spike and spikelets were counted
independently with a density estimation approach, providing very good results of relative
error <1% for spikelets and <5% for spikes. However, data were obtained in glassdoor
conditions. In [46], it was shown that density map estimation can stay reliable through
significant input domain shift when proper techniques of domain-adversarial learning
are used. Alternatively, localization can be based on bounding box detection [14,24,47]
or segmentation [48–50]. These methods require object location annotations like center
point annotations (for density estimation), bounding boxes (for detection), or surrounding
polygons (for segmentation). The second successful approach is via a global [7,8,51]
or local direct regression model [26,52]. In global regression, the model implements a
function mapping the entire image (or region) to a single number, which is the predicted
count. In local regression the image (or region) is divided into local regions and each of
them is mapped to a local predicted count. The local counts are then summed to get the
global count.

The literature contains contrasting evidence regarding the relative accuracy of localization-
based versus direct regression methods, and the better choice seems to depend on data
distribution and quantity, and on availability of annotation. In [47], a detection based
method was found superior to direct regression and it is claimed to be more robust to
train–test domain changes. By contrast, in [52] direct regression provides higher accuracy
than density estimation. In [8], the two approaches show similar performance. An advan-
tage of detection based methods is in being more “explainable”, as it allows to visually
inspect where in the image the network finds objects. However, more computation effort is
required at test time, and an additional annotating effort at train time. In this work, we
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experiment with both localization-based and direct regression approaches in the counting
section of the network.

While the network proposed is counting the number of visible object parts, the real
quantity of interest is the actual part count, which includes also occluded parts. This gap is
more pronounced for round objects like a banana bunch, and less for flatter objects like
spikes. Following the work in [53], this problem can be overcome by assuming that on
average there is a constant ratio of visible to occluded fruits, and training a linear regressor
for inferring the actual count from the visible count. We show in our banana experiments
that this technique is indeed applicable to part counting, with minor loss in accuracy.

Beyond part counting for a specific object, in yield estimation we are often interested
in the average count across an object population. This is the case for example with spikelet
count, where the average count over an entire plot or field are of interest. While the solution
can be obtained trivially by plain averaging, other options are possible. First, a solution can
be obtained by independent plain counting of objects and parts, then dividing the numbers.
Second, when a two-stage approach is used, plain averaging includes in the average “false
counts” generated by false detections of non-objects. To reduce the impact of false counts,
robust estimation methods can be used. We experiment in the space of possible solutions
and find that a combination of lower detection thresholds and robust estimation, based on
Gaussian assumptions, provides the best alternative.

Our contribution is therefore as follows:

1. Exploring the design space possible for part counting networks with respect to archi-
tecture, training methodology and component reuse, and finding a successful general
part counting algorithm.

2. Showing the applicability of the developed method to three important phenotyping
problems, with low count deviation of 9.2–11.5%.

3. Developing a robust estimation module enabling better estimation of population
average part count (compared to plain averaging) and showing its utility for wheat
spikelet count.

An earlier version of this paper was published as a conference paper [54]. The
current paper, however, contains significant added content. First, we experiment with the
architecture of the suggested network in [54]. It includes two independent sections for
detection and counting, where each has its own copy of ResNet-50-based [55] backbone
module. Two alternative architectures reducing this redundancy were considered. One
is based on using a single backbone module with shared weights in both sections of the
network. In the other, the backbone module is dropped from the counting section and
replaced by a cropped and resized representation of the detected object, obtained by
the detector’s backbone. A set of systematic experiments were carried in order to check
component reuse opportunities and training methodology, revealing a possible trade-off
between accuracy, model size, and computational complexity. Second, the method was
tested on a new dataset not included in the conference version, the grapes dataset, which is
based on the publicly available Embrapa WGISD212 dataset [15,56]. Third, the new task of
average spikelet-per-spike count per field, is considered here. As plain averaging of the
sample would produce a biased estimator of this value, due to false alarms, an alternative
approach is presented. It is based on applying the robust mean estimation methods on
top of the network’s estimates of the spikelets-per-spike values. These methods, presented
here for the first time, were tested using new images, obtained from six different field plots.

The rest of the paper is organized as follows: we describe the data and the algorithm in
Section 2, present results in Section 3, discussion in Section 4 and conclusions in Section 5.

2. Materials and Methods

We describe the used datasets in Section 2.1, the networks’ architecture in Section 2.2,
robust mean estimation methods in Section 2.3, the training procedure in Section 2.4, and
performance evaluation methodology in Section 2.5.
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2.1. The Datasets

This work is tested on three image datasets collected in field conditions. All images
were annotated with bounding boxes for countable objects, and with center dot annotations
for each part of an annotated object. Countable objects were defined as “objects for which
a human annotator can visually count the parts”. This entails that the object should not
be partially occluded or blurred. The banana and wheat data were obtained by the Israel
Phenomics Consortium and the grape data [15,56] are publicly available. The number of
images, objects, and parts used for training, validation, and testing is listed in Table 1.
Additional data of banana and wheat were collected for the estimation of actual physical
count of bananas-per-bunch and mean count of spikelets-per-spike of different wheat fields.
This additional data are discussed in Sections 2.1.2 and 2.1.3, respectively.

Table 1. Datasets sizes.

Dataset Train
(Images/Objects/Parts)

Validation
(Images/Objects/Parts)

Test
(Images/Objects/Parts)

Wheat 44/223/3523 27/102/1779 30/135/2347

Banana 72/82/6822 34/41/3372 35/43/3432

Grapes 62/90/3956 24/31/1466 25/44/1927

2.1.1. Datasets for Parts-per-Object Count Estimation

Wheat dataset: The collected dataset includes 101 RGB images taken in an agricultural
facility in the Central District of Israel. High-resolution, 6000× 4000, images of several wheat
varieties in field conditions were taken using a commercial DSLR camera. As the original
images included hundreds of wheat spikes, several regions (usually 4–5, 1020× 830 crops)
in focus were handpicked in each image. These areas were cropped and treated as separate
images that were passed for annotation of well defined, measurable spikes.

Bananas dataset: 141 RGB images were captured in a facility in the Northern District of
Israel. Images included banana bunches of different varieties and stages of the reproductive
phase. These were taken using a commercial 9 MP–12 MP mobile device cameras and
a digital point-and-shoot cameras in field conditions. The common resolutions were
2340× 4160 and 3024× 4032.

Grapes dataset: This data are based on the publicly available Embrapa WGISD dataset,
presented in [15,56]. As our task is to detect only countable objects, we used only 111
out of the available 300 images that contained such objects. The provided bounding box
annotations of fully visible and countable grape clusters were kept, and dot annotations
of the berries for those countable clusters were added. The dot annotations were made
publicly available as part of Embrapa WGISD dataset extension.

2.1.2. Data for Physical Counting of Bananas-per-Bunch

An additional dataset was collected to investigate the relation between actual and
visual banana count, containing 91 images of 31 banana bunches (objects) with known
actual count, photographed from 2–3 viewpoints each. The total number of visible banana
fruits (parts) was 7284.

2.1.3. Data for Entire Wheat Field Robust Estimation

In order to test estimation methods (Section 2.3) for the field-average spikelets-per-
spike count, additional images from several fields were obtained. These images were
annotated similarly to the original wheat data described in Section 2.1.1. In total, these data
consist of six different field plots, and the annotations of data per field plot is presented at
Table 2. A validation set was created by sampling 40% of the images of “Plot 1” (the plot
with the largest annotation data) in order to choose the hyper parameters for the robust
estimation methods (as presented at Section 3.3).
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Table 2. Wheat fields data for robust estimation.

Field Name
Field Data

(Images/Objects/Parts)

Plot 1 71/355/6359

Plot 109 3/14/363

Plot 114 4/15/277

Plot 115 4/13/319

Plot 128 18/71/1565

Plot 135 22/110/1716

2.2. Networks’ Architecture

The suggested network is comprised of several components. First is a detection
section responsible for detecting the objects of interest. These are passed to an RoI-Align
module [33] that crops and resizes the detected objects from the original image. The crops
are passed to a counting section, in which each crop is treated as an independent input
image. It is assumed that each crop contains a single detected object, and the counting
section outputs the parts count for that object. The assumption’s correctness naturally
depends on the performance of the object detection section. The basic composition of the
detection and counting network is demonstrated in Figure 2.

Figure 2. The Detection and Counting Network. The network includes two separate sections for ob-
ject detection and part counting, connected by an object re-sampling layer. See Sections 2.2.1 and 2.2.2
for module details.

The detection section is a re-implementation of the RetinaNet architecture, composed
of “Backbone”, “Find”, and “Where” modules, whose details are explained in Section 2.2.1.
The RoI-Align module receives as input the original image and a set of rectangle coordinates
of nd detected objects. By re-sampling the image according to the given coordinates, it
outputs a tensor of size s× s× nd of image crops, where s is the new object size (empirically
set to 640). Such resizing allows handling the significant variation in object size of the
different datasets without a need for data-specific configuration.

The counting section includes re-implementations of the two counters proposed in [8],
composed using “Backbone”, “Find”, and “Count” modules. We have experimented with
two different counters, one based on direct regression (Multiple Scale Regression-MSR)
and the other on explicit part detection (Detection+Regression-D+R). A specific network
contains either the MSR or the D+R counter, but not both. Modules re-used in different
sections (“Backbone” and “Find” appear in both the detector and counter sections) share
code and architecture, but not parameters. The counters and their composition using the
modules are described in Section 2.2.2.

2.2.1. Detection Architecture

The relevant modules for the detection section of the network are the following:
“Backbone”: A module used for creating a dense feature-rich representation of the

image. It is based on applying ResNet-50 [55] as a dense convolutional network followed
by an FPN on top of it. The FPN architecture generates a rich 5-scale feature pyramid
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representation of the input image, with the output tensors termed P3 − P7. These tensors
include similar representations of the original image in multiple octaves, with Pi twice
smaller than Pi−1 in its spatial dimensions and has 256 maps each. Therefore, they enable
object detection at multiple scales. In all experiments, we have used the ResNet-50 network
with weights pretrained on ImageNet and fine-tuned them.

“Find” (for detection): The module includes 4 convolutional layers {gi}4
i=1, with

256 filters each, culminating in an output map F by a fifth convolutional layer. It is trained
for spatially locating objects in an input tensor representation. Different output modes are
supported for the detection and count sections.

For the detection pipeline, it implements the fully convolutional classification subnet-
work of RetinaNet, predicting the object presence probability at each spatial position of
the input tensor. At each position, this probability is estimated for nine anchor rectangles
of predefined sizes and aspect ratios. The output tensor F is thus with the same spatial
dimensions as the input, but with nine score maps. The “Find” module processes indepen-
dently all the five pyramid tensors produced by the Backbone’s FPN, thus it produces 5
output tensors. It is trained with the Focal Loss, designed to address imbalance between
foreground and background classes during training [36].

“Where”: Like the “Find” module, this module processes all the pyramid tensors
P3 − P7, and produces 5 output tensors, by implementing the bounding box regression
subnetwork of RetinaNet. For each input tensor, it predicts for every position and possible
anchor (among the nine considered), a 4-dimensional bounding box refinement vector. The
vector includes corrections required for the bounding box to better match the object in
its (x, y, width, height) parameters. Inference is done by applying, on each of the inputs,
5 convolutional layers, where each keeps the same spatial dimensions as the input pyramid
tensor. The first 4 layers have 256 filters each, and the fifth has 4 filters (so the output in-
cludes 36 maps overall). It is trained by propagating a smooth-L1-regression loss matching
the predicted values to ground-truth rectangles—only for anchors with relevant objects.

“Get final bounding boxes”: This function accepts the output tensors of the “Find”
and “Where” modules and creates a refined list of predicted boxes containing presumed
objects. It filters boxes with predicted object probability higher than a threshold from
the “Find” module, and decodes the refined boxes for them according to the “Where”
module. A threshold of 0.7 is used as default, but it is tuned to maximize accuracy in
certain contexts (see Section 3.3.2). The predictions from all pyramid levels are merged,
and a non-maximum suppression procedure with a threshold of 0.3 is applied to yield the
final detections list.

2.2.2. Counting Architecture

Given an input image with a single object, the counting section outputs the count
value of its parts. Following the work in [8], we experimented with the implementation of
the MSR algorithm for direct regression, and a re-implementation of the D+R algorithm,
which predicts a heat map of part center locations in addition to counting them. In both
cases, the counting section starts with a second “Backbone” module receiving as input
detected object regions after resize from the ROI-align module.

MSR “Count”: In this module, the representation tensors P3 − P7 generated by the
“Backbone”, or a subset of them, are each sent to a direct regression module, so multiple
count estimations are produced based on different resolutions. This regression module
includes two 3× 3 convolutional layers with 256 output maps, where each keeps the same
spatial dimensions of its input, followed by Global Average Pooling (GAP), flattening the
maps to a 256× 1 representation which is fed into two fully connected layers in decreasing
sizes, 128 and 64, respectively. It outputs two neurons: the first predicts the expected count,
and the second estimates the variance of the error expected in prediction, using the loss
function suggested in [57]. Among the five count estimates made based on the considered
resolutions, the one with the lowest predicted variance for the input image is chosen.
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For the D+R variation, the count section includes a “Find” module variation described
next, and then a different “Count” module.

“Find” (for counting): This module has similar architecture to the “Find” module
used in detection, but it is used to find center points instead of bounding box rectangles.
The module operates only on the high-resolution pyramid scale (P3), and a single output
map of the same resolution is created, stating the probability of part presence at each
location. To learn this network, a ground truth heat map is created in training, with a
Gaussian kernel placed around each part’s center. Like in the detection “Find” module,
four convolutional layers are used, but then a single final map is predicted as output by
using a fifth convolutional layer with one filter. It is trained to mimic the ground truth heat
map using a dense L1 regression loss.

Following the work in [8], we tested the option of guiding internal layers by predicting
an intermediate heat map after each convolutional layer, and forcing it to mimic the ground
truth heat map with additional regression losses. When this is done, the intermediate
guiding heat maps are created with decreasing kernel size, so the heat map regression task
is cruder and simpler at initial layers.

D+R “Count”: This module gets from the “Find” module the predicted heat map
and the feature tensor g4 preceding it, and provides a count estimate based on them. It
is an implementation of the “Counting subnetwork” of the D+R pipeline of [8]. The heat
map is subjected to a smooth non-maxima suppression operation, keeping activity of the
most active points close to ones while all others are zeroed. The remaining active points
are object center predictions, and a global sum operation gives an initial detection-based
estimator of the count. In addition to this path, the tensor preceding the map is globally
summed to extract additional useful features, and the final count estimate is computed as
linear regression from these features and the detection-based estimate.

2.3. Average Count Estimation

For estimation of average part count, a possible approach may avoid part counting of
specific objects altogether. Such approach is discussed in Section 2.3.1. Another alternative
is to use an estimator of part-count-per-object, as the suggested network, but apply robust
mean estimation methods to its outputs. Such methods are discussed in Section 2.3.2.

2.3.1. Estimation with Global Counts

An alternative approach for obtaining the average of parts-per-object in a set of images
is as follows: (1) detect all the objects in the images and count them, (2) independently
detect all the parts and count them, and (3) divide the two counts to get the average of
interest. In this approach, mean parts-per-object estimation is reduced to plain detection
and can be carried with standard detection networks.

While simple, this approach suffers from several disadvantages compared to the two
staged approach. First, it does not include a resize mechanism enlarging the relevant
objects, thus detection of the small parts is more difficult and less reliable. In addition,
when parts are searched for in the entire image, and not only in the object bounding boxes,
part false alarms are more likely. Second, not all objects are “countable”, due to problems
of scale, blur or partial occlusion. For example, in many spikes only part of the spikelets
can be observed. Independent counting of parts is therefore likely to include parts which
do not belong to countable objects. If the detector is detecting only “countable” objects, the
division will produce an overestimation of the mean count. We test the independent count
idea empirically in Section 3.3.1.

2.3.2. Robust Mean Estimation

Assume a population of N object detections was used to produce a sample of S = {ci}N
i=1

part count estimates. Our task is to estimate the mean part count across true objects, but
the sample S contains a mixture of valid counts, emerging from correct object detections,
and irrelevant pseudo counts, created by false detections. False detections often emerge
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from partially occluded or mislocalized objects, and tend to produce lower part count
estimates. Plain averaging of the sample would hence produce a biased estimator of the
part count mean. The severity of the false counts problem can be reduced by using a
high threshold t over the detection confidence value, thus reducing the number of false
detections. However, the utility of this approach is limited: it reduces the sample size used
for mean estimation, and false detections, though in lower quantities, still remain.

While full separation between false and true detections is not possible, there are
clues softly differentiating between true and false counts, which may enable better mean
estimation. One such clue is the difference between count estimate distributions, with false
counts having a lower mean. A second clue is a difference in their detection confidence
score distribution. These values are provided by the detection module. For false object
detections, they often have lower values. We next present several alternatives for obtaining
robust mean estimators based on these clues.

Expectation Maximization (EM) for a mixture of Gaussians: We may assume that
the sample S arises from a mixture of two Gaussians. True counts arise from a Gaussian

distribution G(c|µ1, σ1) = 1√
2πσ1

exp( (c−µ1)
2

σ2
1

), and false counts from a second Gaussian

G(c|µ2, σ2). The probability of a count value c is thus given by

P(c | θ) = α · G(c | µ1, σ1) + (1− α) · G(c | µ2, σ2) (1)

where α is the probability of correct detection (the probability of a detection to reflect a real
countable object), and θ = {µ1, σ1, µ2, σ2, α} are the model parameters. The parameters θ
can be estimated by finding a maximum likelihood solution

θ∗ = argmaxθ log P(S|θ) = argmaxθ

N

∑
i=1

log P(ci|θ) (2)

As there is no closed form solution for this optimization problem, a popular strategy is
to estimate θ using an EM procedure. In this procedure, additional hidden binary variables
{hi}N

i=1 are introduced. If hi = 1, sample i is assumed to belong to a correctly detected
object, and if hi = 2, it belongs to a false detection. The parameter α is this framework is
interpreted as the prior probability α = p(h = 1), and we set it to 0.5 in our experiments
with this method. The EM procedure iterates between estimating wj

i = p(hi = j|ci, θ)

(that’s an Expectation step), and re-estimation of θ using the sample weights {wj
i}

N,2
i=1,j=1

(a Maximization step). The procedure is guarantied to converge to a local maximum
of the sample likelihood. Once θ has converged, max(µ1, µ2) can be used as the count
mean estimation, as we assume the average of true counts is larger than the average of
false counts.

Weighted average with detection confidence scores: Assume now that the sample is
of the form {(ci, si)}N

i=1, i.e., each count ci has an associated confidence value si from the
detection network module. A simple option for obtaining a mean estimator with more
weight on confident detections is the weighted average

∑N
i=1 si · ci

∑N
i=1 ci

(3)

Median-based scores: A common approach for reducing the exposure of mean es-
timation to outlier measurements is using the median instead of the average as a mean
estimator. For a simple Gaussian or otherwise symmetric distribution the median provides
an unbiased mean estimator, and it is significantly less vulnerable to the existence of false
measurements. The median idea can be simply extended to a confidence weighted sample.
In this generalization samples are sorted in ascending measurement (count) values, and
their confidence weights are normalized by defining s′i = si/ ∑N

j=1 sj so ∑N
i=1 s′i = 1. The

confidence-weighted median is the sample ci for which u(i) = ∑i
j=1 s′(i) = 0.5 if such an
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element exist. If not, the first element ci for which ui > 0.5 is found and the median is
computed as a confidence weighted average between this element and its predecessor

sj−1 · cj−1 + sj · cj

sj−1 + sj
(4)

Combining EM with confidence scores: The count distribution differences and the
confidence value are two different, and possibly complementary, sources of information for
mean estimation. We can combine them in the probabilistic EM-procedure if we assume
that the probability αi = p(hi = 1) of sample i to be a valid object detection is given by
the confidence value si. The EM algorithm can be easily extended to accept such sample-
dependent {αi}N

i=1 values as input instead of estimating a global parameter α. The full EM
procedure accepting example confidence values {αi}N

i=1 is presented in Algorithm 1.

Algorithm 1: Gaussian mixture EM with sample confidence values.

Input: Sample with confidence values {(ci, αi)}N
i=1, Initial parameters

θ = (µ1, σ1, µ2, σ2), Max iterations T
for t = 1,..,T do

Expectation step:
w1

i = αiG(ci |µ1,σ1)
αiG(ci |µ1,σ1)+(1−αi)G(ci |µ2,σ2)

, w2
i = 1− w1

i
Maximization step:
for j=1,..,2 do

µj =
∑N

i=1 wj
i ci

∑N
i=1 wj

i

, σj =

√
∑N

i=1 wj
i (ci−µj)2

∑N
i=1 wj

i

end
end
return θ

Softening of the confidence scores: The detection probability estimate provided by
the “find” module is often too confident (close to 1 or 0), in a manner that damages
the confidence-based methods suggested above. We suggest to calibrate it toward a
“softer” estimate as follows. For each candidate bounding box, the objecthood probability
confidence estimate s ∈ [0, 1] is derived from an output neuron of the network l ∈ R (the
“logit”) by a sigmoid functions, i.e.,

s = σ(l) =
1

1 + exp(−l)
, l = σ−1(s) = log

1− s
s

(5)

The logit l has positive values for bounding boxes with high objecthood probability and
negative values for boxes with low probability. The soften confidence probability is intro-
duced by multiplying the logit l with a constant β ∈ (0, 1) which makes it less extreme.
Explicitly the soften probability estimate sβ is obtained as a function of s by

sβ(s) = σ(βσ−1(s)) =
1

1 + exp(β log 1−s
s )

(6)

β is a hyperparameter tuned experimentally on a validation set. Empirical comparison
between the proposed mean estimation methods and the standard estimation provided by
simple averaging is provided in Section 3.3.

2.4. Training

The Backbone modules of the network were initialized using the weights previously
trained on Imagenet [58]. Each of the two main parts of the suggested network (the
detection section and the counting section) has its own loss function, and we do not
propagate gradient through the ROI-align layer. Two training options were considered:
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The first allows simultaneous training of the detector and the counter. In the second option,
the detection section is trained first, then its weights are frozen, and only then does the
training of the counting section begin. Preliminary experiments showed that simultaneous
training may slightly increase the counting error (Mean Relative Deviation (MRD), see
Equation (7)) in some cases, as the counter input objects are initially supplied by a non-
mature and variable detector. However, simultaneous training can be considered if training
time is an issue. We choose to focus on the results of the second approach since it allows us
to isolate counter performance from detector performance-several counting architectures
can be compared using exactly the same detector (see Section 3.1).

For each dataset, counting networks were trained for 300 epochs. When the detector
was trained simultaneously, only epochs in which the detector provided a recall value of at
least 30% on the validation set were considered. Among them, the best epoch was chosen
as the one with the lowest MRD, averaged across Intersection over Union (IoU) thresholds
of 0.3, 0.5, and 0.7, as measured on the validation set. This model was then tested on the
test set images, providing the reported results of the per-object-count for the three datasets.

All experiments were conducted using AMD Ryzen 2920X CPU, NVIDIA GeForce
RTX 2080 Ti GPU, CUDA 11.3 and PyTorch 1.2.

2.5. Evaluation

Detection performance is measured by the Average Precision (AP) metric [59]. An
object is considered to be found if its IoU is at least 0.5 with a ground truth object annotation.
For counting, let us denote the set of the models’ count predictions for the test set by {ŷi}N

i=1,
the set of ground truth counts by {yi}N

i=1, and ȳ = 1
N ∑N

i=1 yi is the mean ground truth
count. We estimate counting accuracy using the statistics of MRD and 1− FVU, known as
the fraction of explained variance, defined as follows:

MRD =
1
N

N

∑
i=1

[
|ŷi − yi|

yi
], 1− FVU = 1− ∑N

i=1(yi − ŷi)
2

∑N
i=1(yi − ȳ)2

(7)

The relative deviation states the count deviation as a fraction of the total count (the
count deviation percentage). We believe this metric is more informative for our datasets
than MSE or MAE as our task requires estimation of large numbers as there are dozens of
bananas per bunch, spikelets per spike, and berries per grape cluster. 1− FVU checks if
the quality of the predictor we use (its mean squared error in the nominator) is significantly
better than the trivial predictor of guessing that yi is always equal to the mean y (the mean
squared error of this predictor is the denominator-it is also the variance of y).

3. Results

The main results in the part-per-object counting tasks are presented at Section 3.1. In
Section 3.2, the relation between visual part count and actual part count is considered for
the case of banana counting in a banana bunch.

The task of population average count estimation is considered in Section 3.3, focusing
on the case of spikelet-in-a-spike count.

Ablation experiments, in which sharing some networks’ components between mod-
ules is considered, are presented in Section 3.4.

3.1. Detect-and-Count Pipeline Results

Based on the stages order of the suggested method, we start by describing object
detection results. Then, we report part counting results obtained with various counters.

3.1.1. Detection Results

A confidence threshold of 0.7 was chosen for the trained object detectors, to provide
high precision for objects sent to the counter. A high threshold was chosen, even at the
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expense of a lower recall, since our main goal was to detect only the countable objects.
Otherwise, allowing a lower confidence threshold may harm the counting results.

Table 3 shows the recall and precision of the detectors used on the test set. As can be
observed from the precision and recall statistics, for wheat spikes and grapes clusters the
detection problem is more difficult, due to the fine distinction required between countable
and non-countable objects.

Table 3. Test set recall and precision of the object detectors.

Dataset Number of Objects Recall Precision

Wheat spike 135 45.9% 74.7%

Banana bunch 43 81.4% 83.3%

Grape cluster 44 61.4% 49.1%

3.1.2. Parts-per-Object Counting Accuracy

We have experimented with variations of the two counting architectures suggested
in [8], described in Section 2. Counting modules were trained while keeping the detection
section fixed. Results of the tested counters are shown in Table 4, with the first two lines
presenting the results of the standard MSR and D+R counters, and the other lines showing
variations of them. It can be seen that the detection-based counter (D+R) is preferable for
the Banana and Grapes datasets, while direct regression (MSR) is superior on the Wheat
dataset. The MSR and D+R counters are able to achieve MRD values of 9.2–12.1% for the
three tasks (first two rows of Table 4). While for Wheat and Banana, other variations exists
with better accuracy, there is no consistent winner, and methods providing the best results
on average are the original MSR and D+R variations.

Table 4. Part counting results for the three datasets, compared to several counter ablations. The
first two rows show the results obtained by the original MSR (with 5 resolutions, P3 − P7) and D+R
approaches. The last four rows show the results of variations. For MSR we have tested the method
using fewer resolutions: 3 resolutions P3 − P5 and a single resolution P3 (the most detailed). For D+R
a variation in which the learned heat maps are generated with fixed kernel size (same radii) was
tested, as well as a version without guiding intermediate losses (no int. losses).

Counting Approach
Wheat Banana Grapes

MRD 1-FVU MRD 1-FVU MRD 1-FVU

MSR 11.6% 0.652 12.7% 0.375 14.7% 0.751

D+R 14.1% 0.641 12.1% 0.461 9.2% 0.831

MSR (P3) 11.4% 0.718 13.5% 0.341 16.0% 0.705

MSR (P3 − P5) 10.8% 0.745 13.4% 0.349 16.2% 0.696

D+R (same radii) 12.9% 0.684 11.5% 0.581 11.0% 0.822

D+R (no int. losses) 11.0% 0.759 13.1% 0.426 17.1% 0.664

We believe the superiority of D+R for banana and grapes and of MSR for wheat has
a simple explanation: detection of bananas and grape berries is easier than detection of
wheat spikelets, which are smaller and sometimes confused with spikelets of neighboring
spikes. The part detection results of the D+R method, presented at Figure 3, supports this
view. It can be seen that banana fruits and grape berries are simpler to detect, with AP of
0.89 and 0.88, respectively, obtained, while for spikelets it is only 0.61. A demonstration of
the networks D+R pipeline operation on typical images can be seen in Figure 4. As explicit
detection of the relevant parts is more difficult for wheat, the D+R method based on such
explicit detection is weaker for this dataset.
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Figure 3. Precision—Recall curves for parts detection, obtained by the D+R method. Unlike the
direct regression, this method provides explicit localization of the detected parts, evaluated in these
curves. In order to determine if a part detection is a hit or a miss we use the Percentage of Correct
Keypoints (PCK) criterion, introduced in [60] and applied as in [8].

Figure 4. Example of the network’s stages performance with the D+R pipeline. Top Row: Ba-
nana, Middle Row: Wheat, Bottom Row: Grapes. (1). Object detection (blue-ground truth, red-
predictions),(2). Getting image crops of the detected objects, (3). The final predicted heat map of the
part’s centers. White rectangle shows the detections of unannotated parts, found by the predicted
map, (4). Ground truth Gaussisan heat map of the object’s parts.
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3.2. Visual and Actual Counting

While for measurable wheat spikes the vast majority of spikelets are visible, banana
bunches and grape clusters are round objects, where typically a half of the parts are
occluded. To show that this gap between visual and actual count can be bridged, we model
here the relation between visible and actual number of parts for banana bunches. Ninety-
one images of 31 banana bunches whose parts were physically counted (see Section 2.1.2)
were used to train a simple linear regression of the form ŷ = ax + b, where ŷ is an actual
count estimate, x is the visible count, and a, b are the model parameters. The coefficients a, b
were chosen to minimize the squared error expectation over the training set E[ŷ− ygt)2]
with ygt the ground truth actual count. The model’s deviation was then estimated using a
leave-one-out cross-validation process.

Two models were trained: one for the inference of actual count from the visual ground
truth count, and another for inference from the D+R networks estimated count. The
obtained accuracy of actual count is reported in Table 5. It can be seen that the MRD for
actual count is rather close to the one reported for visual count in Table 4 and the accuracy
obtained based on the network’s estimations is very similar to the accuracy obtained based
on ground truth visual counts.

Table 5. Prediction of actual banana fruits count per bunch based on visual ground truth count, and
based on network estimations.

Predicting from MRD 1-FVU

Visual ground truth 12.42% 0.554

Network estimations 12.42% 0.541

3.3. Mean Count Estimation

In Section 3.3.1, we consider mean part-per-object count estimation based on global
object and part counts, as discussed in Section 2.3.1. In Section 3.3.2, we empirically test
robust mean estimation methods described in Section 2.3.2.

3.3.1. Empirical Estimation with Global Counts

We empirically tested estimation using global counts by training a detector for inde-
pendent detection of spikes and spikelets. This was done for the wheat dataset described
in Table 1 after converting dot annotations into bounding boxes for the spikelets. Each
image was considered as a separate field. An output example of this detector is presented
in Figure 5 (Left). For each image, an estimated value ŷd of the average spikelets per spike
in the image was computed as the ratio of the detected spikelets count and the detected
spikes count. To enable fair comparison with the two-stage method, which has internal
ability for linear regression, a regressor of the form ŷ = aŷd + b was trained. For the two
stage method, an estimate of the average (over image) spikelets-per-spike was computed
by simple averaging of the spikelet count over all detected spikes. Comparison between the
two methods, presented in Figure 5 (Right), shows that the 2-stage method is significantly
more accurate.
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ine Method MRD Pearson
Coefficient

ine Two Stage 11.50% 0.937
ine Independent 17.82% 0.565
ine

Figure 5. Left: Ground truth (blue) and predicted (red) bounding boxes for spikes and spikelets,
detected independently. The lack of object-part correspondence is clearly visible. Right: Accuracy
comparison between the two-stage and the independent detection methods. The Pearson coefficient
is computed between the two mean count estimators and the ground truth mean.

3.3.2. Robust Estimation

We experimented with the robust estimation methods described in Section 2.3.2 for
estimating mean spikelet-in-a-apike count, using the data of six wheat fields described in
Section 2.1.3.

Validation set and hyper parameter tuning. A validation set was created by sampling
∼40% of the images of plot 1 (138 objects) to choose the hyper parameters: the probability
softening parameter β and the confidence threshold t (See Section 2.3.2). For each method,
a 2D grid of the hyperparameters values for {β, t} was tested and the best configuration
was chosen. β = 0.2 was found optimal for all confidence-based methods. As for t, high
values were chosen, with t = 0.8 for “Confidence EM” and t = 0.9 for the other methods.
Figure 6 shows the relative error of all methods as a function of t for β = 0.2. Specifically,
the “EM with Confidence” method was found to be the best, and significantly preferable to
the standard average estimation.

Figure 6. Robust estimation methods’ relative error as a function of the confidence threshold t for
β = 0.2.

Test results. The test results for all methods are presented at Table 6. It can be seen that
“EM with Confidence” provides the lowest error in 4 of the 6 fields. It outperforms standard
average estimation in 5 of the 6 fields. Therefore, this method, combining both count
distribution modeling and network confidence information, is the clear winner. Among the
other methods, confidence-based averaging also clearly outperforms standard averaging,
and plain EM is comparable.
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Table 6. Relative error in the task of Mean spikelet-per-spike count estimation. Results are shown for
six fields, as obtained using standard averaging and suggested robust estimation methods. The best
results for each field are highlighted in bold.

Method Plot 1 (Test Set) Plot 135 Plot 128 Plot 114 Plot 109 Plot 115

Standard estimation 0.014 0.017 0.024 0.025 0.271 0.226

Median 0.030 0.038 0.002 0.025 0.265 0.226

Confidence Median 0.030 0.038 0.002 0.025 0.265 0.226

Confidence estimation 0.013 0.015 0.026 0.019 0.271 0.222

EM estimation 0.0128 0.033 0.144 0.028 0.242 0.167

EM with Confidence 0.002 0.012 0.068 0.008 0.242 0.175

3.4. Architecture Ablations

The suggested network includes two relatively independent detect and count sections,
each with its own copy of the backbone+FPN module. We next consider two versions
reducing this independence by sharing components between sections.

• “Shared Backbone”: The same Backbone (including FPN) module is used in both
the detection and counting sections of the network. This entails significant parameter
saving, but not saving in inference computational effort, as the backbone module is
applied multiple times as in the original network.

• “Crop from P3”: The Backbone module is dropped from the counting section. Instead,
the basic representation for this section is obtained by cropping the object area from
P3 (the highest resolution) of the detector backbone output, and resizing it to 80× 80
(the size obtained originally by applying the second backbone). For an image with No
objects, this version provides significant computational saving, as the backbone, which
is the most demanding module computationally, is applied only once instead of 1+ No
times. In addition, it enables end-to-end training of the network, as gradients from
the counting section can propagate into the detection section via the sampling layer.

The suggested versions were tested on the three datasets and compared to the baseline
approach. For each dataset, the baseline chosen is the one with the lowest MRD in Table 4.
The results are shown in Table 7, including counting and detection performance as both
are affected by the suggested changes.

It can be seen that the “shared backbone” option provides results which are only
slightly inferior to the original network in counting (mainly in the 1-FVU metric) and
detection (mainly recall) accuracy. This alternative may be useful if smaller models are
required due to implementation constraints. For the “Crop from P3” option. The results
are mixed: for the wheat dataset, the model provides useful results, with only slight
degradation w.r.t the baseline, while being much faster. For the banana and grape datasets,
the degradation in counting accuracy is much more significant.

The accuracy degradation can be explained by the resolution loss in the “Crop from
P3” condition. Instead of providing the counting module with feature maps created
using enlarged object crops (from the second Backbone), a resized piece from the original
representation map of the entire image is used. For the wheat data, this change is less
noticeable because the original objects (spikes) are smaller then banana bunches or grape
clusters, hence they gain less from the object resize in the standard network. This can be
visually seen when a D+R model is used. In Figure 7 part detections of a trained “Crop
from P3” D+R models for wheat and banana are shown. For the banana bunch, where
dozens of parts exist, the resolution is not enough to detect individual parts reliably.
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Table 7. Counting and detection results of network versions with shared components, compared
to the baseline network. The upper half of the table compares counting accuracy. The lower half
compares detection accuracy.

Baseline Shared Backbone Crop from P3

Counting MRD 1-FVU MRD 1-FVU MRD 1-FVU

Wheat (MSR, P3 − P5) 10.8% 0.745 11.1% 0.546 11.1% 0.613

Banana (D+R, same radii) 11.5% 0.581 10.60% 0.438 17.2% 0.115

Grapes (D+R) 9.2% 0.831 10.00% 0.690 19.3% 0.557

Detection Recall Precision Recall Precision Recall Precision

Wheat (MSR, P3 − P5) 45.90% 74.70% 34.81% 62.7% 30.4% 75.9%

Banana (D+R, same radii) 81.4% 83.3% 79.07% 82.9% 76.74% 89.2%

Grapes (D+R) 61.36% 49.1% 45.9% 74.7% 38.4% 68.0%

Figure 7. Visualization example of networks trained with the “Crop from P3” condition for banana
and wheat. Top Row: A Banana bunch, Bottom Row: A wheat spike. (a). Objects’ resized crop,
(b). The heat map predicted by the network, (c). The ground truth heat map.

4. Discussion

This work defined a general class of part-per-object count phenotyping problems, and
showed that they can be solved using a general network solution containing modules for
detection, resize, and counting. Trade-offs enabled by several alternative architectures,
mainly memory and speed versus accuracy, were described. Specifically end-to-end
training was not beneficial, as it required usage of lower resolution representation for the
part counting stage. How to train end-to-end without such resolution loss remains an
open challenge. The ability to go beyond visual part count to actual part count for round
voluminous objects was demonstrated for banana bunches, using simple linear regression.
We believe this solution is also general enough to be used in other problems.

For the problem of mean object part count, the two-staged network solution was
shown to be preferable to a simpler solution based on independent object and part counts.
It was found that robust estimation methods can help in overcoming the problem of false
counts created in a two-stage detect+count process, and a method which utilizes both
distribution differences and detection confidence information was the best alternative in
the experiments. The relative accuracy in this task clearly depends on the number of objects
detected in the population, as mean estimation benefits from sample size according to
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the law of large numbers. In our experiments fields contained 13–355 objects, and the
relative estimation accuracy was around 1% or lower for fields with 100 or more objects. In
future work, the developed modules of detection, counting and robust estimation can be
integrated with additional modules into a general modular system including also modules
for length estimation (based on 3D camera) and object segmentation. Such a system
may be used to provide flexible solutions for a wide variety of multi-stage phenotyping
problems. This can enable easier development and task transfer for new agricultural
problems. Another open problem is the adaptation of trained models to new agricultural
contexts, known to be a difficult issue for leaf counting [61].

A counting system can benefit from 3D data in several other ways. It may enable easy
separation of objects occluding one another, as can be seen, for example, in the grapes
image in Figure 4. The depth information can be used to separate more objects and make
them countable (object which are not well separated in RGB alone). In addition, depth
information can be integrated into the networks as an additional information channel,
which is likely to enhance accuracy.

When images are taken by a harvesting robot often multiple 3D cameras may be
required, providing improved performance [12]. With such a robot, part counting results
can be improved by designing a policy enabling the robot to take pictures closer to the
object of interest. Such considerations, however, are beyond the scope of this paper. We
suggest here a simpler method requiring a minimal number of images, which can be taken
by the farmer himself or by a robot moving in fixed paths near the crops of interest.

5. Conclusions

A network-based part-per-object counter was developed. The network first detects
the objects of interest, crops each of them from the original image, and resizes them.
Each crop is then treated as an independent input that is passed to a counting section
providing a part count for that object. It was successfully demonstrated that the counting
problems of spikelet-per-spike, banana-per-bunch, and grapes-per-cluster can be solved by
the proposed network with a good accuracy.

Specifically, the network provides a relative count error of 9.2–11.5% in the tested
tasks and explains a large fraction (0.58–0.83) of the data variability. The method is fairly
general, and we expect that other part-per-object-count problems can be addressed with
minor modifications. While there is no definite winner regarding the counter network
type, a detection-based network seems to provide higher accuracy when the resolution is
high enough to enable detection of distinct parts. Beyond part counting for specific objects,
it was shown that mean (over an object population) part count estimation can be done
by the system despite the presence of false alarms, and robust estimation methods were
developed for this purpose.
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