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Abstract: Maintenance of roadside ditches is important to avoid localized flooding and premature
failure of pavements. Scheduling effective preventative maintenance requires a reasonably detailed
mapping of the ditch profile to identify areas in need of excavation to remove long-term sediment
accumulation. This study utilizes high-resolution, high-quality point clouds collected by mobile
LiDAR mapping systems (MLMS) for mapping roadside ditches and performing hydrological
analyses. The performance of alternative MLMS units, including an unmanned aerial vehicle, an
unmanned ground vehicle, a portable backpack system along with its vehicle-mounted version, a
medium-grade wheel-based system, and a high-grade wheel-based system, is evaluated. Point clouds
from all the MLMS units are in agreement within the £3 cm range for solid surfaces and +7 cm range
for vegetated areas along the vertical direction. The portable backpack system that could be carried
by a surveyor or mounted on a vehicle is found to be the most cost-effective method for mapping
roadside ditches, followed by the medium-grade wheel-based system. Furthermore, a framework
for ditch line characterization is proposed and tested using datasets acquired by the medium-grade
wheel-based and vehicle-mounted portable systems over a state highway. An existing ground-
filtering approach—cloth simulation—is modified to handle variations in point density of mobile
LiDAR data. Hydrological analyses, including flow direction and flow accumulation, are applied to
extract the drainage network from the digital terrain model (DTM). Cross-sectional/longitudinal
profiles of the ditch are automatically extracted from the LiDAR data and visualized in 3D point
clouds and 2D images. The slope derived from the LiDAR data turned out to be very close to the
highway cross slope design standards of 2% on driving lanes, 4% on shoulders, and a 6-by-1 slope
for ditch lines.

Keywords: LiDAR; mobile mapping system; digital terrain model; slope analysis; longitudinal/cross-
sectional profiles; roadside ditch; drainage network

1. Introduction

Roadside ditches are designed to minimize local flooding risk by draining water
away from the roadway. In addition to transporting road runoff, roadside ditches play a
critical role in the transport of pollutants and the increase in peak storm flows since they
substantially alter the natural flow pathways and routing efficiencies [1,2]. An improved
management of roadside ditches is not only crucial to roadway maintenance but also lays
the foundation for assessing their impact on the natural hydrologic and nutrient transport
network. Traditional ditch management practices rely on visual inspections, which require
trained personnel and are time-consuming. Studies in New York and Ohio States within
the USA have identified the lack of roadside ditch maintenance due to limited resources in-
cluding time, labor, equipment, and funding [2,3]. It was noted that an estimated one-third
to one-half of the ditches in New York State were in fair to poor condition [2]. In Texas, the
condition of roadside assets was evaluated by trained inspectors, and the result revealed
that the number of vegetation and drainage maintenance elements negatively affects the av-
erage level of service [4]. While some studies proposed participatory assessment methods
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(i.e., utilizing data collected by citizen scientists) [5,6], the high-quality topographic data
acquired by remote-sensing techniques provides an alternative for automated condition
evaluation of roadside ditches. In addition to roadway maintenance, high-quality remote
sensing data is essential for the investigation of the hydrological effects of roadside ditches
and ultimately benefits flood risk assessment [7,8]. Despite ditch networks being increas-
ingly incorporated in distributed hydrologic modeling, the ability to accurately extract
drainage networks from remote sensing data remains challenging [9-12]. Specifically, the
challenge lies in (i) data acquisition methods that can acquire high-resolution, large-scale
data through efficient field surveys, (ii) ground-filtering algorithms to separate ground
and above-ground points in complex landscapes, and (iii) data reduction approaches for
extracting roadside information and characterizing ditches.

Mobile LiDAR mapping systems (MLMS) have emerged as a prominent tool for
collecting high-quality, dense point clouds in an efficient manner. Previous studies re-
ported on the use of MLMS for automated lane marking detection [13,14], road centerline
extraction [15], runway grade evaluation [16], debris/pavement distress inspection [17],
traffic sign extraction [18,19], and sight distance assessment [20,21]. Mapping ditches using
high-resolution LiDAR can be an efficient alternative to fielding surveys for prioritizing
and planning ditch maintenance. It also eliminates the unnecessary exposure of survey
crews to work hazards in traffic zones. More importantly, information from such real-world
data can facilitate broader road infrastructure improvement and bolster the foundation for
the development of smart cities. This study assesses the feasibility of using mobile LIDAR
techniques for mapping roadside ditches for slope and drainage network analyses. The
key contribution of this work is to evaluate different MLMS grades for ditch mapping and
characterization in terms of the efficiency of field survey, quality of the data acquired, and
ability to provide quantitative measures of the condition of roadside ditches. Furthermore,
data processing and analysis strategies for ground filtering and ditch line characteriza-
tion are developed. The rest of the paper is structured as follows: Section 2 provides
an overview of prior related research; Section 3 describes the data acquisition systems
and field surveys; Section 4 introduces the proposed ditch mapping and characterization
strategies; Section 5 presents the experimental results; Section 6 discusses the key findings;
Section 7 provides conclusions and directions for future work.

2. Related Work

Modern mobile LiDAR mapping systems consist of a variety of platforms, for instance,
unmanned aerial vehicles (UAV) and ground systems like trucks, tractors, and robots. Such
systems can rapidly collect data with unprecedented resolution and accuracy, which has led
to significant advances in various applications. This section starts with a review of existing
studies related to the application of mobile LiDAR for transportation. It then discusses the
different approaches for drainage network extraction and identifies current challenges.

2.1. Mobile LiDAR for Transportation Applications

The use of mobile LiDAR in transportation has been investigated in terms of data
acquisition, quality of the acquired data, existing and emerging applications, and chal-
lenges [22-26]. In general, MLMS has a clear advantage for its efficient field survey,
increased safety, and detailed information. Data collected by MLMS has been used for ex-
tracting a wide range of road features such as pavement surfaces, lane markings, road edges,
traffic signs, and roadside objects. It also facilitated applications including cross-section
extraction [27,28], pavement condition monitoring [17], sight distance assessment [20,21],
vertical clearance evaluation [22,29], and flood modeling in urban areas [7,8]. When com-
pared with airborne LiDAR, ground systems provide a higher horizontal accuracy owing to
their smaller laser footprint size. They also produce a much higher point density; however,
the point density decreases as the sensor-to-object distance increases [20,25]. In terms of
view angles, aerial systems have a better view of a gentle slope or flat terrain. Ground
systems, while they are more likely to miss the bottoms of ditches that cannot be seen from
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the road, have a better view of the sides of steep terrain and structures [25]. Reported
limitations of MLMS in the literature include high cost for initial investment and need of
significant research efforts in data processing and analysis [22-24].

2.2. Drainage Network Extraction

Remote sensing techniques have been the dominant tool for mapping natural stream
networks and man-made drainage ditches. Conventional spaceborne and airborne sys-
tems have a wide spatial coverage; however, the spatial resolution is relatively coarse.
Modern UAV and ground systems offer a significant improvement in spatial resolution
and accuracy, but field survey is limited to a local region. While most of the major rivers
can be properly mapped, the challenge lies in capturing narrow streams and man-made
ditches. Levavassur et al. [9,30] conducted exhaustive field surveys of man-made drainage
networks to investigate the extent to which drainage density depends on agricultural
landscape attributes such as topography and soil type. While aerial photographs assisted
in locating elements of the drainage network, the authors noted that remote sensing data
acquired by spaceborne/airborne systems may not be accurate enough to map ditches
that are less than a meter wide [9]. Hydrological analyses are common approaches for
automated drainage network extraction. Such analyses typically require a digital terrain
model (DTM) derived from remote sensing data through ground filtering. A DTM can
be generated from airborne LiDAR data [31-34], airborne photogrammetric data [11,34],
spaceborne radar data [12], UAV photogrammetric data [35], and most recently, UAV Li-
DAR data [36]. Then, the stream network can be extracted by calculating the flow direction
and flow accumulation for each DTM cell and using a threshold to determine DTM cells
that represent streamlines. All these studies suggest that using high-resolution DTM and
thus high-resolution remote sensing data provides more accurate results, especially when
the drainage network is dense.

Several studies investigated the performance of different ground-filtering algorithms
on data acquired by modern MLMS. Such datasets are expected to be very challenging
because of the large variation in point density and existence of above-ground objects and
land features of various sizes [37]. Serifoglu Yilmaz et al. [38] investigated the performance
of seven widely used ground-filtering algorithms on UAV-based point clouds from two
test sites with different slopes and various sizes of above-ground objects. Their result
showed that the cloth simulation filtering yields the best results for both test sites, and it
has the advantage that the involved parameters/thresholds are few and easy to set. Bolkas
et al. [39] compared UAV photogrammetry and terrestrial LIDAR for change detection
in vegetated areas. Several factors that affect multi-temporal surveys were examined,
including the accuracy and resolution of the original point cloud, ground-filtering algo-
rithms (Agisoft Metashape classification algorithm and cloth simulation filter), and point
cloud correspondence identification. They reported that the vegetation density has a major
impact on surface change estimation due to the varying level of penetration. In areas with
low vegetation, both ground-filtering algorithms derived acceptable results. In summary,
among existing ground-filtering algorithms, cloth simulation shows better performance
when handling data acquired by modern MLMS. Nonetheless, some modification is needed
for existing algorithms to deal with challenges such as variation in point density.

Although most of the existing literature has highlighted the importance of LiDAR in
generating elevation models, only a few have focused on characterizing ditches. In one
of the early efforts, Bailly et al. [40] utilized LiDAR-derived elevation profiles and carried
out curve-shape analysis to detect and classify any concavity within the elevation profiles
as a ditch or non-ditch entity. The ditch detection results were validated through ground
surveys. A high omission rate was observed due to vegetation covering ditches or the
LiDAR data not being dense enough. Rapinel et al. [41] derived DTMs from airborne LiDAR
data with varying point density using four interpolation methods. An object-based image
analysis approach was adopted for drainage network extraction and characterization.
The width and depth of ditches were estimated and validated by field measurements
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collected by a total station. Their results suggested that the quality of the drainage network
map depends primarily on the point density of LIDAR data rather than the interpolation
method used for DTM generation. When the point density fell below two points per square
meter, the ditch depth could become underestimated. Instead of using DTM, Broersen
et al. [42] used a classified airborne LiDAR point cloud to detect drainage networks. Two
approaches were proposed: 2D skeleton and 3D skeleton. The former took advantage
of the property that LIDAR has no return over water bodies and detected ditches filled
with water by finding the concave hull of the ground and vegetation points. The latter
utilized the 3D morphology of the landscape to identify ditches that are dry or covered by
canopy. One of the limitations of this study is the tendency to find and classify unexpected
concavities as watercourse. Roelens et al. [10,43] extracted drainage ditches directly from
irregular airborne LiDAR point clouds with an average point spacing of 0.10 m instead of
interpolated DTM. The LiDAR points were classified as ditch and non-ditch points using
a random forest classifier. Their approach requires radiometric features (RGB, intensity,
and vegetation indices) for improved results in grasslands. Balado et al. [44] segmented
the elements of road environment, including road surface, ditches, guardrails, fences,
embankments, and borders, from point clouds acquired by wheel-based MLMS using a
deep learning approach. In their study, elements with a large number of points were found
to have higher overall accuracy. Ditches, on the other hand, had low accuracy (65.4%) for
several reasons including ill-defined geometric features, variation in point density, and
presence of vegetation.

Previous studies suggested that the ground-sampling distance of the DTM or the
inter-point spacing of the LIiDAR data are critical for ensuring the quality of ditch mapping.
The point density of airborne systems may not be adequate to capture man-made drainage
ditches, which can be very narrow and densely covered with vegetation. This study utilizes
UAV and ground MLMS units, which have a much higher point density and accuracy
when compared to airborne systems for mapping roadside drainage ditches. Moreover,
ditch line characterization strategies using LiDAR data are developed.

3. Data Acquisition Systems and Dataset Description

This section starts with an introduction of the platform architecture, sensor integra-
tion, and system calibration of the MLMS units used in this study. Further, we provide
information regarding the field surveys and acquired datasets.

3.1. Specifications of Different MLMS Units

A total of six mobile mapping systems are used in this study: an unmanned aerial
vehicle (UAV), an unmanned ground vehicle (UGV), a backpack-mounted portable system
(hereafter called Backpack), the portable system mounted on a carrier vehicle (hereafter
called Mobile-pack), a medium-grade wheel-based system: Purdue wheel-based mobile
mapping system—high accuracy (PWMMS-HA), and a high-grade wheel-based system:
Purdue wheel-based mobile mapping system—ultra-high accuracy (PWMMS-UHA). All
the six MLMS units utilize direct georeferencing, i.e., the position and orientation infor-
mation of the onboard sensors are directly obtained by an integrated global navigation
satellite systems/inertial navigation systems (GNSS/INS). Figure 1 shows the six MLMS
units together with the onboard sensors. Table 1 lists the specifications of the georeferenc-
ing [45-49] and LiDAR units [50-54] for each MLMS including the approximate total cost
of the equipment.
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Figure 1. MLMS units used in this study: (a) unmanned aerial vehicle (UAV), (b) unmanned ground
vehicle (UGV), (c) Backpack, (d) Mobile-pack, (e) medium-grade system (PWMMS-HA), and (f)
high-grade system (PWMMS-UHA). All of these platforms are non-commercial systems designed
and integrated by the research group.
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Table 1. Specifications of the georeferencing and LiDAR sensors for each mobile LIDAR mapping system (MLMS) including
the approximate total cost.

UAV UGV Backpack] PWMMS-HA PWMMS-UHA
Mobile-Pack
GNSS/INS Applanix NovAtel NovAtel . NovAtel ProPakeé;
Sensors APX15v3  SPAN-IGM-S1  SPAN-CPT Applanix POS LV 220 IMU-ISA-100C
Sensor
Weight 0.06 kg 0.54 kg 2.28 kg 2.40 +2.50 kg 1.79 + 5.00 kg
Positional 2-5cm 2-3 cm 1-2cm 2-5cm 12 cm
Accuracy
Attitude
Accuracy 0.025° 0.006° 0.015° 0.015° 0.003°
(Roll/Pitch)
Attitude
Accuracy 0.08° 0.02° 0.03° 0.025° 0.004°
(Heading)
LiDAR Velodyne V\il]?g.}ige V\e/lﬁ);l_ }126 V\e/l{)l()i_ }126 Velodyne Riegl Z+F Profiler
Sensors VLP-32C High-Res High-Res High-Res HDL-32E VUX 1HA 9012
Sensor
Weight 0.925 kg 0.830 kg 0.830 kg 0.830 kg 1.0kg 3.5kg 13.5 kg
No. of
Channels 32 16 16 16 32 1 1
600,000 ~300,000 ~300,000 ~300,000 ~695,000
Pulse oint/s oint/s oint/s oint/s oint/s Up to Up to
repetition po po po po po 1,000,000 1,000,000
rate (single (single (single (single (single point/s point/s
return) return) return) return) return)
Maximum 200 m 100 m 100 m 100 m 100 m 135m 119m
Range
Range +3 cm +£3 cm +3 cm +3 cm +2 cm +5mm +2mm
Accuracy
ML(II\J/IS?S;OSt ~$60,000 ~$37,000 ~$36,000 ~$190,000 ~$320,000

While the specifications of a LIDAR sensor are critical in determining the resulting
point cloud density, sensor orientation and sensor-to-object distance play an important
role in defining the most relevant field of view which provides the highest number of
beam returns from a given region of interest (ROI). The UAV system is built in a way that
the rotation axis of the LiDAR unit is approximately parallel to the flying direction. The
UGV LiDAR unit, owing to its tilt and proximity to the ground, produces a highly dense
point cloud, but the useful scan area is limited to a very small field of view. The backpack
system has a similar orientation of its LIDAR unit as that of the UGV; however, the unit,
being positioned at least a meter above the ground, enables scanning a large surface area
for the same angle subtended at the LiDAR unit as that of the UGV. The LiDAR sensors
onboard the PWMMS-HA have only a slight tilt towards the ground, meaning each sensor
covers a very large ground surface area. One would expect the resulting point cloud from
PWMMS-HA to be sparse. On the contrary, as an advantage of having multiple sensors on
the platform, any sparsity of points due to the large ground scan area is compensated by the
additional LiDAR units through accurate system calibration. In case of the PWMMS-UHA,
which is outfitted with two high-precision profiler LIDAR units, the sensors have similar
tilts as the UGV. Additionally, the high pulse repetition rates of the LIDAR units allow
for obtaining a high-density point cloud of the ground surface. Thus, selecting a suitable
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MLMS with an optimal sensor configuration is the key to deriving high density point cloud
for a detailed mapping of roadside ditches from the acquired LiDAR data.

3.2. System Calibration of Different MLMS Units

The raw data collected by various MLMS units includes LiDAR range and intensity
measurements, camera images, and georeferencing information from the GNSS/INS unit.
In order to reconstruct accurately georeferenced and well-registered point cloud as well as
to integrate the information from cameras, a system calibration procedure that estimates the
relative position and orientation (hereafter, denoted as mounting parameters) between the
LiDAR and imaging sensors and the GNSS/INS unit is required. The mounting parameters
in this study are accurately estimated using the in-situ calibration procedure proposed
by Ravi et al. [55]. This procedure estimates the mounting parameters by minimizing
discrepancies among conjugate points, linear features, and/or planar features obtained
from different LiDAR units and cameras in different drive-runs/flight lines. Table 2
shows the range of standard deviation of estimated mounting parameters for all LIDAR
units/cameras onboard each MLMS from the system calibration. The lever arm component
along the Z direction (AZ) was determined by incorporating real-time kinematic global
navigation satellite systems (RTK-GNSS) survey measurements in the calibration model as
vertical control. The accuracy of the final ground coordinates for each MLMS at a specified
sensor-to-object distance was evaluated using the LIDAR Error Propagation calculator
developed by Habib et al. [56]. The results, as shown in Table 3, indicate that an accuracy
of under 5-6 cm is achievable from all systems.

Table 2. The range of standard deviation of the estimated system mounting parameters for all the LIDAR/camera units

onboard each MLMS.
UAV UGV B“kpgl:{(M"bﬂe' PWMMS-HA PWMMS-UHA
LiDAR unit Lever Arm +1.2-1.5cm +1.0-1.3 cm +0.5-0.8 cm +0.8-1.8 cm +0.5-0.6 cm
HOAR units Boresight 40.02-0.04° +0.02-0.08° +0.02-0.03° 40.02-0.05° +0.01-0.02°
C it Lever Arm +2.7-5.4 cm +3.7-6.5 cm +3.0-4.9 cm +3.8-6.6 cm +3.1-6.0 cm
amera untts Boresight +0.03-0.04° 40.12-0.14° +0.08-0.12° 40.07-0.14° +0.06-0.11°

Table 3. Expected accuracy of the ground coordinates evaluated using the LiDAR Error Propagation calculator [56].

UAV UGV Backpack/ PWMMS-HA ~ PWMMS-UHA
Mobile-Pack
Suggested sensor-to-object distance 50 m 5m 5m 30 m 30 m
Corresponding accuracy +5-6 cm +2-4 cm +2-3 cm +2-3cm +1-2cm
Accuracy at 50 m +5-6 cm +£3-7 cm +3-4 cm +3-6cm +2-3cm

Once the mounting parameters are estimated accurately, the LIDAR point clouds and
images captured by individual sensors onboard the systems can be directly georeferenced
to a common reference frame. More specifically, using the estimated mounting parameters,
together with the GNSS/INS trajectory, one can reconstruct a georeferenced LiDAR point
cloud, and obtain the position and orientation of the camera in a global mapping frame
whenever an image is captured. This capability allows for a forward and backward
projection between the reconstructed point cloud and camera imagery.

3.3. Dataset Description

A total of ten datasets were collected by different mobile LIDAR mapping systems
over three study sites. Table 4 lists the drive-run/flight configuration of each dataset. The
performance of ground MLMS units for mapping roadside ditches is assessed against one
of the well-studied aerial data acquisition methods, UAV, using datasets A-1, A-2, and A-3.
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Datasets B-1 to B-5 are used to evaluate the comparative performance between different
ground MLMS units and identify the most practical ditch mapping solution. Finally, the
proposed ditch line characterization strategies are tested using datasets C-1 and C-2.

Table 4. Specifications of acquired datasets by the different MLMS units for this study. WB: westbound; EB: eastbound.

ID Location Data System Number of ASveel:ge Ac ]?1?:?tion Length
Collection Date y Tracks P 4 . (mile)
(mph) Time (min)
A-1 13 March 2021 UAV 4 8 12 0.4
A-2 CR500N 26 March 2021 PWMMS-HA 2 29 4 0.5
A-3 26 March 2021 Mobile-pack 2 20 4 0.5
B-1 22 December 2020 PWMMS-HA 2 20 10 1.6
B-2 McCormick 22 December 2020 PWMMS-UHA 2 20 10 1.6
B-3 Rd. and 22 December 2020 UGv 4 4 30 0.5
B-4 Cherry Ln. 22 December 2020 Backpack 4 3 32 0.5
B-5 26 March 2021 Mobile-pack 2 26 4 1.1
C-1 SR8 26 March 2021 PWMMS-HA 2 47 37 13.2
C-2 26 March 2021 Mobile-pack 2 50 (WB)/30(EB) 35 13.2

Datasets A-1, A-2, and A-3 were collected over a county road, CR500N, in Indiana,
USA. An aerial photo of the study site is presented in Figure 2a, and an image capturing
location PA1 taken by the front left camera on the PWMMS-HA is shown in Figure 2b.
This study site is located at a densely vegetated hill, as can be seen from the aerial photo.
The average slope along the road is 6% (approximately 20 m elevation change over a
planimetric distance of 350 m). The roadside ditches are present on both sides of the road
and covered by short vegetation. At the time of this data acquisition, the indicated study
site was being reworked to change the S-curve of the road to a simple curve with the goal
of improving traffic safety. Cut trees for the road rework can be seen on the right side in
Figure 2b. The PWMMS-HA and Mobile-pack drove along the road in both directions. The
UAV was flown in four tracks over the study site with a flying height of 50 m above ground
and a lateral distance of 14 m between neighboring flight lines.

Datasets B-1 to B-5 were collected at the intersection of McCormick Road and Cherry
Lane adjacent to Purdue University’s campus in West Lafayette, Indiana, USA. The roadside
ditches are present on both sides of the road and are covered by short vegetation. The
width of these ditches ranges from 2 to 10 m, and their depth ranges from 0.2 to 1 m.
Figure 3 shows an aerial photo of the study site and an image capturing location PB3
taken by the front left camera on the PWMMS-HA. To evaluate the absolute accuracy
of the LiDAR-based mapping of the ditches, an RTK-GNSS survey was carried out at
four cross-section locations—PB1, PB2, PB3, and PB4 in Figure 3a. For each profile, the
team surveyed few points on the road and 20 to 25 points across the ditch. The team
also took few measurements on the sidewalk that was adjacent to the road in profiles
PB3 and PB4. The PWMMS-HA, PWMMS-UHA, UGV, and Backpack data were acquired
on the same date when the RTK-GNSS survey was conducted. The PWMMS-HA and
PWMMS-UHA covered all routes in both directions, so both datasets have two tracks. The
UGV and Backpack acquired data along the ditches on both sides of the road in forward
and backward directions, resulting in four tracks over the surveyed area. The Mobile-pack
data was acquired at a later date (approximately three months from the RTK-GNSS and
other MLMS surveys, refer to Table 4). The system drove along Cherry Lane and the south
part of McCormick Road in both directions. Location PB1 was not covered in this survey.
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CR500N

(b)

Figure 2. Study site at CR500N: (a) the surveyed area and cross-section location PA1 (aerial photo adapted from a Google

Earth Image), and (b) image of the surveyed area at location PA1 captured by one of the cameras onboard the PWMMS-HA.

Datasets C-1 and C-2 were collected over a state road, SR28, in Indiana, USA, with a
total length of approximately 13 miles. The roadside ditches are present on both sides of
the road and are covered by short vegetation and shrubs. A one-mile-long segment was
selected as the ROL Figure 4a shows an aerial photo of the ROI where PC1, PC2, PC3, and
PC4 are four cross-section locations that are used in the ditch line characterization analysis
(as will be discussed later in Section 5.3). Figure 4b is an image capturing location PC1
taken by the front left camera on the PWMMS-HA. As can be seen in the image, some
parts of the ditches and adjacent agricultural fields were flooded. Some cut-down trees
for an upcoming road maintenance project could also be seen. Both PWMMS-HA and
Mobile-pack drove westbound and eastbound on SR28, and therefore both datasets have
two tracks. The PWMMS-HA drove at an average speed of 47 mph in both directions. The
Mobile-pack drove at a higher speed (50 mph) westbound and at a lower speed (30 mph)
eastbound. This drive-run configuration was designed to investigate the impact of driving
speed on point density as well as to evaluate the system’s ability to map roadside ditches.
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wiliie

(b)

Figure 3. Study site at McCormick Rd: (a) surveyed area and cross-section locations PB1, PB2, PB3, and PB4 (aerial photo
adapted from a Google Earth image), and (b) image of the surveyed area at location PB3 captured by one of the cameras
onboard the PWMMS-HA.

(b)

Figure 4. Study site at SR28: (a) the one-mile-long region of interest and cross-section locations PC1,

PC2, PC3, and PC4 (aerial photo adapted from a Google Earth Image), and (b) image of the surveyed
area at location PC1 captured by one of the cameras onboard the PWMMS-HA.
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4. Methodology for Ditch Mapping and Characterization
The proposed framework for roadside ditch mapping is illustrated in Figure 5. The
main steps include (i) ground filtering; (ii) point cloud quality assessment; (iii) cross-
sectional profile extraction, visualization, and slope evaluation; and (iv) drainage network
and longitudinal profile extraction.
/ Point cloud /

|

I
/ RITEELES / Ground filtering
measurements
|
v v
Point cloud quality / Bare earth
. DTM
assessment 7 point cloud

I

Traiecto Cross-sectional v Hydrological
jectory profile extraction analyses

Estimated
accuracy
() Input
() Procedure
(] Output

Cross-sectional Drainage
profiles network
i : iv — .
Cross-sectional Longitudinal profile
profile visualization extraction
and slope evaluation
A 4
i Longitudinal
2D/3D profiles
visualization

with slope

Figure 5. Main steps of the proposed framework for point cloud quality assessment and ditch mapping/characterization.

4.1. Ground Filtering

The cloth simulation algorithm proposed by Zhang et al. [57] is modified to handle
the large variation in point density of mobile LiDAR data. The original cloth simulation
approach can be summarized in four steps: (i) turn the point cloud upside down, (ii) define
a cloth (consisting of particles and their interconnections) with some rigidness and place it
above the point cloud, (iii) let the cloth drop under the influence of gravity to designate
the final shape of the cloth as the DTM, and (iv) use the DTM to filter the ground from
above-ground points. Here, the rigidness of the cloth is constant, and its value is selected
based on the properties of the terrain. The modified approach redefines the rigidness of
each particle on the cloth based on the point density of an initial bare earth point cloud.
The approach is implemented in C++, and it consists of three steps: (i) using the original
approach to extract the bare earth point cloud, (ii) redefining the rigidness of the cloth based
on the point density of the bare earth point cloud, and (iii) applying the cloth simulation
again to obtain a refined bare earth point cloud and the final DTM.

An example of a DTM generated based on the original and modified approaches is
shown in Figure 6. A ground truth DTM was generated using the PWMMS-HA point cloud,
which has full coverage over the ROI (Figure 6a). The original and modified approaches
were then applied to generate DTM from the UGV point cloud (Figure 6b), where large
variation in point density can be observed. The side view of a cross-sectional profile is
illustrated in Figure 6¢ to highlight the obvious differences in the DTM due to sparse
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points. The original approach leads to artifacts in low point density areas, as the cloth
keeps dropping without being stopped by the ground. By manipulating the rigidness of
the cloth depending on the point density within the neighborhood, the modified approach
is able to generate a reasonable representation of the terrain, even if there are gaps in the
point cloud.

= - . &
|I.-.|l||.lla.|ll.-.-.-|--l --------

e Profile point cloud

e DTM (ground truth)

e DTM (original approach)
e DTM (modified approach)

Figure 6. Comparison between the original and modified approaches for digital terrain model (DTM) generation: (a) point
cloud from PWMMS-HA, (b) point cloud from UGV, and (c) side view of profile P1 showing point cloud, ground truth
DTM, and DTM based on the original and modified approaches.

4.2. Point Cloud Quality Assessment

Quality assessment involves evaluating the (i) relative accuracy: alignment between
point clouds from different MLMS units, and (ii) absolute accuracy: agreement between
the point cloud and independently measured ground control points.

In this study, two approaches are adopted to evaluate the relative accuracy: the
feature-based quality assessment [58] and the multiscale model-to-model cloud comparison
(M3C2) [59]. In Lin and Habib [58], the assessment of relative accuracy between two point
clouds quantifies the degree of consistency among conjugate points/features. Planar
features—terrain patches—extracted from the bare earth point cloud are used to provide
discrepancy information. The net discrepancy along the X, Y, and Z directions between
two point clouds is estimated using a least squares adjustment (LSA) with modified weight
matrix [60,61]. One should note that the reliability of these estimates depends on the
variation in the orientation/slope/aspect within the ROI. For transportation corridors,
the terrain patches are mostly flat or have a mild slope and thus provide discrepancy
information mainly along the vertical direction. Therefore, only the vertical discrepancy
estimation is reported. The M3C2 distance is a signed normal distance between two
point clouds along the local surface direction [59]. It represents the 3D variations in
surface orientation.

The absolute accuracy is assessed against manually collected RTK-GNSS measure-
ments (hereafter, RTK points). To investigate the LIDAR mapping accuracy over different
surfaces, we manually classify the LIDAR/RTK points into two classes: solid surface (in-
cluding road and sidewalk) and vegetated area. The elevation difference between each RTK
point and its closest LIDAR point is calculated, and the root-mean—-square error (RMSE)
and interquartile range are reported for each class.

4.3. Cross-Sectional Profile Extraction, Visualization, and Slope Evaluation

A cross-sectional profile with a given length and width can be extracted from the
point cloud, bare earth point cloud, and/or DTM at any location. The orientation of
the profile should be perpendicular to the direction of the road, which can be derived
using the vehicle trajectory information. Once the profile is extracted, the slope along the
profile is evaluated using the bare earth points; a sample result is shown in Figure 7. The
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profile and slope information extracted from LiDAR data can then be compared to the
design/standard values [62] to detect problems such as improper grade. Furthermore,
using the trajectory information, it is possible to crop and analyze a series of cross-sectional
profiles automatically based on a user-defined interval.

—— - - R DRI - E—

10 15 20 25 30 35 40
Distance (m)
e Point cloud
— Slope: less than 2% — Slope: greater than 5.5%
— Slope: 2% to 4% -~ No data

Figure 7. An example of cross-sectional profile colored by slope.

The key strength of mobile mapping systems lies in the integration of information
acquired from different sensors onboard the system. Since all the sensors” data are georef-
erenced to a common reference frame, multi-sensor/multi-date datasets can be effectively
fused. That is, the images capturing each profile can be identified, and the profile can be
back-projected onto the images. Consequently, the ditches can be visualized in both 3D
point clouds and 2D images, even though they are mainly detected and mapped in 3D
space. The image-based visualization is useful for effective mitigation of detected problems
during ditch mapping (e.g., deviation from the design profile of the ditch, improper grade,
and/or debris within the ditch).

4.4. Drainage Network and Longitudinal Profile Extraction

Conducting a drainage network analysis is critical because it signifies the location of
valley points along the ditches and also identifies potential drainage issues. The drainage
network through which water travels can be identified by analyzing the movement of
surface water, that is, calculating the flow direction and flow accumulation for each DTM
cell [63]. When enough water flows through a cell, the location is considered to have a
stream passing through it. Therefore, the drainage network can be extracted by applying a
user-defined threshold on the flow accumulation map.

A longitudinal profile is the one along the “valley” of a ditch; that is, it aligns with
the major stream in the drainage network. Figure 8a shows an example of the drainage
network extracted from MLMS data, from which some tributaries and discontinuities along
the major streams can be observed. To identify the location of the longitudinal profile,
we need to remove tributaries and connect major streams. Since our focus is the ditches
adjacent to a transportation corridor, the drainage network is expected to be a long, linear
feature. Line fitting is performed to estimate the line parameters, which, in turn, are used
to find the direction of the major stream. The drainage network is then rotated so that the
direction of the major stream is along the X-direction. The tributaries are removed based
on the assumption that within a small range of the X-coordinate of the rotated drainage
network, the elevation of the major stream is lower than the elevation of the tributaries.
A sample result is shown in Figure 8b. Next, we divide the streamlines into segments
and apply line fitting and outlier removal using a random sample consensus (RANSAC)
strategy [64], depicted in Figure 8c, assuming that the ditch line is approximately a straight
line within each segment. The longitudinal profile is extracted based on the location of the
inlier streamlines and best-fitted lines. Figure 9 illustrates a sample longitudinal profile
together with the detected lane marking that signifies the elevation of the road surface.
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Figure 8. Longitudinal profile extraction showing top view of: (a) drainage network, (b) drainage network after removing
tributaries, and (c) streamlines after outlier removal.
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Figure 9. An example of a longitudinal profile together with the detected lane marking.

5. Experimental Results

In this section, we present three experimental results. The first experiment compares
the ground systems to UAV in terms of their ability of mapping roadside ditches. The
second experiment evaluates the comparative performance of different grades of MLMS
and identifies the most feasible technique for ditch mapping. The third experiment tests the
proposed ditch line characterization approach using a one-mile segment along a state road.

5.1. Comparison between Ground and UAV Systems for Mapping Roadside Ditches

In this section, the capability of ground MLMS for monitoring roadside ditches is
assessed against a UAV-based MLMS. Datasets A-1 (captured by the UAV), A-2 (captured
by the PWMMS-HA), and A-3 (captured by the Mobile-pack) were used for this analysis.
The ground MLMS mapping products were compared to those from the UAV in terms of
the spatial coverage, point density, and relative vertical accuracy between point clouds.

The point cloud and bare earth point cloud were first generated from each dataset.
Figure 10a shows the point clouds from different MLMS units together with the trajectory.
While the ground MLMS units can only drive on road, and therefore the point cloud
coverage is limited to areas adjacent to the road, theoretically, there is no such limitation on
the flight movement for the UAV. For the datasets used in the current analysis, the UAV
was able to maneuver over a large area and obtain a wide spatial coverage. The bare earth
point clouds were extracted using the modified cloth simulation approach, and the results
are depicted in Figure 10b. A cross-sectional profile at location PAI1 was extracted from
the original and bare earth point clouds. The profile side view, as shown in Figure 11,
demonstrates that the LIDAR points were able to penetrate the vegetation and capture the
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terrain. Compared to the UAV, the ground systems are more prone to occlusions caused by
terrain features. Having said that, all three systems show complete coverage over the road
surface and ditches, which are the focus of this study.

PWMMS-HA Mobile-pack

-

~

UAV

— Trajectory -:-

(a)
PWMMS-HA Mobile-pack

145.0 1715 m

(b)

Figure 10. MLMS mapping products showing the (a) point cloud and trajectory and (b) bare earth point cloud from UAYV,
PWMMS-HA, and Mobile-pack.

The point density map for each dataset was derived based on the bare earth point
cloud since the latter is the one used for ditch line characterization. Figure 12 shows the
point density maps along with the trajectory for the UAV, PWMMS-HA, and Mobile-pack.
The statistics of point density, including the 25th percentile, median, and 75th percentile in
the surveyed area, are reported in Table 5. The ground systems produced much higher point
density as compared to the UAV due to the short sensor-to-object distance. PWMMS-HA
had the highest point density since its point cloud came from four LiDAR units. Looking
into the spatial pattern in Figure 12, the point density from the ground systems is high
near the trajectory, and it decreases drastically as the distance from the trajectory increases.
This spatial pattern is mainly related to the varying sensor-to-object distance and occlusion
caused by trees. For the UAV, in contrast, the sensor-to-object distance (i.e., flying height)
was almost constant throughout the data collection, and thus the variation in point density
across the surveyed area is much smaller.
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Figure 11. Side view of a cross-sectional profile at location PA1 showing the original and bare earth point clouds from
(a) UAV, (b) PWMMS-HA, and (c) Mobile-pack.
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Figure 12. Point density of the bare earth point cloud along with the trajectory from UAV, PWMMS-HA, and Mobile-pack.

Table 5. Statistics of the point density in the surveyed area.

Point Density (Points/m?)

Dataset 25th Percentile Median 75th Percentile
A-1 (UAV) 200 500 1000
A-2 (PWMMS-HA) 500 1800 6100
A-3 (Mobile-pack) 400 1200 3800

The relative vertical discrepancies between point clouds from different systems were
estimated using the terrain patches extracted from the bare earth point clouds. The size of
the terrain patches was set to 0.5 x 0.5 m. The square root of the a posteriori variance factor
(dv) and the estimated vertical discrepancy (d;) between the point clouds from different
MLMS units are reported in Table 6. The former reflects the noise level of the point clouds,
and the latter signifies the overall net discrepancy between the point clouds in question.
According to Table 6, the square root of the a posteriori variance factor suggests a noise
level of £4-8 cm. The discrepancy estimation shows that all datasets are in agreement
within a +3 cm range along the vertical direction. In addition, the discrepancies between
point clouds are estimated using the M3C2 distance. The two parameters, normal scale and
projection scale, were set to 0.5 m. The minimum point spacing between two core points
was set to 0.5 m. The statistics of the M3C2 distance, including mean, standard deviation,
RMSE, and median, are reported in Table 7. The results are in good agreement with the
discrepancy estimated using terrain patches.

Table 6. Estimated vertical discrepancy (d) and square root of a posteriori variance (dp) using A-1 (UAV), A-2 (PWMMS-HA),
and A-3 (Mobile-pack) datasets.

Number of . d; (m)
Reference Source Observations 7o (m) Parameter Std. Dew.
UAV PWMMS-HA 111,973 0.083 0.028 2.615 x10~4
UAV Mobile-pack 55,742 0.064 —0.008 2.864 x10~%

PWMMS-HA Mobile-pack 67,133 0.043 —0.029 1.671 x10~4
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Table 7. Discrepancy estimation based on model-to-model cloud comparison (M3C2) distance using A-1 (UAV), A-2
(PWMMS-HA), and A-3 (Mobile-pack) datasets.

Ref. S Number of M3C2 Distance (m)
elerence ource Observations Mean Std. Dev. RMSE Median
UAV PWMMS-HA 93,124 0.034 0.068 0.076 0.030
UAV Mobile-pack 50,123 0.001 0.074 0.074 —0.004
PWMMS-HA Mobile-pack 63,408 —0.028 0.062 0.068 —0.027

The discussion above reveals that all the MLMS units can achieve similar mapping
accuracy. The advantage of UAV is that it can maneuver over areas that are difficult to
reach by ground vehicles. Nonetheless, field surveys with ground MLMS units are more
efficient since the vehicles can travel at a higher speed and cover a longer extent. As long as
the ROl is limited to areas adjacent to the road, all the MLMS data can have full coverage
with a decent point density, which is adequate for monitoring roadside ditches.

5.2. Comparative Performance of Different Ground MLMS Units

In this experiment, the ability of different ground MLMS units to map roadside ditches
was evaluated. Datasets B-1 (captured by the PWMMS-HA), B-2 (captured by the PWMMS-
UHA), B-3 (captured by the UGV), B-4 (captured by the Backpack), and B-5 (captured by
the Mobile-pack) were used in this analysis. The comparative performance of different
MLMS units was assessed in terms of spatial coverage, relative vertical accuracy, and
absolute vertical accuracy.

Upon reconstructing the point cloud, the bare earth point cloud was extracted, and
the DTM was generated using the modified cloth simulation approach for each dataset.
Cross-sectional profiles at locations PB1, PB2, PB3, and PB4 were extracted from the point
cloud, bare earth point cloud, and DTM with a width of 1 m. Figure 13 shows the cross-
sectional profiles of the bare earth point clouds from different MLMS units at location PB3.
The spatial coverage of point clouds from different systems was evaluated qualitatively. As
can be observed in Figure 13, with sufficient number of tracks, each of the mobile mapping
systems demonstrates a complete coverage of the ditch. The UGV point cloud, despite
having full coverage over the ditches, has limited coverage of the road and areas that are
away from the tracks. For the UGV, the location of tracks with respect to the ditch plays a
crucial role. Since the UGV tends to be very close to the ground, it is prone to occlusions
caused by surrounding vegetation and terrain. The Mobile-pack has the least number of
points because it has only one LiDAR unit covering two tracks over the region of interest,
and the vehicle to which the sensor assembly was mounted traveled at a speed similar to
that of the PWMMS-HA and PWMMS-UHA. One thing to note is that the point density of
Mobile-pack drops rapidly when moving away from the trajectory. This is attributed to
the mounting orientation of its LIDAR sensor whose field of view was limited to focus on
objects in short range (refer to Figure 1d and the discussion in Section 3.1). Figure 14 shows
the side view of the cross-sectional profiles at locations PB1, PB2, PB3, and PB4 from the
bare earth point cloud. Qualitatively, point clouds from different MLMS units are aligned
well along the vertical direction. Over the ditch areas, the noise level of the point clouds is
higher due to different degrees of penetration on vegetation.
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Figure 13. Cross-sectional profiles at location PB3 from different systems showing the side view, top view, and the platform
tracks (black dashed lines).
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Figure 14. Cross-sectional profiles at locations PB1, PB2, PB3, and PB4 from different systems showing the side view of the

bare earth point cloud together with a one-meter-long zoom-in view over the road surface and ditch.

The relative vertical accuracy between point clouds from different MLMS units was
evaluated using planar features—terrain patches—extracted from the bare earth point
clouds over the surveyed area. The size of the terrain patches was set to 0.5 x 0.5 m. The
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PWMMS-HA dataset was selected as a reference because it had the largest spatial coverage.
Table 8 reports the square root of a posteriori variance factor (dp) and estimated vertical
discrepancy (d;) between the point clouds from different MLMS units. The square root of a
posteriori variance factor suggests a noise level of £1-2 cm. The discrepancy estimation
using the M3C2 distance is reported in Table 9. The normal scale, projection scale, and
minimum point spacing between two core points was set to 0.5 m. Both the feature-based
approach and M3C2 distance suggest that the point clouds from different MLMS units
exhibit a good degree of agreement with an overall precision of £1-3 cm.

Table 8. Estimated vertical discrepancy (d,) and square root of a posteriori variance (dy) using B-1 (PWMMS-HA), B-2
(PWMMS-UHA), B-3 (UGV), B-4 (Backpack), and B-5 (Mobile-pack) datasets.

Number of N d; (m)

Reference Source Observations 7o (m) Parameter Std. Dev.
PWMMS-HA PWMMS-UHA 13,610 0.010 —0.013 8711 x 1075
PWMMS-HA UGV 4737 0.021 0.007 3.385 x 1074
PWMMS-HA Backpack 12,480 0.012 —0.027 1.137 x 10~4
PWMMS-HA Mobile-pack 11,539 0.018 —0.019 1.750 x 10~%

Table 9. Discrepancy estimation based on M3C2 distance using A-1 (UAV), A-2 (PWMMS-HA), and A-3 (Mobile-

pack) datasets.

Number of M3C2 Distance (m)

Reference Source Observations Mean Std. Dev. RMSE Median
PWMMS-HA PWMMS-UHA 11,279 —0.012 0.013 0.018 —0.013
PWMMS-HA UGvV 4018 0.012 0.028 0.031 0.008
PWMMS-HA Backpack 10,272 —0.029 0.017 0.033 —0.029
PWMMS-HA Mobile Backpack 10,261 —0.021 0.022 0.031 —0.022

The absolute accuracy of the point cloud from different MLMS units was assessed
against the RTK-GNSS survey. Figure 15 shows the side view of the RTK points together
with the bare earth point cloud and DTM from each MLMS at location PB3. Through visual
inspection, one can see that the DTMs trace the terrain well and are in good agreement with
the RTK points along the vertical direction. As mentioned in Section 4.2, the LIDAR/RTK
points are classified into two classes: solid surface (including road and sidewalk) and
vegetated area. The elevation difference between each RTK point and its closest LIDAR
point is calculated, and the interquartile range is visualized, as shown in Figure 16. The
variance of elevation differences is small for solid surfaces and large for vegetated areas.
The vertical accuracy was found to be £1 cm (PWMMS-HA), £1 cm (PWMMS-UHA),
£2 ecm (UGV), +£1 em (Backpack), and +2 cm (Mobile-pack) for solid surfaces. For ar-
eas with vegetation, the vertical accuracy was found to be 5, 7, 7, +4, and £7 cm
for PWMMS-HA, PWMMS-UHA, UGV, Backpack, and Mobile-pack, respectively. The
PWMMS-HA and Backpack, despite with cm-level accuracy LiDAR units, had a slightly
better performance, mainly attributed to better penetration of vegetated surfaces due to
their higher point density and larger beam divergence angle of the Velodyne units.
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Figure 15. Cross-sectional profile at location PB3 showing the point cloud, DTM, and real-time kinematic global navigation
satellite systems (RTK-GNSS) survey points.
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Figure 16. Statistics of elevation difference between RTK-GNSS surveyed points and LiDAR points for (a) PWMMS-HA,
(b) PWMMS-UHA, (c) UGV, (d) Backpack, and (e) Mobile-pack with residual plots of range, 25th percentile, median, and
75th percentile.

In this section, the spatial coverage, relative vertical accuracy, and absolute vertical
accuracy of point clouds from five ground MLMS units were evaluated. The results
suggest that all the MLMS units can have a complete coverage of the roadside ditches
with a sufficient number of tracks. UGV is less desirable because it is prone to occlusions.
The ditch-mapping accuracy of different MLMS units was found to be similar. Systems
with high-end LiDAR units are not necessarily better for mapping roadside ditches. In
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terms of field survey, UGV and Backpack are not practical for mapping long extents of
transportation corridors. Consequently, the PWMMS-HA and Mobile-pack are practical
solutions for mapping roadside drainage ditches.

5.3. Ditch Line Characterization Using LiDAR Data

The previous section concluded that the PWMMS-HA and Mobile-pack are more
appropriate for capturing roadside ditches. In this experiment, the proposed ditch line
characterization was tested using data acquired by the two systems: datasets C-1 (collected
by PWMMS-HA) and C-2 (collected by Mobile-pack). The results for the one-mile-long
ROI are presented in this section, showing:

e  bare earth point cloud and corresponding DTM;
e  cross-sectional profiles in 3D and 2D, together with the slope evaluation results; and
e drainage network and longitudinal profiles.

Upon reconstructing the point cloud, the bare earth point cloud and DTM were
generated for each MLMS dataset using the modified cloth simulation approach, and
the corresponding point density map was derived based on the bare earth point cloud.
Figure 17 show the point cloud (with trajectory), bare earth point cloud, DTM, and point
density map (with trajectory) from PWMMS-HA and Mobile-pack over an area covering
location PC2 (see Figure 4). The bare earth point cloud is a subset of the point cloud, and
therefore a non-uniform distribution of the points can be observed (see Figure 17b). The
DTM is a rasterized dataset and therefore has a uniform distribution within the ROIL In
Figure 17c, the DTM based on the modified cloth simulation approach captures the terrain
even though there are some gaps in the point cloud. Prior to ditch line characterization, we
inspected the point density of the bare earth point cloud (Figure 17d) from the two MLMS
units. For both systems, the point density decreases as the distance from the trajectory
increases. The degradation in point density for Mobile-pack is much larger than that of the
PWMMS-HA. This is mainly related to the LIDAR unit orientation on the platforms, as we
noted earlier. As shown in Figure 17d, PWMMS-HA has a decent point density up to 20 m
to the left and right of the road edge. Mobile-pack, on the other hand, mainly covers an area
within 6 m from the road edge. In this study site, the roadside ditches are typically present
within 5 m from the road edge. Therefore, both systems have full coverage over the ditches
for subsequent analysis. Another pattern that can be observed from the Mobile-pack point
density map is the consistently lower point density westbound compared to eastbound.
This is a result of the different driving speeds—50 mph westbound and 30 mph eastbound.

Cross-sectional profiles at locations PC1, PC2, PC3, and PC4 were extracted, and the
slope along each profile was calculated. Sample results showing profile PC2 are visualized
in Figure 18. The profile side view shown in Figure 18a demonstrates that the LIDAR
points were able to penetrate the vegetation and capture points below the canopy. The
PWMMS-HA produces a denser point cloud as compared to the Mobile-pack, yet the DTMs
derived from both systems are compatible. The results indicate that the modified cloth
simulation approach can produce a reliable terrain model as long as we have a sufficient
number of points over the ROL The slope along the profile was calculated based on the
DTM points. Figure 18b depicts the profile PC2 colored by the slope along with lane
markings (detected based on the approach proposed by Cheng et al. [13]) that signify the
road boundaries. The slope evaluation results from the two MLMS units are consistent
with the standard values: 2% on driving lanes, 4% on the shoulder, and 6-by-1 gradation for
ditch lines. Figure 18c shows the back-projected DTM points on an image captured by the
front left camera onboard the PWMMS-HA. The back-projected points coincide with the
corresponding features in the image, which verifies the reliability of the system calibration.
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Figure 17. LiDAR-based products from PWMMS-HA and Mobile-pack (showing an 80-m long area near location PC2):
(a) point cloud and trajectory, (b) bare earth point cloud, (c) digital terrain model (DTM), and (d) point density of the bare
earth point cloud and trajectory.

The hydrological analyses including flow direction and flow accumulation were per-
formed using ESRI's ArcGIS [65]. Figure 19 depicts the drainage network map together
with the detected lane markings, using the bare earth point cloud as a base map. As can be
seen in the figure, the drainage networks are aligned well with the ‘valley’ of the ditches.
Subsequently, longitudinal profiles were extracted from the drainage network by connect-
ing major streams and removing tributaries. Figure 20 visualizes the longitudinal profiles
and the lane markings on the left and right side of the road (when driving eastbound)
where the green line, red line, and blue line are the profile from PWMMS-HA, profile from
Mobile-pack, and detected lane marking, respectively. The longitudinal profiles extracted
from the PWMMS-HA and Mobile-pack data are compatible, as the green and red lines are
almost aligned with each other. Moreover, the grade of the ditch line follows the grade of
the road, and the elevation of the ditch line is consistently lower than the road centerline.
Six cross-sectional profiles at locations PC1 to PC6 were also extracted and visualized in
Figure 21, both in 3D and 2D. Profiles at locations PC1, PC2, PC3, and PC4 (see Figure 4)
were extracted at an interval of 400 m. Locations PC5 and PCé show areas where the
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elevation of the ditch line is very close to that of the road edge line, as can be seen in
Figure 20. Based on the 2D and 3D visualization shown in Figure 21, location PC5 is an
intersection and thus there is no ditch on the right side of the road. Location PC6 shows an
area where the ditch on the left side of the road is very shallow and can barely be seen.
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Figure 18. Cont.
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Figure 18. Cross-sectional profile at location PC2: (a) point cloud and DTM profiles, (b) slope
evaluation results together with lane marking points, and (c) image with back-projected DTM and
lane marking points. The lane marking points are extracted from the point cloud using the approach
proposed by Cheng et al. [13].
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Figure 19. Drainage network (in black) together with detected lane markings (in blue) superimposed on the bare earth
point cloud (colored by height).
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Figure 20. Longitudinal profiles from PWMMS-HA and Mobile-pack data together with the detected lane marking showing:
(a) the ditch and road edge line on the left and (b) the ditch and road edge line on the right when driving eastbound.

The strength of MLMS units for characterizing roadside ditches lies in the ability to
(i) visualize the profiles in 3D point clouds as well as 2D images, and (ii) incorporate other
information derived from MLMS data (for example, the detected lane markings). Such
capability leads to a thorough understanding of roadside drainage conditions, which is
the key to prioritizing and planning maintenance. In addition, with the proposed ditch
line characterization approach, the relatively low-cost system (Mobile-pack) can achieve
similar performance as compared to PWMMS-HA.

In this section, the performance of PWMMS-HA and Mobile-pack for roadside ditch
characterization was evaluated. The advantage of PWMMS-HA is that the point cloud has
a more uniform density and a larger coverage (up to 20 m from the road edge). That is, in
addition to the roadside ditches, the PWMMS-HA point cloud can provide information
on the areas adjacent to the ditches. Such information is helpful for investigating the
causes of local flooding. Nevertheless, both PWMMS-HA and Mobile-pack point clouds
have adequate spatial coverage for ditch line characterization. The cross-sectional profiles,
drainage network, and longitudinal profiles extracted from both MLMS units are shown to
be compatible.
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Figure 21. Cross-sectional profiles shown in 3D (side view and colored by slope) and the images from (a) PWMMS-HA and

(b) Mobile-pack.

6. Discussion
6.1. Comparative Performance of Different MLMS Units

In this study, the performance of five alternative MLMS units, including UAV, UGV,
Backpack, Mobile-pack, PWMMS-HA, and PWMMS-UHA, was evaluated. Table 10 sum-
marizes these MLMS units along with their merits and shortcomings. The main difference
between aerial and ground systems is the view angle. The aerial systems are less prone
to occlusions by terrain and have a relatively uniform point density. However, canopy
cover (especially those caused by trees) is the main limitation. More specifically, UAV
LiDAR may not have adequate penetration to the ground to capture ditches that are below
the dense canopy. Ground systems, in contrast, are more likely to suffer from occlusions
caused by terrain and above-ground objects. The point density from ground systems varies
based on the sensor-to-object distance. However, the impact of canopy cover is less. In
terms of field survey, aerial systems can maneuver over areas that are difficult to reach with
ground vehicles. Currently, UAV surveys are limited to a relatively small coverage area
due to line-of-sight regulations. Nonetheless, with the ever-changing technology as well as
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aviation-related policies, the possibility for UAVs to operate over a broader range is not
unforeseeable. Among the ground systems, wheel-based systems that can travel at a higher
speed and cover a longer extent are more practical for field surveys. Considering the cost
of the systems, the Mobile-pack is the most cost-effective solution for ditch mapping.

Table 10. Comparison of different MLMS units showing their merits and shortcomings.

System Platform Pros Cons
e  Bird’s-eye view (good for areas with
mild slope)
) Uniform point density e  Prone to occlusions by canopy cover
UAV Aerial e  Can maneuver over areas that are e  Relatively low point density
difficult to reach by ground vehicles
e  Relatively low-cost
+  tigh o ey
uGv Wheel-based e  Relatively low-cost & . PO y
Not practical for mapping long extent
Frone o cdusions b i
Backpack Portable e  Relatively low-cost ge van po ty
Not practical for mapping long extent
High point density

Mobile-pack

Can travel at a higher speed and Prone to occlusions by terrain

Wheel-based cover a longer extent e  Large variation in point density

e  Relatively low-cost

e  High point density e  Prone to occlusions by terrain
PWMMS-HA Wheel-based e Can travel at a higher speed and e  Large variation in point density
cover a longer extent e  Expensive
High point density e  Prone to occlusions by terrain
PWMMS-UHA Wheel-based e  Cantravel at a higher speed and e  Large variation in point density
cover a longer extent e  Expensive

6.2. Potential of Mobile LiDAR Data for Flooded Region Detection and Flood Risk Assessment

Standing water is an indication of drainage issues/high flooding risk. Therefore, the
ability to identify such areas is critical for prioritizing and planning maintenance. Based
on the hypothesis that LIDAR has zero return over water bodies, flooded regions can be
identified by detecting areas where LiDAR points are absent. With the ability of 2D-3D
cross-visualization, the reported ROIs can be visualized both in 3D point cloud and 2D
images. An example of potential flooded region detection and visualization is shown in
Figure 22. The image-based visualization helps to associate any environmental factors
that lead to flooding. Moreover, with the proposed modified cloth simulation approach,
a reliable, high-resolution DTM can be generated. This DTM serves as a key element for
hydrological analyses and facilitates flood risk assessment.
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Figure 22. An example of potential flooded region visualized in: (a) 3D point cloud and (b) 2D image.

7. Conclusions and Recommendations for Future Work

This paper presented an evaluation and application of mobile LiDAR in mapping
roadside ditches for slope and drainage analyses. The performance of different grades
of mobile LiDAR mapping systems was assessed in terms of spatial coverage, relative
vertical accuracy, and absolute vertical accuracy. All the systems have complete spatial
coverage over the roadside ditches with sufficient drive-runs/flight lines. Point clouds
from different MLMS units, including an unmanned aerial vehicle, an unmanned ground
vehicle, a portable backpack system along with its vehicle-mounted version, a medium-
grade wheel-based system, and a high-grade wheel-based system, are in agreement within
a £3 cm range along the vertical direction. The absolute vertical accuracy for all the MLMS
units was found to be 3 cm for solid surfaces and +7 cm for vegetated areas. Field surveys
with the wheel-based and vehicle-mounted portable systems are more efficient and can be
scaled up to cover a large area that is impractical with UAV, UGV, and backpack surveys. To
an even greater extent, the low cost of the vehicle-mounted portable system in contrast to
the more sophisticated platforms, the medium-grade and high-grade wheel-based systems,
makes the former even more justifiable for its application in ditch line mapping.

A framework for ditch line characterization, including (i) cross-sectional profile extrac-
tion, visualization, and slope evaluation and (ii) drainage network and longitudinal profile
extraction, is proposed and tested using datasets acquired by the medium-grade wheel-
based and vehicle-mounted portable systems. An existing ground-filtering approach, cloth
simulation, is modified to handle variations in point density of the mobile LiDAR data.
Drainage analysis was conducted to identify ditch lines and detect any potential drainage
issues. The cross-sectional/longitudinal profiles of the ditch were automatically extracted
from LiDAR data and visualized in both the 2D image and 3D point cloud. The slope along
the profile was calculated, reported, and compared to standard values. These results, when
combined with other information derived from MLMS data, lead to a thorough under-
standing of highway conditions, which is helpful for planning highway maintenance. If
multi-date datasets are available, the proposed framework can be implemented to identify
changes in the 2D location as well as the elevation/slope of the ditches. This can signal the
presence of sediments/debris in the ditch or the erosion of the ditch line material.

Currently, our analysis is solely based on topographic data. In the future, it is possible
to incorporate weather and hydrological data and perform flood simulation to identify
areas with flooding risk. Future research will also focus on comparative analysis of mapped
ditch profiles and as-built drawings, which would signify how the mapped profiles deviate
from the designed profiles. Furthermore, for all the MLMS units discussed in this study,
in particular, the vehicle-mounted portable system, owing to its portability, one of the
future activities will investigate different orientation options of the LiDAR unit to achieve
optimized coverage (and point density) of roadside ditches while maximizing the data
acquisition throughput of the MLMS.
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