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Abstract: The CCI Soil Moisture dataset (CCI SM) is the most extensive climate data record of satellite
soil moisture to date. To maximize its function as a climate benchmark, both long-term consistency
and (model-) independence are high priorities. Two unique L-band missions integrated into the
CCI SM are SMOS and SMAP. However, they lack the high-frequency microwave sensors needed
to determine the effective temperature and snow/frozen flagging, and therefore use input from
(varying) land surface models. In this study, the impact of replacing this model input by temperature
and filtering based on passive microwave observations is evaluated. This is derived from an inter-
calibrated dataset (ICTB) based on six passive microwave sensors. Generally, this leads to an expected
increase in revisit time, which goes up by about 0.5 days (~15% loss). Only the boreal regions have an
increased coverage due to more accurate freeze/thaw detection. The boreal regions become wetter
with an increased dynamic range, while the tropics are dryer with decreased dynamics. Other regions
show only small differences. The skill was evaluated against ERA5-Land and in situ observations.
The average correlation against ERA5-Land increased by 0.05 for SMAP ascending/descending and
SMOS ascending, whereas SMOS descending decreased by 0.01. For in situ sensors, the difference is
less pronounced, with only a significant change in correlation of 0.04 for SM SMOS ascending. The
results indicate that the use of microwave-based input for temperature and filtering is a viable and
preferred alternative to the use of land surface models in soil moisture climate data records from
passive microwave sensors.

Keywords: soil moisture; effective temperature; SMAP; SMOS; LPRM; passive microwave radiometry

1. Introduction

The ESA CCI Soil Moisture dataset (CCI SM) [1] is the most extensive climate data
record (CDR) of satellite soil moisture (SM) to date, and consists of merged SM retrievals
from active and passive microwave satellite sensors all the way back to 1978 [2,3]. In 2010,
SM was recognized as an essential climate variable (ECV) by the Global Climate Observing
System [4] due to its important role in both land-atmosphere feedbacks on several time
scales, and vegetation dynamics on the global scale.

In order to maximize the full development potential of a CDR such as the CCI SM,
prioritization of long-term consistency and model independence is needed. If fulfilled, the
CDR could be used as a stand-alone climate benchmark, as well as a means to assess state-
of-the-art climate and weather models. For example, the Earth System Model evaluation
tool [5,6] exploits SM among many other ESA CCI variables to evaluate models in the

Remote Sens. 2021, 13, 2480. https://doi.org/10.3390/rs13132480 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1697-8321
https://orcid.org/0000-0003-3796-149X
https://orcid.org/0000-0002-6655-0588
https://doi.org/10.3390/rs13132480
https://doi.org/10.3390/rs13132480
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13132480
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13132480?type=check_update&version=1


Remote Sens. 2021, 13, 2480 2 of 16

Coupled Model Intercomparison Project (CMIP), helping to improve our understanding of
the past, present, and future climate.

Two important satellite missions integrated into the CCI SM are the ESA Soil Moisture
and Ocean Salinity mission (SMOS) [7] and the NASA Soil Moisture Active Passive mission
(SMAP) [8]. These missions are distinguished by their unique L-band (1.4 GHz) radiome-
ters, which are theoretically more suitable for soil moisture retrieval than the previously
available higher frequencies such as C-, X-, and Ku-band (6.9 to 18.0 GHz) due to their
superior vegetation penetration and deeper sensing depth.

However, these missions lack the onboard sensors needed to determine the effective
temperature, an important input parameter for many soil moisture retrieval models, e.g.,
the Single-Channel Algorithm (SCA) [9], L-Band Microwave Emission of the Biosphere
(L-MEB) [10], SMAP Dual-Channel Algorithm (DCA) [11], SMOS-INRA-CESBIO (SMOS-
IC) [12], SMOS Neural Networks (SMOS-NN) [13], and the Land Parameter Retrieval
Model (LPRM) [14]. Therefore, the retrievals from the current L-band missions make use
of temperature and filters derived from global Land Surface Models (LSM) [15]. For a
CDR that should function as an independent climate benchmark, this is a disadvantage.
However, multi-frequency sensors such as AMSR-2 are capable of retrieving the effective
temperature (Tmw) [16]. These sensors provide filtering for snow/frozen conditions [17]
through the optimal use of higher frequency channels, e.g., Ku-, K-, and Ka-bands. This,
for example, is already standard in the baseline algorithm for the CCI SM [18], i.e., LPRM,
for retrievals from non- L-band missions.

Within this study, the aim is to evaluate the impact of replacing the LSM based input
for L-band SM retrievals with one that comes from passive microwave observations, in
order to develop an increasingly model-independent CDR. For this, an inter-calibrated
brightness temperature dataset (ICTB) is used. The ICTB covers the complete SMOS and
SMAP historical record (and further), and consists of AMSR2, AMSR-E, TRMM, GPM,
Fengyun-3B, and Fengyun-3D. These satellites are merged together using a minimization
function that also penalizes differences in the Microwave Polarization Difference Index
(MPDI). This allows for a higher level of stability compared to using traditional linear
regressions, as the MPDI has a pronounced effect on the derivation of the vegetation within
LPRM [19]. The main focus will be on the a.m. retrievals, as these are the ones currently
used within the CCI, however we will also test the p.m. retrievals for completeness.
Studying the effects of using Tmw with L-band retrievals will also provide valuable insight
for the ESA planned Copernicus Imaging Microwave Radiometer (CIMR) [20] mission,
which will carry sensors for L-band, as well as higher frequencies.

The evaluation is structured as follows. Firstly, the results of the inter-calibration
activity are presented in order to demonstrate the stability of the ICTB. Secondly, the SM
retrievals using microwave based input (SMmw) are compared to the SM retrievals using
LSM based input (SMmod) to define the differences in the characteristics and dynamics of
the datasets. The third and final step focuses on changes in skill compared to LSM and
in situ data. For this, data were extracted from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA5-Land Climate Reanalysis [21,22] and the International
Soil Moisture Network (ISMN) [23,24]. With a good performance of this new L-band SMmw
dataset, a further step towards improving the CCI SM function as a model-independent
CDR is made, including a further increase in the consistency of input on temperature and
filtering throughout the CCI SM.

2. Data
2.1. Brightness Temperatures
2.1.1. L-Band Microwave Observations

For this study, L-band observations from SMOS and SMAP are used as a base frequency
for the SM retrievals. SMOS and SMAP are unique in the sense that they are the only two
major satellite missions dedicated to providing soil moisture observations globally. In addition,
both sensors are currently included in the CCI SM, and therefore included in the evaluation.
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The SMOS satellite [7], with onboard the Microwave Imaging Radiometer using
Aperture Synthesis (MIRAS), has a 2D interferometric radiometer that observes at 1.4 GHz.
SMOS is unique in its ability to simultaneously observe in a wide range of incidence angles
(0◦–65◦) and has the longest record of available L-band observations going back to 2010.
However, SMOS has issues with Radio Frequency Interference (RFI) [25], mostly over
Eurasia. The effective soil temperature used by the official SMOS product is computed
using the surface and 50–100 cm depth soil temperature [26] from ECMWF Integrated
Forecast System (IFS) model estimates (hereafter, modelled temperature, Tmod). ECMWF
IFS soil temperature for different soil layers, which are spatially resampled to the SMOS
EASE grid and temporally interpolated to the SMOS acquisition time, are provided in the
AUX_CDFEC auxiliary files.

SMAP [8] was launched in 2015, carrying on board both an L-band conical scanning
microwave radiometer at 1.4 GHz and a RADAR. Although the RADAR failed quickly
after launch, the radiometer continues to function as planned. Due to the integrated RFI
mitigation mechanism, almost all regions have high data quality and, hence, availability.
Tmod, as extracted from the official SMAP product, is generated using the NASA GMAO
GEOS-FP model. For SMAP, the Tmod is a single value based on the arithmetic mean of
two GEOS-FP parameters, i.e., the skin temperature and temperature of the 0–10 cm layer,
in order to be representative for the assumed 0–5 cm soil emission layer of L-band.

The L-band data is provided in 25 and 36 km EASE2 grid, and re-gridded to a standard
quarter degree grid as used within the CCI SM. For more information on the individual
sensors, see Table 1.

Table 1. Overview and characteristics of used passive microwave satellite sensors. An asterisk indicates that only V-
polarization is available for that band.

Sensor Provider
Temporal
Coverage

(* Still Active)
Bands Spatial

Coverage Swath Width
Equatorial
Crossing

Time

Data Level
Used

Soil Moisture Active
Passive Mission

(SMAP)
NASA 04/2015–

12/2020 * L Global 1000 km Asc: 18:00
Desc: 6:00 SPL3SMP v7

Soil Moisture and
Ocean Salinity Mission

(SMOS)
ESA 01/2010–

12/2020 * L Global 1200 km Asc: 6:00
Desc: 18:00

MIR_CDF3T
AUX_CDFEC

Advanced Microwave
Scanning Radiometer
for EOS (AMSR-E) on

AQUA

JAXA/NASA 07/2002–
10/2011

C, X, Ku, K,
Ka Global 1445 km Asc: 13:30

Desc: 1:30 L2A v3

Advanced Microwave
Scanning Radiometer 2

(AMSR2) on
GCOM-W1

JAXA/NASA 05/2012–
12/2020 *

C, X, Ku, K,
Ka Global 1450 km Asc: 13:30

Desc: 1:30 L1R

Tropical Rainfall
Measuring Mission’s
(TRMM) Microwave

Imager (TMI)

NASA 01/1998–
12/2013 X, Ku, K *, Ka N40o to S40o

780 or 897 km
after orbit

boost 8/2001

Varies (non
polar-orbit) L1C (XCAL)

Global Precipitation
Measurement (GPM)
Microwave Imager

(GMI)

NASA 03/2014–
12/2020 * X, Ku, K *, Ka N65o to S65o 885 km Varies (non

polar-orbit) L1C (XCAL)

Microwave Radiometer
Imager (MWRI) on
FengYun-3B (FY3B)

CMA/NSMC 06/2011–
08/2019 X, Ku, K, Ka Global 1400 km Asc: 13:40

Desc: 1:40 L1

Microwave Radiometer
Imager (MWRI) on
FengYun-3B (FY3D)

CMA/NSMC 01/2019–
12/2020 * X, Ku, K, Ka Global 1400 km Asc: 14:00

Desc: 2:00 L1



Remote Sens. 2021, 13, 2480 4 of 16

2.1.2. Ku-, K-, and Ka-Band Microwave Observations

For the Tmw and filters for snow/frozen conditions using passive microwave observa-
tions, there is a need for sufficient overlapping observations between SMOS and SMAP
and other sensors; unfortunately, SMAP and SMOS do not simultaneously measure at
the higher frequencies needed for temperature retrievals. As no single sensor can pro-
vide sufficient observations to solve this independently, a selection is made of multiple
satellite sensors that (partly) have overlap with SMOS and SMAP and have similar sensor
characteristics. Table 1 provides an overview of the sensors used for the ICTB.

AMSR2 is the main sensor used for SM retrieval from higher frequencies (C-band and
up) in the CCI SM, and is therefore chosen as the base for the inter-calibration. Although the
frequencies sometimes differ slightly between sensors, they will be calibrated to match the
18.7 GHz (Ku), 23.8 GHz (K), and 36.5 GHz (Ka) channels for both H and V polarizations
to align with AMSR2.

AMSR-E, FY3B, and FY3D are three sensors that have very similar crossing times,
coverage, and characteristics to the AMSR2 sensor, and are therefore suitable for direct
use in the inter-calibration activity. GPM GMI and TRMM TMI are also used, due to
their higher revisit time close to the equator and the long time coverage (from 1997 for
TRMM). However, due to their varying crossing times, only observations with a maximum
difference of 3 h from the 1:30 observations are included. The K-band is only available
in V-polarization on TMI and GMI, which impacts the inter-calibration activity for this
frequency, as explained in the Methodology Section 3.2. For GPM and TRMM, the dataset
prepared by the GPM Inter-satellite Calibration Working Group (XCAL) [27] is used.

2.2. ERA5-Land

ERA5-Land [21,22] is an enhanced-resolution rerun of the land component of the
ECMWF ERA5 climate reanalysis, and provided through the Climate Data Store (CDS) of
the Copernicus Climate Change Services (C3S). ERA5-Land is available with an hourly
time step and goes back to 1981.

The volumetric soil water layer 1 (ERA5-Land SM) was used in the skill analysis of
the L-band SM datasets and is representative for a 0–7 cm soil depth. Hourly observations
closest to the SMOS and SMAP overpasses and within the 2010–2020 time period were
selected and regridded from 0.1◦ to 0.25◦. This was achieved by taking the average of all
ERA5-Land grid points of which the center falls within the 0.25◦ box.

2.3. International Soil Moisture Network

The International Soil Moisture Network [23,24] is an international effort to collect
and maintain a large database of in situ SM observations. This effort is coordinated by the
Research Group Climate and Environmental Remote Sensing of the Vienna University of
Technology and supported by ESA.

All available SM data were extracted from the ISMN between 2010 and 2020. Sites
and sensors were filtered to include only data measured at a maximum sensing depth of
0.12 m, during a minimum time span of 100 days, with a minimum amount of overlapping
observations of 50, and a maximum difference between observation times of 2 h for the
satellite observation and in situ sensor. Networks that are used in the evaluation can be
found in Table 2.
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Table 2. In situ networks that are extracted from the ISMN and included in the evaluation. An asterisk [*] is used for sites
that are only used for SMOS caused by the shorter temporal coverage of SMAP.

Network Name

AMMA-CATCH * [28–32] GTK * MySMNet * SW-WHU * [33,34]
ARM HOBE * [34] ORACLE * SWEX POLAND * [35]

AWDN * HYDROL-NET Perugia * [36] OZNET * [37,38] TERENO * [39]
BIEBRZA S-1 HiWATER EHWSN * PBO H20 [40] UDC SMOS * [41,42]

BNZ-LTER * [43] ICN * [44] REMEDHUS * UMSUOL *
COSMOS * [45,46] IIT KANPUR * RISMA * [47–49] USCRN * [50]

CTP SMTMN * [51] IMA CAN1 * [52] RSMN * VAS *
DAHRA * [53] IPE SCAN VDS

FLUXNET-AMERIKAFLUX * KIHS CMC SKKU * WSMN *
FMI * LAB-net [54] SMOSMANIA [55,56] iRON [57]

FR Aqui * MAQU * [58] SNOTEL [59]
GROW METEROBS * SOILSCAPE [60,61]

3. Methodology
3.1. Land Parameter Retrieval Model

The main algorithm for passive microwave-based SM retrievals used within the CCI
SM is the Land Parameter Retrieval Model (LPRM) [14,15,18]. Similar to most SM retrieval
algorithms, LPRM is based on a 0th-order radiative transfer model, i.e., the tau-omega
(τ-ω) model [62]. The τ-ωmodel is used to simulate the soil, vegetation, and atmospheric
components in the microwave land surface emission to generate an estimation of the top-
of-the-atmosphere TB. Through forward modelling, these results can then be compared
to the actual brightness temperatures as observed by the satellite sensor in order to find
a solution.

LPRM is unique in the sense that it was the first widely used retrieval algorithm to
include an analytical derivation of the Vegetation Optical Depth (VOD) by using the ratio
between the V- and H-polarizations [19] instead of using external data sources. This was
another step in reducing the effects of external data forcing within the CCI SM product.

The temperature input for SMAP and SMOS LPRM retrievals in the CCI SM (v5 and
earlier) are completed using the Tmod fields that are provided with the data. For SMOS
LPRM the temperature for the 0–7cm layer is used; note that this differs from the official
SMOS product.

Tmw temperature input is calculated using a straightforward linear relationship [16]:

Tmw = (0.893 × TBKa,V + 44.8) (1)

with TBKa,V as V-polarized Ka-band observations. This is applied to both day-time and
night-time ICTB Ka-band observations. For the 6 p.m. L-band retrievals, the mean is taken
from the day-time (~1:30 p.m. before) and night-time (~1:30 a.m. after) Tmw, and only
produced when both are available. When looking at the diurnal cycle of temperature (e.g.,
Figure 6 in [63]), it is expected that, for the L-band emission depth of ~5cm, the difference
between 1:30 a.m. and 6 a.m. is below 2 K. For 6 p.m., the difference is expected to be below
3 K for the average of the 1:30 p.m. and 1:30 a.m. the day after. Therefore, despite the
time differences, the temperature is assumed to be sufficiently stable following the current
method. Skill evaluation of the SM retrievals against in situ observations and ERA5 are
used to support these assumptions.

When either Tmw or Tmod is below or equal to 274.15 ◦K, retrievals are excluded
from the analysis. Secondly, a snow/frozen flag is applied based on the ratio between
Ku-, K-, and Ka-band [17]. No extra filtering was necessary for RFI, as these are already
removed within the SMAP and SMOS files. The temperature filtering also removes most
of the impact of dense precipitation events on brightness temperatures, as this leads to a
sharp decline in observed TB. However, separate research is underway to address this in
more detail.
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3.2. Inter-Calibration of High Frequency Observations

Traditionally, inter-calibration of brightness temperatures from different sensors is
carried out using linear regression [27] or bias correction [64]. However, the method of
least squares, a standard approach in regression analysis, does not lead to a stable solution
when applied to the proposed set of AMSR2, AMSR-E, TRMM, GPM, FY3B, and FY3D.

In particular the MPDI, a ratio between H/V-Polarization which is used by LPRM
for the VOD retrieval, is sensitive to small changes between the datasets left after inter-
calibration based on linear least squares. As the unstable MPDI affects the ability to
properly distinguish between the emission from the vegetation and the soil, this can have
pronounced effects on the SM retrieval. Therefore, for this inter-calibration, we propose the
following cost function to be minimized in the linear regression instead of a standard least
squares approach:

Err = ∑ RMSE TBH + ∑ RMSE TBV + ∑ RMSE MPDI (2)

with:

RMSE TBH/V =

√√√√∑T
t=1

(
TBs1

H/V −
(

α × TBs2
H/V + β

))
T

(3)

RMSE MPDI =

√√√√∑T
t=1(

TBs1
V −TBs1

H
TBs1

V +TBs1
H
− (α×TBs2

V +β)−(α×TBs2
H+β)

(α×TBs2
V +β)+(α×TBs2

H+β)

T
(4)

where TB is the brightness temperature for either V/H polarization and from the base
(s1) and calibrated (s2) satellite. The α and β are the slope and intercept for the linear
regression, respectively. The T refers to the amount of overlapping observations in time for
a single location.

3.3. Evaluating Impact

In order to understand the impact of using Tmw instead of Tmod, the corresponding
SMmw and SMmod datasets are first compared to one another. This direct comparison will
give insight in how and where the characteristics of the SM data change, or where they
remain similar. Information is given on the temporal coverage (Cov.), correlation (Corr.),
standard deviation (StDev), and mean.

Secondly, in order to achieve a better understanding of how replacing Tmod by Tmw
affects the skill of the datasets, both the SMmw as the SMmod data sets are evaluated using
a direct comparison with ERA5 SM and in situ SM from the ISMN. Here, the correla-
tion (Corr.), bias, and unbiased root mean square error (ubRMSE) values are considered.
Observations are only used when both SMmw and SMmod have a valid retrieval.

It is important to note that neither ERA5-Land nor the ISMN can be considered as
the “truth” and even have different definitions of what they measure or calculate. In situ
observations measure an area of about 1 cubic decimeter, while ERA5-Land and remote
sensing data cover much larger areas of 100+ square kilometers. However, although an
exact fit is not realistic nor desired, Beck et al. (2021) [65] show that the skill obtained
between the coarse ERA-Land and local in situ observations can be higher than is currently
obtained by the satellite retrievals. Therefore, there is added value in such comparisons.

When interpreting the results, it is beneficial to keep in mind that both an inferior
quality of Tmw vs. Tmod, and an unstable ICTB due to high noise or breaks in the Tmw, could
lead to a lower skill of SMmw. This infers that the results represent a combination of these
two factors.



Remote Sens. 2021, 13, 2480 7 of 16

4. Results
4.1. Inter-Calibration of Input Data

In Figure 1, the results for the night-time (~1:30 a.m.) Ka-band ICTB are visualized
using a time-latitude Hövmoller plot. Ka-band is shown as it has the largest impact on the
SM retrievals. Neither the H nor V-polarized TB data show any significant jump between
time periods with varying sensors. This stability is also seen with the MPDI, where a clear
high MPDI band can be seen around the Sahara latitudes, while, for the tropical latitudes,
very low values can be found due to the dense vegetation coverage.
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Figure 1. Hövmoller plot, a time-latitude plot, of the night-time Ka-band ICTB data that was averaged using a ±30 day
moving average. Sub-freezing temperatures have been filtered out. The baseline used for the anomalies is from July 2002 to
December 2020 to avoid spatial differences caused by the non-polar orbit of TRMM.

As small inconsistencies might not appear in the wide range of the absolute values,
the anomalies were also calculated. It is important to remark that the base period for the
anomaly calculation is only from June 2002 onwards, in order to avoid spatial artifacts
caused by the reduced TRMM coverage. In the figure, a natural variation of the TB
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anomalies can be seen, which ranges mostly between −0.75 and 0.75 K, without any
structural jumps caused by use of different sensors. For the MPDI, this varies between
−0.001 and 0.001, with the highest latitudinal differences showing for the southern latitudes,
which is caused by the main influence of Australia.

Similar results can be found for the night-time Ku-band ICTB. For K-band however,
due to the lack of the H channel on GPM and TRMM, the MPDI anomalies clearly differ
between the AMSR-E (higher) and AMSR2 (lower) period. The TBK,V anomalies are still
within −0.5 and 0.5 K without a break between sensors. The TBK,H anomalies do show
some instability, which causes the observed jump in the MPDI values. While the day-time
ICTB in general performs similarly, there is one clear difference. The varying overpass time
of GPM and TRMM leads to a higher RMSE in this merging, as compared to the RMSE
of the night-time merging. For example, for Ka-band, the RMSE after merging between
TRMM and AMSR2 almost doubles from 0.8 K (night-time) to 1.5 K globally. The MPDI is
not affected by this.

4.2. Inter-Comparison of SMmw to SMmod

Figure 2 presents the global maps of the SM SMAP Descending (Desc) inter-comparison,
with the results for SMmod in the middle, SMmw on the right, and the difference between
the two (SMmw–SMmod) on the left. The maps show a clear increase in revisit time for the
SMmw dataset for all regions except the boreal regions, where a decrease is observed. On
average, an increase of 0.46 days is seen.
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For the mean and StDev of the SM, the boreal region and the tropics show a strong
divergence, while in most regions the results remain similar. The correlation comparison
also clearly shows the changed data characteristics over these regions. For the boreal region,
the SMmw is wetter, and shows a higher dynamic range, while for the tropical regions the
opposite is seen, with the SMmw becoming dryer and less dynamic.

Figure 3 summarizes the information from Figure 2 using cumulative plots of the
global data and includes both ascending (Asc) and descending (Desc) datasets of SMAP
and SMOS. Spatial patterns as noted before are mostly found in all four datasets. A similar
increase in revisit time is seen in all datasets, with an average of 0.57 days for SM SMAP
Asc, 0.52 for SM SMOS Asc, and 0.62 for SM SMOS Desc. The change in global mean
varies between −0.02 for SM SMAP Desc and 0.02 for SM SMOS Desc. For the StDev, on
average, no significant difference can be observed. The correlation between SMOS SMmod
and SMmw increases much more quickly than for SMAP, however keep in mind that this is
caused by a difference in spatial coverage between the two sensors due to RFI in SMOS.
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4.3. Skill of SMmw Compared to SMmod
4.3.1. Based on ERA5-Land

Figure 4 presents the maps of SMmw and SMmod for SM SMAP Desc when evaluating
their skill against ERA5. When looking at the correlation, an increase can be detected in all
but a few regions, e.g., Mekong delta and Korea. Interesting to note is that the strongest
increase can be seen in the boreal regions, where the SMmw often reaches a >0.6 correlation
with ERA5. A significant average increase in global correlation of 0.04 is recorded for
SMmw compared to SMmod.
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The bias is mostly neutral, except for the boreal regions where it is a mix of improve-
ment and deterioration, and the tropical regions where it increases. For the ubRMSE, its
improved value over the tropical regions aligns with the decrease in the StDev, as shown
in the previous section. The increased dynamics (see StDev) in the boreal regions, although
having improved correlations, also lead to an increase in the ubRMSE.

Figure 5 summarizes the information from Figure 4 using cumulative plots of the
global data and includes both Asc and Desc datasets of SMAP and SMOS. SM SMAP Asc
achieves an average improvement in correlation of 0.05, SM SMOS Asc of 0.06, and SM
SMOS Desc sees a small decrease of −0.01.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 4. SMAP Desc SMmw and SMmod compared to ERA5. Results are shown for correlation (corr.), bias, and ubRMSE. 

 

Figure 5. Cumulative plots of global SMAP Asc, SMAP Desc, SMOS Asc, and SMOS Desc SMmw and SMmod retrievals 

compared to ERA5. Results are shown for correlation, bias, and ubRMSE. 

4.3.2. Based on In situ Data 

Figure 6 shows the cumulative results against all available in situ networks from the 

ISMN. For SMAP, 224 and 235 in situ sensors are used for the Asc and Desc datasets, 

respectively. Due to the longer temporal coverage for SMOS, a total of 1045 and 893 in situ 

sensors were available for the analysis of Asc and Desc, respectively. No significant dif-

ference in correlation for SM SMAP Asc and SM SMOS Desc were seen, while SM SMAP 

Desc and SM SMOS Asc recorded increases of 0.01 and 0.04, respectively. For the bias, 

only SMOS Desc shows a significant increase of 0.04 m3 m-3. The resulting ubRMSE values 

slightly increase overall, ranging between 0.003 and 0.005 m3 m-3. 

Figure 5. Cumulative plots of global SMAP Asc, SMAP Desc, SMOS Asc, and SMOS Desc SMmw and SMmod retrievals
compared to ERA5. Results are shown for correlation, bias, and ubRMSE.



Remote Sens. 2021, 13, 2480 11 of 16

4.3.2. Based on In Situ Data

Figure 6 shows the cumulative results against all available in situ networks from
the ISMN. For SMAP, 224 and 235 in situ sensors are used for the Asc and Desc datasets,
respectively. Due to the longer temporal coverage for SMOS, a total of 1045 and 893 in
situ sensors were available for the analysis of Asc and Desc, respectively. No significant
difference in correlation for SM SMAP Asc and SM SMOS Desc were seen, while SM SMAP
Desc and SM SMOS Asc recorded increases of 0.01 and 0.04, respectively. For the bias, only
SMOS Desc shows a significant increase of 0.04 m3 m−3. The resulting ubRMSE values
slightly increase overall, ranging between 0.003 and 0.005 m3 m−3.
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5. Discussion
5.1. Inter-Calibration of Input Data

The results from the inter-calibration activity between AMSR2, AMSR-E, GPM, TRMM,
FY3B, and FY3D showed a stable consistent dataset of TB, suitable for integration into
the L-band soil moisture retrievals. Only the K-band was less stable due to the lack of an
H-channel on TRMM and GPM. The TBK,V anomalies, however, are still within −0.5 and
0.5 K, without a visible break between sensors. Therefore, the quality is deemed sufficient
for its role in the filtering using the Van der Vliet et al. (2020) [17] method, as it does not use
the H-polarization. The TBK,H anomalies are unstable, causing the observed jump in the
MPDI values. This would only be problematic if it were used in SM retrievals with LPRM
as the base frequency for either T or SM. Therefore, when using this methodology for
future inter-calibration activities in SM retrievals, e.g., with X-band, this kind of instability
is not acceptable.

For the ICTB of day-time observations, the variable overpass time of TRMM and
GPM causes higher anomalies in the TB results, while the MPDI remains unaffected by
this. This expresses itself as higher noise in the temperature input for the LPRM retrievals.
However, results in the skill comparisons with ERA5-Land and in situ observations showed
this causes no issues, leading to a similar skill for SMOS Desc and an improvement for
SMAP Asc.

5.2. Inter-Comparison of SMmw to SMmod

When comparing the SMmw to SMmod, the most important change is the average
increased revisit time of the SMmw globally, except for the boreal regions, where a decrease
is even detected. This global increase is caused by the non-full coverage of the ICTB
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data, while the decrease over the boreal regions shows the effect of both an almost full
coverage ICTB and the snow/frozen filtering. The reader should bear in mind that the
shown revisit times are based on successful retrievals, and therefore also include the effect
of snow/frozen flagging. This improved flagging effect is what can be seen over the
boreal regions. Concerning successful retrievals, there are a few regions, such the Gobi
Desert, that have an increase in revisit time higher than just the ICTB coverage effect,
caused by an increase in non-converging SM retrievals, i.e., 0 m3 m−3, in LPRM with the
new temperature.

Although the observations available for the ICTB is above one a day for much of the
SMAP period, this can still lead to gaps when there are many simultaneous overpasses. In
the future, this could be further improved by extending the sensors within the ICTB with
the Special Sensor Microwave Imager Sounders (SSMIS) sensors, FengYun-3C, and, when
data would be open and available, WindSat.

The wetter and more dynamic boreal region, and simultaneously a dryer and less
dynamic tropical region, is most likely caused by the simplified Tmw approach that does
not yet include a proper correction of a dynamic atmospheric optical depth. Varying
atmospheric water vapor leads to these significant changes on both extreme sides of the
spectrum. Keep in mind that for use within the CCI SM dataset, a scaling is applied to the
SM during the merging [2,3], which should nullify potential issues with the bias and StDev.

5.3. Skill of SMmw Compared to SMmod

The results in Section 4.3 show a general better agreement of the SMOS/SMAP SM
dynamics with respect to ERA5-Land through the use of Tmw instead of Tmod. Especially
worth noting is that even the combined Tmw, which uses both 1:30 p.m. and 1:30 a.m. (next
day) values, leads to a significant increase of 0.05 in correlation globally for the SMAP
Asc data. For SMOS Desc, this increase is not seen. The cause for this could be an already
similar quality of Tmod from ECMWF compared to Tmw at approximately 6 p.m. This
means the skill of Tmod from ECMWF is closer to Tmw in the late afternoon as compared
to the early morning and that of the SMAP GEOS-FP model. If the cause is in the ICTB,
the resulting difference in skill of the SMOS and SMAP afternoon retrievals would be
more similar.

The differences as seen in the comparison against in situ are smaller than for ERA5,
which is expected, and largely caused by the bulk of the ISMN data coming from the USA.
In Sections 4.2 and 4.3.1, this is also a region that does not show much change between
the SMmw and SMmod. However, they do strengthen the assumption that Tmw based on
the ICTB can be used as a replacement for Tmod for both 6 a.m. and 6 p.m. L-band SM
retrievals without a loss in quality, especially as, in the USA, due to the large amount of
meteorological and in situ observations available for assimilation, LSM also performs better
than average.

With the future launch of CIMR, this skill increase from using Tmw is expected to
increase further, as then there will be simultaneous observations for L-band, and the higher
frequencies needed for Tmw and filtering, although the period between 2010 and 2028 will
still need to be covered using this, or a similar, method.

6. Conclusions

This study presents the use of microwave-based temperature (Tmw) and filtering in-
put for L-band soil moisture retrievals as a viable alternative to the land surface models
currently used as temperature input. Although SMOS and SMAP do not observe in the
higher frequencies needed for the Tmw and filtering, several satellites with those observa-
tions have been active throughout the temporal coverage of both L-band missions, and
can be combined into a single inter-calibrated brightness temperature (ICTB) dataset for
this purpose.

The ICTB consists of observations from AMSR2, AMSR-E, FY3B, FY3D, GPM, and
TRMM, which are merged using a set of linear regressions that use a minimization function
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that also penalizes for errors in the MPDI. Combined, more than one observation per day
are available in most of the L-band period. However, due to the occurrence of simultaneous
overpasses, which are also crucial for a correct merging, this does not guarantee a full
coverage. The resulting ICTB does not have any breaks in time, and anomalies globally
vary naturally between ±0.75 K.

In order to evaluate the impact of using Tmw on the characteristics of the soil moisture
retrievals, the SMmw and SMmod were compared to one another. This showed that the
revisit time between the SM datasets, increased only by 0.5 days on average. This, sur-
prisingly, also includes the 6 p.m. retrievals that use a combination of 1:30 a.m. and p.m.
observations. In general, when comparing the SMmw to SMmod, similar mean and StDev
values are observed, with correlations of >0.9. There are two major exceptions to this: the
boreal regions become wetter with a larger StDev, while the tropics become dryer with a
smaller StDev.

The skill of the SMmw was evaluated against two data sources, first the ERA5-Land
model and second, the in situ observations from the ISMN. The average correlation against
ERA5-Land improved by 0.04, 0.05, and 0.06 for SM SMAP Desc, SM SMAP Asc, and
SM SMOS Asc, respectively, with only SM SMOS Desc having a small decrease of −0.01.
Against in situ observations, the only significant change in correlation was an increase of
0.04 for SM SMOS Asc. The less pronounced results with in situ data can be attributed to the
majority of sensors being located in the USA. Further improvements can be expected when
addressing the atmospheric effects on the Tmw retrieval and by ingesting more satellites,
e.g., SSMI and FY3C.

These results show that, for both the 6 a.m. and 6 p.m. L-band retrievals, the use of
Tmw and microwave-based filtering is not only feasible as an input, but can also contribute
to an improvement in skill at the cost of a slightly reduced temporal coverage. The ICTB
is sufficiently stable for the retrievals, as can be inferred from the increased correlation,
despite the use of TRMM and GPM with their varying overpass times. The ICTB will
translate into the CCI SM as a more standardized input for SM retrievals as compared to SM
retrievals from higher frequencies with which it is merged, e.g., C-band from AMSR2, and
reduce the potential effects of land surface models on the data, strengthening its function
as an independent climate data record.
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