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Abstract: To enhance remote sensing for maritime safety and security, various sensors need to be
integrated into a centralized maritime surveillance system (MSS). High-frequency (HF) radar systems
are a type of mainstream technology widely used in international marine remote sensing and have
great potential to detect distant sea surface targets due to their over-the-horizon (OTH) capability.
However, effectively recognizing targets in spectra with intrinsic strong disturbance echoes and
random environmental noise is still challenging. To avoid the above problem, this paper proposes an
adaptive signal identification method to detect target signals based on a rapid and flexible threshold.
By integrating a watershed segmentation algorithm, the subsequent direction result can be used
to automatically compute the direction of arrival (DOA) of the targets. To assist in the orientation
of the object, forward intersections are integrated with the technique. Hence, the proposed tech-
nique can effectively recognize vessel echoes with automatic identification system (AIS) verification.
Experiments have demonstrated the promising feasibility of the proposed method’s performance.

Keywords: high-frequency (HF) radar; adaptive signal identification (ASI); vessel detection; direction
finding; automatic identification system (AIS)

1. Introduction

Currently, ocean freight is the most cost-effective method for the international trans-
portation of goods. However, it also gives rise to many maritime security problems. The
United Nations Convention on the Law of the Sea (UNCLOS) established 200 nautical
miles as the exclusive economic zone (EEZ). This encourages countries to assume greater
responsibility for compliance with laws and regulations promulgated in the convention in
the respective EEZ. The broad requirement for surveillance plays a greater role in address-
ing the potential or perceived threats to national security under the terms of UNCLOS [1].
This means that UNCLOS expects maritime activities should be to be safe and legal, but
in fact, there are many illegal ships carrying out dangerous maritime activities, so how to
implement surveillance is important to authorities. There are two surveillance issues of
target within EEZ: cooperative and noncooperative. The former can be defined as a target
that operates fully within the law and willing to support the surveillance process, and a
noncooperative target refer to those not actively providing information and unwilling to
be monitored (e.g., drug trafficking, illegal immigration, piracy, and smuggling). A critical
concept remains of maritime domain awareness (MDA) arises for effective understanding
of any activity associated with the maritime environment that could impact security, safety
and environment.

Maritime Domain Awareness (MDA) is defined by the International Maritime Orga-
nization (IMO) as an effective understanding of anything associated with the maritime
domain that may affect safety, security, economy, or the environment [2]. The marine
domain is defined as all area (e.g., navigable waterway, adjacent, territorial sea) and things
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(maritime-related activities, people, vessels) [3]. It is necessary to have the ability of con-
ducting effective MDA to solve the challenge of maritime security with effective patrols
and surveillance capabilities.

It is clear that the control of territorial waters is not sufficient to ensure the safe move-
ment of goods within EEZ. An EEZ is the area extending 200 nautical miles (approximately
370 km) from territorial waters to the open sea [4]. However, vessels are typically tracked by
using automatic identification systems (AISs) or radar [5,6]. To enhance maritime security,
international maritime organizations (IMOs) develop strategies, such as international regu-
lations for preventing collisions at sea (COLREGS), vessel traffic services (VTS), AIS, and so
on, to increase the safe and efficient flow of traffic at sea. In particular, AIS is an automatic
tracking system on board that displays other vessels in the vicinity to aid navigation and
collision avoidance, but since then, it can be used for many other applications (e.g., mar-
itime security, fleet and cargo surveillance and control, and search and rescue). In this
study, the AIS system operates in the VHF marine time band using broadcast transponder
systems, which use self-organizing time division multiple access (SOTDMA) technology.
There are two dedicated frequencies or VHF channels; one works on 161.975 MHz–Channel
87B (ship to ship), while the other works on 162.025 MHz–Channel 88B (ship to shore). The
AIS includes information about a vessel’s identity, such as its name, ship type, size, and
call sign. The messages also include a nine-digit Maritime Mobile Service Identity (MMSI)
number that is supposed to uniquely identify ship stations, coast stations, and group calls.
Therefore, it is possible to acquire most ship dynamic information by relying on the AIS
system. However, AIS is a self-reporting system. If the transmitter is deliberately turned off,
messages from the ship will not be received. It is important to consider that many of these
techniques suffer from physical limitations, and only the intelligent integration of these
different and complementary systems can achieve satisfactory monitoring performance.
Currently, a variety of surveillance sensors can be utilized to complement the use of an AIS.

To enhance remote sensing for maritime safety and security, various sensors need to
be integrated into a centralized maritime surveillance system (MSS). For an example, the
global scale observed via satellite, the approach scale observed by beyond-the-horizon
high-frequency (HF) radar, and the local scale observed via line-of-site microwave radars,
cameras, and underwater acoustics [6]. The HF radar research is dedicated to developing
the due-use surface current mapping and vessel detection capability. Electromagnetic
remote sensing is a cost-effective method that is capable of providing complete ocean
current field mapping with a shore-based HF radar system [7]. HF radar exploits vertically
polarized surface waves in the 3 MHz to 30 MHz frequency range [8,9]. It has the advantage
of low power loss with over horizon (OTH) capabilities that can expand the observation
distance by hundreds of kilometers by using the sea surface conductivity characteristics
to effectively overcome the limitations imposed by the curvature of the earth [10]. This
capability aims to bridge a surveillance gap between global satellite with the low update
rates and local line-of-sight microwave radars with high update rates. An island-wide HF
radar network has been established in Taiwan with the primary aim of monitoring ocean
surface currents in near real time. The project is configured to provide a near real-time
observation platform for surface current mapping around Taiwan using the SeaSonde®

HF Radar system. Most of the sites have been established by the Taiwan Ocean Research
Institute (TORI), which is affiliated with the National Applied Research Laboratory (NARL).
This institute operates a set of 12 long-range 5-MHz systems and a set of 7 standard 13/24-
MHz systems that are included within the network. Two additional long-range stations,
i.e., Suao and Habn, are owned by the ROC Naval Academy, which is mainly responsible
for the current measurement tasks in the northeastern marine environment. Radar coverage
encompasses the surrounding waters of Taiwan. In addition to being able to detect the
flow field, it also has the potential for all-weather and large-scale vessel monitoring. HFR
is a strong candidate for providing a vessel-monitoring network in any large-scale area.
Adding additional applications to develop a ship detection and tracking technique that
does not adversely affect the current measurements is a worthwhile endeavor.
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The most important aspect of ship identification involves extracting the signal from
the Doppler spectrum. Therefore, this article mainly develops detection techniques that
use HF radar ship detection technology. This study improves and develops new detection
technologies based on [11]. The measurement technology is then bridged to the direction
finding technology by using the watershed algorithm [12]. Target direction determination
also plays an important role in the processing of radar signals, and it is possible to accurately
collect target position information with a crossed-loop and monopole antenna. For compact
HF radar, multiple signal classification (MUSIC) algorithms [13] are employed to estimate
the direction of arrival (DOA) of the current and vessel echoes. In principle, this method
works by exploiting covariance decomposition to obtain the eigenvector and eigenvalue
of signal sources and then attempts to separate the space spanned by measured data into
noise and signal subspaces. Once the noise subspace has been estimated, the steering
vector orthogonal to the noise subspace can be used to estimate the bearing of targets. This
can usually be done by searching for peaks in the MUSIC spectrum.

In the past, most research on high-frequency radar ship detection required the use of
complex algorithms or the tuning of radar parameters specifically for ship detection [14,15],
which would result in longer detection times or affect their own current mapping tasks.
Therefore, the core objective of this study is to establish a set of processes that can quickly
and automatically extract suspected ship signals under complex environmental background
noise without adversely affecting ocean current measurements. The final integration of
the forward intersection method determines the exact location of the ship. In summary,
the contribution of this article is to improve the past ship detection algorithm and use the
local peak detection algorithm to connect the azimuth recognition technology to make the
whole algorithm more complete.

The remainder of this paper is divided into four parts. In Section 2, we introduce the
HF radar dataset to analyze ship motion information and review the currently published
ship echo signal detection methods. Section 3 describes a new improvement process,
including the following algorithms: automatic selection of a region of interest (ROI),
adaptive vessel signal identification, the watershed method for local peak detection of echo
signals, and the MUSIC algorithm for direction finding of a ship’s echo signal. In Section 4,
the analysis process proposed in this study is used to detect the trajectory of three cargo
ships in the radar coverage area, and the recognition results are compared with AIS data.
Finally, Section 5 offers conclusions.

2. Background
2.1. General Data Description of HF Radar

A SeaSonde HF radar station consists of a transmit-receive antenna assembly that
is controlled through a control system, as shown in Figure 1. The receiving antenna unit
comprises a vertical monopole and two orthogonally mounted cross-loop antennas [16].
The transmitting antenna utilizes a frequency-modulated continuous wave (FMCW) to
transmit continuous frequency-modulated radar waves every 0.5 s [17]. Linear frequency
modulation refers to the frequency increasing linearly with time in a fixed direction. The
radar system receives the echo frequency at any time through the receiver components.
The echo signal is compared to the time at which the frequency was transmitted, and the
delta time is obtained. It is advantageous for determining the distance between the echo
signal target and the radar station [18].

After the radar echo signal is received, the raw time series data (.ts file) received by
the radar are first extracted by the first step of the SeaSonde acquisition program, as shown
in Figure 2. In SeaSonde acquisition, the range series are obtained by applying the fast
Fourier transform (FFT) to the time series. The next step in the data processing procedure is
to apply a 2nd FFT to the range series to obtain the cross-spectra series (CSQ. cs). Namely,
CSQ is a file type of HF radar, called CSQ file in the field of SeaSonde HF radar, which
includes ocean current information, noise interference, and original information of Doppler
energy spectrum of ship echo. The interlaced spectral sequence belongs to the original
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Doppler spectrum, which contains ocean current information, noise interference, and the
original Doppler spectrum information of the ship echo. Therefore, the CSPro program
uses the exponential smoother for noise reduction, such as ship echo signals. The use of
exponential smoother smoothing will result in a more accurate short-spectrum short-time
cross-time (.cs4 file) for subsequent estimation of the radial flow velocity [19]. The purpose
of this study is to detect and track ships. To prevent CSPro from filtering out ship signals,
this study processes an original cross-spectra series containing the ship signals.

 

Figure 1. SeaSonde hardware equipment: (a) the transmitting antenna (Tx); (b) the receiving antenna 
(Rx), including a monopole and two cross-loop antennas; and (c) the central control system. 

 
Figure 2. Data processing for ocean surface current measurement by the SeaSonde HF radar system. 

Receiver Chassis

Time Series (.ts)

Range Series (.rs)

Cross Spectra Series (CSQ_.cs)

Ship Removal & Averaging

Cross Spectra Short-time (CSS_.cs4)

Radial Speed (.ruv)

1st FFT

2nd FFT

SeaSonde Acquisition

Ocean Currents (.tuv)
Radial Merging

CSPro

Radial Processing

Figure 1. SeaSonde hardware equipment: (a) the transmitting antenna (Tx); (b) the receiving antenna
(Rx), including a monopole and two cross-loop antennas; and (c) the central control system.

2.2. Detection of Vessels in the Radar Echo Signals

Confronting the challenges of implementing marine ship management, HF radar is a
highly promising sea area monitoring tool [20]. In recent years, research on ship detection
and tracking using HF radar has not only been proposed but has also been effectively
used for vessel detection at OTH distances [21–23]. Some studies use the probability
of detection (Pd), false alarm (Pfa), and other variation parameters to evaluate the ship
detection performance [24]. The relationship between Pfa and Pd under different SNR
values was analyzed, and it was found that high detection rates may be accompanied by
high false alarm rates. Due to some known factors, HF radar has some deficiencies in
terms of SNR-related ship detection, and effective improvement of these shortfalls can be
achieved by using multiple observation points or different observation frequencies.

In addition to using different frequency and multipoint observations, some data
processing methods have been proposed to improve the identification of ship echoes in HF
radar signals. To distinguish the high-energy signals from background noise, two detection
algorithms, i.e., infinite impulse response (IIR) filters and two-dimensional median filters,
are used to calculate the background signal level, and then a fixed threshold is added to
the background as a ship detection method [14]. Among the various types of false alarms,
AIS is utilized to determine real ships in a multitarget environment.

In the same year, Vesecky, J. F (2010) [25] mentioned that the HF radar and AIS
ship detection models developed in the past estimate the signal-to-noise ratio (SNR) as a
function of range, including the pipeline propagation of AIS radio signals. However, the
high variability of HF prevents ships from detecting ship echoes. This is due in part to the
aspect dependence of ship radar cross-section and to the presence of clutter bands at known
Doppler shifts from both the ground and ocean waves [25]. Based on the above interference,
the Kalman filtering approach is used to recognize ship signals without changing the radar
hardware equipment in the exclusive economic sea area of the United States. It is a highly
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efficient recursive filter. The dynamic state of the ship can be estimated from spectral data
containing noise. The researchers concluded that tracking algorithms can be applied in
back-end processing software algorithms without modifying the existing radar hardware.
However, Doppler spectrum limitations exist. It is not easy to recognize ship movement
in a blind zone. Therefore, multiband HF radar was used to detect and track ships in the
East China Sea, and AIS data were used to verify the results, confirming that multiband
detection technology can prevent ship signals from being hidden in blind spots. The
effectiveness of HF radar to detect ships is related to the ship size [26].

 

Figure 1. SeaSonde hardware equipment: (a) the transmitting antenna (Tx); (b) the receiving antenna 
(Rx), including a monopole and two cross-loop antennas; and (c) the central control system. 

 
Figure 2. Data processing for ocean surface current measurement by the SeaSonde HF radar system. 
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Figure 2. Data processing for ocean surface current measurement by the SeaSonde HF radar system.

This research focuses on radar parameter adjustment and compares the ship detection
rates of the two IIR and median filter methods when used to detect four ships of three
different types, namely, a tugboat, two cargo containers, and a tanker, in the Sea Bright area
of New Jersey [27]. The adaptive detection technique (ADT) establishes a threshold surface
that can be adapted to noise, screens out ship signals higher than noise, and then uses AIS
for verification [11]. The ship signal analysis method was developed to remove the distance
sequence data output from the CODAR original system, and then the median filter is used
to calculate the background noise [28]. The noise reference value of the signal-to-noise
ratio (SNR) is used to filter out the ship signal based on an SNR greater than 20, and
then it uses the Kalman filter to track the trajectory and reduce the false alarm rate. A
multi-target tracking (MTT) strategy was proposed in [8], which refers to the problem
of jointly estimating the number of targets. The states or trajectories from noisy sensor
measurements are based on the joint probabilistic data association (JPDA) rules. Target
detection is performed in the FFT domain using 3D (range-azimuth-Doppler)-ordered
statistics and a constant false alarm rate OS-CFAR algorithm [29].

Principal component analysis was used to enhance the signal in the Doppler spectrum,
and wavelet suppression was applied to suppress the noise and improve the SNR of
the ship echo. Finally, on a Doppler spectrum filled with multiple targets, targets were
extracted using adaptive threshold detection [30]. An FMCW radar was used to monitor the
ship navigation with sixteen vertical dipole antennas and 16 receiving channels [31]. That
study proposed a procedure for ship echo identification from the conventional RD map. By
employing three beamformers, linear Fourier, directionally constrained minimum power
(DCMP), and norm-constrained DCMP (NC-DCMP) algorithms were employed to produce
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a range-angle (RA) brightness distribution map that is different from the conventionally
used range-Doppler (RD) spectra in ship detection.

2.3. Adaptive Detection Technique

Adaptive detection technology is an established technology, and the contribution of
this article is the improvement of ADT. The following briefly introduces the ADT algorithm.
The first step of the ADT is to apply a 2D moving average (MA) filter to CSS, which is
known as an RD map, to reduce random noise while retaining the primary energies of the
Bragg peaks, the zero Doppler frequency, and any moving targets. A residual series (RS)
can then be derived from the difference between the raw RD map and the MA of the CSS.
To identify the signals of moving targets, different small regions of interest (ROIs) of the
RS can be independently designated for further analysis. Finally, an adaptive threshold
surface based on the standard deviation (SD, σ) of the residual series should be set in
each ROI to differentiate possible vessel echo signals from the noise floor. Although the
above algorithm has been proven to effectively identify ship signals, there are still some
intermediate steps that need to be improved and strengthened in actual operation. In
addition to the ships' reflected signals and random noise, there will also be other reflected
signals remaining in the residual, such as the echo energy at the Bragg peaks and zero
frequency. This will affect the selection of the optimal window size of the 2D MA filter
in the ADT method, so we propose a revised version of the improvement process in this
article and assign a new name, i.e., adaptive signal identification (ASI), to distinguish it.

In subsequent experiments, we found that the moving window (MW) approach,
which is a 2-D shift filter with different sizes for the Doppler spectrum, is quite correlated
with environmental noise. The noise index measurement mechanism is described in
references [32,33], following the principle of the above paper to select the area from the
second-order Bragg peak outward to the two ends of the side and compute the average
spectral energy values as the noise index in this area. The expected threshold curve surface
for source separation fluctuates with the noise level trend and is related to the terrain near
the receiving antenna, the radar detection distance, the ionosphere, and many other factors.
The above variables affect the smoothness of the filtering used in ship detection, as shown
in Figure 3. The axis of the abscissa denotes the size of the MW, and the ordinate represents
the noise index. The result shows that the noise index is high, and the corresponding MW
is relatively small based on over 2590 data points from CSQ in October 2013. The R-squared
value is as high as 0.70666 based on linear regression analysis. This approach attempts
to model the relationship between two variables by fitting a linear equation to observed
data. The main reason for the high correlation is that a rugged threshold plane must be
generated by a small MW to further filter out suspicious ship signals.

In addition, a high-energy signal at the central frequency in the HF radar Doppler
spectrum is called a direct current (DC) signal, which reflects energy from islands or targets
that are not in relative motion with the radar station. The DC will affect the MW required
for vessel detection. Therefore, it is necessary to improve the original ADT process by
directly processing the entire distance Doppler spectrum covering different environmental
noise characteristics. Although the ADT automatically selects a suitable filtering surface
with noise, removal of the energy with a greater impact in the Doppler spectrum in advance
will help in the implementation of the ship detection algorithm.
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3. Methodology

In the present study, we adjust and optimize the ADT analysis procedure to enhance
the ability of ship signal extraction along with environmental background noise and echo
distance and rename the new process the ASI algorithm. The ASI, shown in the flowchart
of Figure 4, still retains the main steps of the original ADT but moves the step “region of
interest (ROI)” to the front. In addition, before performing the ASI algorithm, two steps,
“Morphological Processing” and “Canny Edge Detector,” are employed to determine the
influence range of the Bragg region and remove the energy of the Bragg resonance effect
from the cross-spectra. The advantages of using ASI instead of ADT include avoiding the
subjective setting of the experience parameters and making it easier to execute Doppler
spectrum signal acquisition according to the local conditions.

After using the ASI algorithm to differentiate possible vessel echo signals from the
noise floor of the cross-spectra, there are three procedures for the subsequent operational-
ization process. A watershed method is used to automatically find the digital values of the
range and Doppler frequency corresponding to the peak of the suspected vessel echoes.
Then, the “Position of Local Peak Echoes” provides the voltage value information of vessel
echoes for the subsequent MUSIC algorithm to determine the azimuth of the vessel. The
final step is to visualize the ship dynamics on a map to determine the spatial coordinates
of the ship signal through the distance and azimuth of the ship signal provided by ASI and
MUSIC, respectively.

3.1. Preprocessing of the ASI Algorithm

The wave motion performance will produce first-order and second-order resonance
scattering on the Doppler spectrum in a fixed range, which will exhibit dominant peaks,
called Bragg peaks, as shown in Figure 5a, on the left and right sides of the Doppler
spectrum. In addition to these two significant echo energies, ionospheric noise (Figure 5a)
may also be involved in the Doppler spectrum. The strong interference energy mentioned
above will affect the subsequent identification of ship signals, so we add two processes,
i.e., morphological analysis and Canny edge detection (Figure 4), to eliminate their influence
before performing ASI.



Remote Sens. 2021, 13, 2453 8 of 18 
Figure 3. Scatter diagram of moving windows and noise. 

 
Figure 4. The proposed data processing procedure for SeaSonde HF radar to detect the 
geographic coordinates of vessels includes echo identification, locating the peaks of echo 
signals, and ship direction detection. 

Cross Spectra Series

Moving Average of ROI

Residual Series

Possible Vessel Echoes

DC removal &
2D MA filtering

The Smoothed Spectrum

ASI Algorithm

Region of Interest (ROI)

Morphological Analysis

Canny Edge Detection

SD threshold setting 

Covariance Matrix

Eigenvalue & Eigenvector

Signal Subspace & Noise Subspace

DOA Estimation
DOA Calculating

Subspace Type Defining

Eigenvalue Decomposition

Voltages Cross Spectra Averaging

MUSIC Algorithm

Geographical Coordinates of Vessel Location

Integrating Vessel Echo Information

Edges of Bragg region & ionospheric noise

Watershed Algorithm

Position of Local Peak of Echoes 

Figure 4. The proposed data processing procedure for SeaSonde HF radar to detect the geographic coordinates of vessels
includes echo identification, locating the peaks of echo signals, and ship direction detection.

 
Figure 5. Preprocessing for ROI selection: (a) Raw self-spectrum of the monopole of Habn at 07:59:48 
on 29 October 2013; (b) Result of closing operation on Figure 5a; (c) ROI selection from the 
recognition result of Canny edge detection. 

 

 

(a)

(b)

(c)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

30

20

10

M
on

op
ol

e 
(A

3)
 

Ra
ng

e 
ce

ll

30

20

10

30

20

10
0

0

0

Doppler frequency (Hz)

M
on

op
ol

e 
(A

3)
 

Ra
ng

e 
ce

ll
M

on
op

ol
e 

(A
3)

 
Ra

ng
e 

ce
ll

30
25

20-180

15-6
-4

10-2
0 52

-160

4 06

-140

-120

-180

-160

-140

-120

-100

-80

30
25

20-180

15-6
-4

10-2
0 52

-160

4 06

-140

-120

-190

-180

-170

-160

-150

-140

-130

-120

30
25

20-160

15-6
-4

10-2
0 52

-155

4 06

-150

-145

-158

-156

-154

-152

-150

-148

-146

-144

30
25

20-20

15-6
-4

10-2
0 52

4 06

0

20

-30

-20

-10

0

10

20

30

-6 -4 -2 0 2 4 6

5

10

15

20

25

-6 -4 -2 0 2 4 6

5

10

15

20

25

Doppler velocity (m/s)

Po
w

er
 d

en
sit

y 
(d

Bm
)

Radial velocity (m/s)
Range cell

Po
w

er
 d

en
sit

y 
(d

Bm
)

Radial velocity (m/s)
Range cell

Po
w

er
 d

en
si

ty
 (d

Bm
)

Radial velocity (m/s) −6 −4 −2 0 2 4 6

25

20

15

10

5

20

20

15

10

5

0

−20
−6 −4 −2 0 2 4 6 0

5
10

15
20

25
30

−6 −4 −2 0 2 4 6 0
5

10
15

20
25

30

−6 −4 −2 0 2 4 6 0
5

10
15

20
25

30

−6 −4 −2 0 2 4 6 0
5

10
15

20
25

30

−120
−140

−160
−180

−120
−140

−160
−180

−145
−150
−155

−160

−180

−160

−140

−120

−100

−80

−120

−130

−140

−150

−160

−170

−180

−190

−30

−20

−10

0

10

20

30

Range cell

25

−144

−146

−148

−150

−152

−154

−156

−158

(a)

(b)

(c)

(d)

(e)

(f) −6 −4 −2 0 2 4 6

Figure 5. Preprocessing for ROI selection: (a) Raw self-spectrum of the monopole of Habn at 07:59:48
on 29 October 2013; (b) Result of closing operation on Figure 5a; (c) ROI selection from the recognition
result of Canny edge detection.

The first step is to specify the ROI to avoid interference. It is also beneficial for
effectively improving the time consumption and evaluating the accuracy of suspicious
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ship echoes. Actually, the signal is not homogeneous, and spike signals, such as the delta
function, often appear in the Doppler spectrum. Using edge detection directly to find the
edge of the strong echo will cause considerable noise to be detected at the same time and
cannot be clearly defined as an ROI. First, we need to reduce the noise of the cross-spectra
series but still maintain the shape and characteristics of ship echoes, so we adopt the closing
operator (Equation (1)) in mathematical morphology to highlight the shape features of
Bragg peaks and ionospheric noise. Morphological analysis probes a digital image with
a predefined simple shape, called a structuring element, and then draws a conclusion
regarding how effectively this shape matches the features of the image. The closing of
image A (Figure 5a) by structural element B is obtained by the dilation of A by B, followed
by erosion of the resulting structure by B, as shown in Equation (1). Operator dilation
is used to connect the regions by expanding the components of an image, and operator
erosion is used to remove noise by shrinking the components of an image [34].

A·B = (A ⊕ B)	 B (1)

where A is the spectrum data, B is the structural element, ⊕ is a dilation operator, and Θ is
an erosion operator.

Figure 5a is a raw Doppler spectrum at a specific time. After the closing operation of
Equation (1) is performed, the result shown in Figure 5b can be obtained. The advantages
of the closing operation are filling small holes in the Doppler spectrum, connecting adjacent
objects, and smoothing boundaries without significantly changing the area, so the shapes
of the Bragg peaks and the ionospheric noise in Figure 5a can be strengthened, and their
borders can be highlighted, which will facilitate subsequent edge detection.

The next process is to perform edge detection on the affected areas of the Bragg peaks
and ionospheric noise. The tool used is a Canny edge detector, which uses a multistage
algorithm to detect edges of images with noise suppression at the same time. The first step
is to apply a Gaussian filter to smooth the image to reduce noise and unwanted details
and textures, and then the gradient operators are used to find the intensity gradients of
the smoothed image. The second step is to apply nonmaximum suppression to find the
locations with the sharpest change in the intensity value to eliminate spurious responses to
edge detection, and then select high- and low-threshold values of the previous result to
determine the potential edges. After using the edge detector to mark the influence ranges
of Bragg peaks and ionospheric noise (Figure 5c), an ROI (the red box in Figure 5c) with no
interference from the aforementioned noise can be selected.

3.2. Adaptive Signal Identification Algorithm

The steps of the ASI algorithm and its four consecutive stages of output are shown
in Figure 4, and the schematic implementation results are illustrated in Figure 6. The
first step is to select an ROI (Figure 6a) from the CSS that is not affected by Bragg peaks
and ionospheric noise and convert the Doppler shift frequency axis of the spectrum into
a radial velocity axis. However, there is still a strong echo energy at zero velocity in
Figure 6a, which will affect the analysis results of subsequent steps. Therefore, referring
to the processing method of the SeaSonde HF radar system, a step called DC removal is
performed to eliminate the strong spectral energy near the zero velocity. In reference to [19],
the incoming data (raw Doppler spectrum) within 2 Doppler bins (radial velocity) totaling
five bins around the DC Doppler bin are set to be the average value of these two bins at the
edges of this DC region for all ranges, and the processing result is shown in Figure 6b.

Next, we refer to the ADT algorithm and perform a 2D moving average filter on
Figure 6b to obtain an adaptive average surface, as shown in Figure 6c. This step is similar
to ADT, which can filter out random noise but retains the echoes of the moving targets
of Figure 6a. However, the difference between ASI and ADT is that there is no longer
ionospheric noise, high energy at the Bragg peaks, and zero Doppler frequency in the
chopping surface in Figure 6c. For the definition of 2D MA and how to use it, please
consult the literature [11]. To determine the best size of the 2D MW, we consider various
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windows with the sizes (m × n) of 3 × 3, 3 × 5, 3 × 7, 3 × 9, 3 × 11 . . . to 3 × 301, where
the first and second numbers represent the numbers of the range and radial velocity cells,
respectively. These 150 windows are used to evaluate the kurtosis and skewness of the
histogram of the corresponding residual series (Figure 6d), which is the difference between
Figure 6b,c. From the change trends of the skewness and kurtosis of the histograms in
Figure 7, which show the deviations from the normal distribution for various sizes of 2D
MAs, we can select the window size that is most suitable for Figure 6b.
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Skewness is a measure of the symmetry in a distribution. Kurtosis is a measure of
whether the data are heavy-tailed or light-tailed relative to a normal distribution. The
standard normal distribution has a skewness of 0 and a kurtosis of 3. It is near normal if
skewness ranges from −1 to 1 and the kurtosis ranges from 2 to 4. Figure 7a shows that the
skewness rapidly approaches −0.5 and the kurtosis rapidly approaches 2 when the window
size gradually increases. However, when the length of the radial velocity cell is greater
than 50 (that is, the window size is 3×50), the kurtosis value does not change markedly;
however, when it is greater than 100, the kurtosis value gradually moves away from 3.
Hence, when the kurtosis value is increased from 50 to 100, if the degree of change in the
kurtosis value is lower than a specified threshold, the kurtosis value can be considered
to have reached convergence. Therefore, we believe that the change in the kurtosis curve
in Figure 7a has stabilized when the slope change in the kurtosis curve reaches the 1%
threshold (the red line in Figure 7b).

A ship signal can be determined with the standard deviation after obtaining the
best MW through the abovementioned rigorous approach. Next, the watershed division
method is used to distinguish the regions in the Doppler spectrum. This method initially
distinguishes whether the local front values are independent systems. The preliminary
results are shown in Figure 6f. Each color block represents the independent system of
each zone, and the maximum value of each zone is selected. Compared with the original
image, it can be clearly observed that each strong echo is automatically searched. In this
way, the positions of the range cell and Doppler bin are obtained. The MUSIC algorithm
relies on the above local peak position voltage spectrum signals for direction determination.
Although the most widely known watershed algorithm has an excessive segmentation
problem, using the algorithm proposed in this paper to preprocess spectra can effectively
reduce the problem of excessive segmentation of the watershed algorithm.

3.3. Watershed Algorithm

This section introduces the watershed algorithm in detail, which is an important
algorithm in the image segmentation algorithm. It has been widely used in the process
of image processing because of its good edge detection ability and its ability to obtain
relatively different regional characteristics [12]. The basic idea of the watershed algorithm
is to treat grayscale images as elevation images. The grayscale change in the image is
representative of topographic relief. Assuming that water is continuously injected into the
area, the lower-lying position will be inundated first, and the area that is submerged as the
water level rises will continue to increase. When the water level reaches a certain height,
the two collection basins will be connected and will merge into a single area. At this time,
a water dam should be established between the two collection basins to prevent merging
of the areas. In other words, using the gray value distribution feature of the pixel, each
region that conforms to the feature is divided to form a boundary to form a watershed.
The largest feature of the algorithm is image segmentation based on the similarity between
pixels. The algorithm improves the defect of ignoring the spatial relationship of pixel points
in traditional edge detection and contour detection. This paper integrates the watershed
algorithm with the ASI algorithm. The specific steps for the process are as follows:

1. The ASI algorithm derives suspected ship signals from the original Doppler spectrum,
and it is essential to remove the recorded voltage value of the local peak for direction
determination. This paper uses the watershed algorithm to automatically distinguish
each region in the Doppler spectrum and to select local peaks from the basin. In the
first step, the image gradient in the Doppler spectrum is calculated, the region with the
smaller gradient value is obtained as the collecting basin through the image gradient,
and all the pixels in the same collection basin are obtained by searching in eight
directions in the process of acquiring the collection basin. Each local minimum and its
area of influence is called a basin, and the boundaries of the basin form a watershed.

2. The boundary pixels of the collection basin are judged in eight directions to detect
whether the pixels can be submerged, and the image collection basin and the collection
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basin boundary pixels are recalculated. Finally, the maximum value of each region is
automatically selected from each watershed spectrum. This method can be used to
obtain the vertical and horizontal axis positions of the signal peak, which can provide
voltage value information for subsequent direction-finding algorithms.

3.4. Multiple Signal Classification Algorithm

Schmidt (1986) found the relationship between signal observations and antenna pat-
terns in the cross-spectrum of high-frequency radars. The received signal voltage is mod-
elled as a linear combination of the incident signal, antenna response, and noise. Then, it is
used in the MUSIC algorithm [13].

The results of the ASI algorithm integrated with the watershed algorithm will au-
tomatically provide the voltage spectrum value of the suspected ship signal to MUSIC.
In addition to the voltage signal, this algorithm also requires inputting of the antenna
pattern, which describes the response of the receiving antenna to the signal source and
more accurately determines the direction of the signal. The directional sensitivity of the
loop receiving antenna is based on the amplitude and phase of the signal source in the
pattern [35]. The incident wave at each angle generates different amplitude ratios and
phase differences among the three sets of receiving antenna patterns. Figure 7a shows the
actual antenna pattern of the Habn HF radar station. The orange solid line is the pointing
angle of loop1. The estimated range is 30 degrees to 150 degrees. The degree is zero degrees
clockwise from true North.

The basic idea of the MUSIC algorithm is to decompose the covariance matrix of the
output data of any array and divide the observation space into a noise subspace composed
only of noise and a signal subspace composed of noise and signals [36]. Then, the orthogo-
nality of these two subspaces is used to construct a spatial spectral function and search for
the DOA of the detection signal through the spectral peak. MUSIC is a representative struc-
tural analysis method with good angular resolution. Under certain conditions, the MUSIC
algorithm is a one-dimensional implementation of the maximum likelihood method with a
performance similar to the maximum likelihood method. Therefore, we can estimate the
azimuth of the ship on the Doppler spectrum through the MUSIC algorithm.

The DOA plays an important role in array signal processing, and its application range
is quite critical when dealing with radar signals. It can help remote sensing instruments
identify the target location accurately. The SeaSonde system uses an omnidirectional
antenna with three sets of collocated antennas for simultaneous reception and records the
echo energy with a voltage value. The DOA solution method was proposed by Schmidt [13]
to solve the main orientation of the target by analyzing the characteristics of each set of
antenna self-spectra and the other two sets of antenna cross-spectra and the antenna pattern
(Figure 8a). This study uses the MUSIC algorithm to obtain the DOA solution of the target.
The most important core technology of MUSIC is to define a subspace type definition.
After eigendecomposition, the eigenvalues and eigenvectors are further divided into signal
subspaces and noise subspaces. The orthogonality of the subspaces can be used to estimate
the direction of the signal source. The last step is to find the target DOA function of the
signal source using Equation (2), as follows:

DOA(θ) =
1

A∗(θ)EnE∗
n A(θ)

(2)

where En is the eigenvector of the noise subspace, A(θ) is the steering vector of the antenna,
and A* is the transposed matrix of A. Additionally, the single-angle or double-angle hypoth-
esis is used to define the signals received in different directions, and the antenna steering
vectors are brought into the function individually. Due to the orthogonal characteristics of
the noise subspace and the signal subspace, when approaching the correct signal source
angle, the component of the projection in the signal subspace will be heavier, and the
product with the noise subspace will approach 0. In the DOA formula, the denominator
will be close to 0 in the antenna steering vector and orthogonal to the noise subspace. With
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this feature, MUSIC will produce a peak at a specific angle in the DOA solution (Figure 8b),
thus effectively estimating the signal source.

Figure 6. Schematic results of each step in the ASI algorithm: (a) An ROI of CSS has a strong echo at 
zero velocity; (b) DC removal of Figure 6a; (c) Moving average surface of Figure 6b; (d) Residual 
series; (e) The watershed algorithm divides a suspected ship echo into separate regions; (f) Location 
of the local peak of each suspected vessel (red circle). 
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Figure 8. Schematics of the measured antenna pattern and DOA function: (a) The red and blue lines
are two cross-loop antenna patterns; the orange line is the loop 1 pointing angle; (b) DOA function;
the green peak point represents the signal source.

3.5. Map Information Display

Compared to those of the general X-band radar, the results of target detection with
HF radar are not intuitive. Therefore, the final step in the entire ship detection process is to
visualize the ship dynamics on a map using the latitude and longitude of the known radar
station and the distance and azimuth of the target relative to the station. The coordinates
of the target object in front are determined, and the detailed formulas are as follows:

φB = φA +

(
R × cos(θ)

111

)
(3)

λB = λA +

(
R × sin(θ)

111

)
(4)

φA is the latitude of point A; φB is the latitude of point B; λA is the longitude of point
A; λB is the longitude of point B; R is the distance between the middle of point B and point
A; θ is the azimuth of point B with respect to point A.

The ASI and MUSIC algorithms provide the distance and azimuth information re-
quired for the above equations. The ASI captures the suspected ship echoes in the spectrum
and then uses the watershed algorithm to select the voltage spectrum of the ship echoes
for direction determination using the MUSIC algorithm. Finally, expressions (3) and (4)
are used to calculate the longitude and latitude of the target and present the estimated
points on the map. The ship’s trajectory is obtained by detecting the target continuously
over time. A comparison with the AIS is then carried out to confirm the feasibility of the
algorithm for ship tracking.

4. Experimental Results

This study took large ships sailing in the eastern seas of Taiwan from 29 October 2013
to 31 October 2013, as an example. Figure 9 shows the echo of a target vessel detected
continuously by ASI. The top half of the figure is the original Doppler spectrum, and the
suspected ship echo signal can be obviously obtained via ASI processing. The name of
ship 1 is May Oldendorff, ship 2 is Berge Lyngor, and ship 3 is Fakarava. The length and
width of the selected bulk carriers are 300 m (984 ft) and 50 m (164 ft). The ships have
large superstructures and high mast elevations, which have a good detection effect with
HF radar. The green arrow is the location of the target, which was identified by AIS. The
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horizontal axis of the echo is the radial velocity, with positive values indicating that the
ship is approaching the radar station. The signs of the target's proximity to the radar station
can be observed at two consecutive time points. The voltage values of the local peaks of
the echoes are extracted by the watershed algorithm and returned to the direction-finding
method for calculation.
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Figure 9. Two consecutive detection results using the ASI algorithm; the green arrows are radar signals of ship 1: (a) At 7:59
on 29 October 2013 (UTC); (b) At 8:16 on 29 October 2013 (UTC).

The MUSIC algorithm was added to the ship identification technique to search for
the DOA, as shown in Figure 10, showing the bearing of the target relative to the Habn
station. The horizontal axis is the DOA, and the vertical axis is the DOA function. We can
observe the ship moving from 105 degrees to 87 degrees in azimuth from two consecutive
time points. Subsequently, the radar site can be used to effectively estimate the position
of different vessels by the detection method proposed in this study. The actual AIS track
displayed by the green line is shown in Figure 11. Ship 1 and ship 2 sailed from north to
south according to the AIS data. The other vessel named ship 3 navigated from north to
south and then turned east. In this paper, the proposed HF radar ship detection algorithm
is used to analyze the data from the long-distance Habn radar site, and the three ships
are locked in for long-term tracking. The circle is the exact position of the ship estimated
through the entire ship detection algorithm. The above position mainly uses ASI to identify
suspected ship signals in the Doppler spectrum after selecting the ROI by morphology and
canny edge detection. Then, the local peaks are filtered out using the watershed algorithm
and are entered into the MUSIC algorithm to extract the DOA information. The AIS data
are then used to assist in identifying that the radar result is indeed a vessel. Finally, the
distance obtained by ASI and the bearing information estimated by MUSIC are brought
into the formula to estimate the actual position of the vessel.

Figure 10. Two consecutive direction-finding results using the MUSIC algorithm; the green 
dots are the DOAs of ship 1: (a) At 7:59 on 29 October 2013 (UTC); (b) At 8:16 on 29 October 
2013 (UTC). 

 
Figure 11. Trajectories of vessels from 29 October 2013 to 31 October 2013; the blue dots are the 
trajectory predictions of ship 1 at 04:34–09:08 on 29 October 2013; the red dots are those of ship 
2 at 00:53–05:43 on 29 October 2013; the purple dots are those of ship 3 at 20:30 on 30 October 
2013 to 02:52 on 31 October 2013. The three green lines are the actual tracks from the AIS 
database. 
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Figure 10. Two consecutive direction-finding results using the MUSIC algorithm; the green dots are the DOAs of ship 1:
(a) At 7:59 on 29 October 2013 (UTC); (b) At 8:16 on 29 October 2013 (UTC).
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Figure 10. Two consecutive direction-finding results using the MUSIC algorithm; the green 
dots are the DOAs of ship 1: (a) At 7:59 on 29 October 2013 (UTC); (b) At 8:16 on 29 October 
2013 (UTC). 

 
Figure 11. Trajectories of vessels from 29 October 2013 to 31 October 2013; the blue dots are the 
trajectory predictions of ship 1 at 04:34–09:08 on 29 October 2013; the red dots are those of ship 
2 at 00:53–05:43 on 29 October 2013; the purple dots are those of ship 3 at 20:30 on 30 October 
2013 to 02:52 on 31 October 2013. The three green lines are the actual tracks from the AIS 
database. 

20 40 60 80 100 120 140 160
bearing (deg CWN)

0

5

10

15

20

25

30

35

10
*l

og
10

(D
O

A
)

20 40 60 80 100 120 140 160
bearing (deg CWN)

0

10

20

30

40

50

60

10
*l

og
10

(D
O

A
)

(b)(a)

Figure 11. Trajectories of vessels from 29 October 2013 to 31 October 2013; the blue dots are the
trajectory predictions of ship 1 at 04:34–09:08 on 29 October 2013; the red dots are those of ship 2 at
00:53–05:43 on 29 October 2013; the purple dots are those of ship 3 at 20:30 on 30 October 2013 to
02:52 on 31 October 2013. The three green lines are the actual tracks from the AIS database.

Therefore, this article analyzes the SNR value of each detection point and its angular
error (Figure 12). The horizontal axis is the SNR value, and the vertical axis is the angular
error. The average SNR value and the angular error value are 13.4 dB and 6.3 degrees,
respectively (the green dashed lines on the vertical and horizontal axes in the figure). The
r-square statistical value obtained from linear regression of this dataset is 0.52779; typically,
a value greater than 0.5 is considered acceptable [37,38].

  
Figure 12. Scatter plot of the SNR and bearing error statistics of the sample vessels. Figure 12. Scatter plot of the SNR and bearing error statistics of the sample vessels.
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5. Discussion

The detection results approximately match the actual ship trajectories. The trajectories
of ship 1 and ship 2 are very similar and nearly coincide with the actual AIS trajectory data.
Only a few estimated positions are less accurate in the figure. This study speculates that
this may be related to the lower SNR values at specific times. In addition, the tracking
performance of ship 3 was fairly good until it turned to the southeast. However, the relative
error increased when the ship changed course. The possible reason is that the RCS provided
by the stern facing the radar station decreased, resulting in a weak signal strength. The
RCS is a measure of how well an object is detected by radar. The influencing factors include
the material of the target, the absolute size of the target and the reflected angle. Moreover,
it can be further confirmed that the smaller the SNR is, the larger the angular error, which
will cause a larger error in the exact position estimate of the ship according to the analysis
of the SNR value and angular error.

6. Conclusions

This paper makes three contributions. The first contribution is that it solves the
problem where the strong echo energy of the ADT method interferes with the selection
of the optimal window size of the filter, including the Bragg peak and the echo energy
at zero frequency. A revised version of the improved process is presented, and a new
name, i.e., ASI, is given to distinguish it. ASI has the ability to quickly and automatically
extract ship signals under complex environmental background noise without adversely
affecting the sea surface current mapping. Namely, the ASI algorithm is a kind of vessel
identification method based on image processing and statistical analysis. There are two
advantages. The first one is that the algorithm can establish an appropriate threshold
surface for vessel signal extraction according to the characteristics of environmental noise.
There is then no need for too many manual parameter settings. The following paragraph
describe the procedure of the ASI algorithm. The second contribution is that the whole
process was automated by adding morphology and edge detection methods to assist the
automatic ROI selection before the ASI is employed. To provide subsequent information on
direction-finding techniques, this paper adds the watershed algorithm used for automatic
peak detection after the ASI is employed. These new technologies are processes that
are not included in ADT. The most well-known problem of the watershed algorithm is
oversegmentation. This article has confirmed that in the past, if the watershed algorithm
directly targets the frequency spectrum, there will be excessive oversegmentation. However,
after the Doppler spectrum is processed by ASI, a large amount of noise will be filtered
to retain the main signal of the suspected ship, and then the watershed algorithm will be
used to divide the Doppler spectrum without oversegmentation. The last contribution is
that the case analysis also initially confirmed that the HF radar ship detection algorithm
has the ability to identify large ships and can carry out long-term tracking. The smaller the
SNR is, the larger the angular error obtained. Additionally, the feasibility of the algorithm
is confirmed by comparing the AIS data, and more cases and ship sizes can be examined in
the future.

The whole algorithm can adjust the appropriate signal filtering threshold with the
environmental background noise and echo distance to more effectively extract the possible
ship echo signals and avoid the subjective setting of the empirical parameters. Time signal
acquisition was performed, and the results were output to the map for visualization. This
expected result not only enhances the technical capability of existing HF radar systems to
detect and track ships moving at sea, but also demonstrates the ability of HF radars to act
as a strain mechanism for long-range warning systems.

The detection performance of radar can be evaluated by the false alarm rate. In future
research, a large number of samples will be quantitatively studied based on the method
proposed in this paper. This work is divided into three main parts. The first step is to
establish a large number of AIS ship databases. The second step is to use ASI and MUSIC to
obtain information (distance, radial velocity, bearing) on the suspected ship signals on the
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Doppler spectrum. The last step is to establish a comparison system to compare the radar
and AIS data. Then, the confusion matrix is used to evaluate the detection performance of
the system. The four indicators in the confusion matrix are individuals. In fact, the false
alarm rate means that the radar has detected a ship, but there is actually no ship (AIS has
no data), that is, the result is a false negative (FP). The confusion matrix can even further
calculate the detection rate, accuracy rate, and recall rate. Therefore, it is expected that in
future research, based on the developed technology, the problem of false alarms that is
common in vessel detection can be solved in a quantitative manner.
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