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Abstract: Most traditional hyperspectral image (HSI) classification methods relied on hand-crafted or
shallow-based descriptors, which limits their applicability and performance. Recently, deep learning
has gradually become the mainstream method of HSI classification, because it can automatically
extract deep abstract features for classification. However, it remains a challenge to learn more
meaningful features for HSI classification from a small training sample set. In this paper, a 3D
cascaded spectral–spatial element attention network (3D-CSSEAN) is proposed to solve this issue.
The 3D-CSSEAN integrates the spectral–spatial feature extraction and attention area extraction for
HSI classification. Two element attention modules in the 3D-CSSEAN enable the deep network
to focus on primary spectral features and meaningful spatial features. All attention modules are
implemented though several simple activation operations and elementwise multiplication operations.
In this way, the training parameters of the network are not added too much, which also makes the
network structure suitable for small sample learning. The adopted module cascading pattern not
only reduces the computational burden in the deep network but can also be easily operated via plug–
expand–play. Experimental results on three public data sets show that the proposed 3D-CSSEAN
achieved comparable performance with the state-of-the-art methods.

Keywords: 3D convolution; hyperspectral image classification; attention mechanism; spectral–
spatial feature

1. Introduction

With the development of remote sensing technology, hyperspectral images (HSIs)
have been of wide concern and gradually applied in many fields [1,2]. In the field of HSIs,
as a fundamental task, HSI classification is a task of assigning category labels to each pixel
in the HSI and has attracted more and more attention.

An HSI usually contains hundreds of spectral bands, so it has abundant spectral
information in addition to the usual spatial information of the image. In the early stages of
HSI classification, there were many works based on spectral or spatial characteristics [3].
Support vector machines (SVMs) were used to address the problem by using spectral
information [4]. In the past ten years, many works were based on spectral–spatial feature
learning for HSI classification [5,6]. The performance of sparse representation was im-
proved by using the spatial neighborhood information of samples [7]. In [8], principal com-
ponent analysis (PCA) was used for unsupervised extraction of spectral features and data
dimensionality reduction, and edge-preserving features were obtained by edge-preserving
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filtering, and the resulting features were classified by an SVM classifier. A hierarchical
subspace and ensemble learning algorithm was proposed to solve the problem of hy-
perspectral image classification, in which spectral–spatial features were also applied [9].
Although most of these methods based on spectral–spatial features have achieved better
results than those based on spectral information alone, they usually rely on hand-crafted
or shallow-based descriptors. Therefore, the robustness and classification accuracy of these
traditional methods still need to be improved.

In recent years, deep learning has been widely adopted in HSI classification because
of its advantage of automatically learning discrimination features from raw data [10].
Autoencoders (AEs) were applied to extract the deep features of the image in an unsu-
pervised manner [11,12]. In [13], the spectral information of each pixel was regarded as a
sequence, and sequence features were extracted by recurrent neural networks (RNNs) for
HSI classification. In [14], AE and RNN were combined to construct a new network for
HSI classification.

Convolutional neural networks (CNNs) have been widely used in the field of HSI
classification because of the advantages of spatial extraction and weight sharing mecha-
nisms [15,16]. In [17], 1D CNNs were employed to extract the spectral features for HSI
classification. The spectral images in HSIs were treated as the channels of conventional
images, and then 2D CNNs were designed to extract the spatial features for HSI classifi-
cation [18]. A 3D CNN that combined spectral and spatial information was used for HSI
classification [19]. A spectral–spatial residual network (SSRN) adopted a 3D CNN and
residual connections to improve the classification accuracy [20]. Batch normalization (BN)
was used to regularize the training process in SSRN, making the training processing of
the deep learning model more efficient. A 3D CNN has advantages over a 1D CNN and
a 2D CNN in simultaneously extracting spectral and spatial features, while it requires
more computation. To reduce the computational burden of 3D CNNs, 3D and 2D CNNs
were mixed in a hybrid network (HybridSN) for HSI classification [21]. Overall, deep
spectral–spatial feature learning has become a new trend in the classification of HSIs.
Among these deep learning methods, it is difficult to achieve satisfactory results with the
existing unsupervised network methods. Although these deep learning methods trained
in a supervised manner can obtain encouraging results, they usually require sufficient
labelled samples for training. However, obtaining labelled samples of hyperspectral images
often consumes a lot of human and material resources. Therefore, training a deep learning
model for hyperspectral image classification with limited samples is still a challenge.

Recently, some deep learning methods have introduced the attention mechanism to
alleviate these problems in HSI classification [22,23]. The attention mechanism is inspired
by the human visual mechanism [24,25]. When people observe a scene, they always pay
more attention to the area of interest to obtain more meaningful information. In [26], the
global pooling operations in the spectral dimension and spatial dimension were used to
assign the attention to the interesting features. In [27], the spatial correlation and spectral
band correlation were used to compute the attention weights of feature learning. In [28],
a cascaded dual-scale crossover network (CDSCN) was proposed for HSI classification,
which can obtain the parts of interest in the images through the multiplication of dual
branch features. These methods use different ways to obtain attention features, thereby
improving the classification performance. In addition to these attention methods, there
may be other ways to extract attention features.

In this paper, a 3D cascaded spectral–spatial element attention network (3D-CSSEAN)
is proposed for HSI classification. In 3D-CSSEAN, an element attention mechanism is used
to extract spectral and spatial attention features, as shown in Figure 1. This method is
different from the attention method mentioned above. It uses several activation functions
to assign weights to all elements in the 3D feature tensor and obtains attention features
through elementwise multiplication. The overall framework of 3D-CSSEAN is shown in
Figure 2. It first uses convolution operations for data dimensionality reduction and shallow
feature extraction. Then two attention modules are used to extract attention features.
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The following pooling operation is used to reduce the dimensionality of features. Finally, a
fully connected layer and softmax activation layer are used to generate classification results.
The main contributions of this work can be summarized in the following three aspects.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 20 
 

 

shown in Figure 2. It first uses convolution operations for data dimensionality reduction 
and shallow feature extraction. Then two attention modules are used to extract attention 
features. The following pooling operation is used to reduce the dimensionality of features. 
Finally, a fully connected layer and softmax activation layer are used to generate classifi-
cation results. The main contributions of this work can be summarized in the following 
three aspects. 

First, a cascade element attention network is proposed to extract meaningful features, 
which can give different weight responses to each element in the 3D data. Two element 
attention modules are employed to enhance the important spectral features and 
strengthen the interesting spatial features, respectively. 

Second, the proposed element attention modules are implemented through several 
simple activation operations and elementwise multiplication operations. Therefore, the 
implementation of the attention module does not add too many parameters, which makes 
the network model suitable for small sample learning. 

Third, the proposed attention modules can be easily plug and play, and can be 
achievable based on a single branch, so it is more time-efficient. 

 
Figure 1. The elemental attention mechanism used in the 3D-CSSEAN. 

 
Figure 2. The proposed framework of the 3D-CSSEAN. 

The rest of this paper is organized as follows: In Section 2, the existing attention meth-
ods for HSI classification are discussed. The proposed 3D-CSSEAN model is described in 
detail in Section 3. Experimental results and analysis are presented in Section 4. In Section 
5, the influence of attention block numbers and different training sample numbers on the 
model are discussed. Finally, conclusions are summarized in Section 6. 

2. Related Work 
In this section, the existing attention methods for HSI classification are reviewed 

briefly. According to the different ways of paying attention to spectral and spatial fea-
tures, these methods can be roughly divided into three categories: 
1. Global operation-based methods. These methods use a global operation on an HSI 

or its feature map, such as global pooling or global convolution, to obtain the spec-
tral attention weight or spatial attention weight [26,29]. As shown in Figure 3a, a 
spectral weight vector of the HSI is obtained by global operation of spatial dimen-
sion, and then the weight vector is multiplied by the HSI to achieve the spectral at-
tention. Similarly, in Figure 3b, a spatial weight plane of the HSI is obtained by 

Figure 1. The elemental attention mechanism used in the 3D-CSSEAN.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 20 
 

 

shown in Figure 2. It first uses convolution operations for data dimensionality reduction 
and shallow feature extraction. Then two attention modules are used to extract attention 
features. The following pooling operation is used to reduce the dimensionality of features. 
Finally, a fully connected layer and softmax activation layer are used to generate classifi-
cation results. The main contributions of this work can be summarized in the following 
three aspects. 

First, a cascade element attention network is proposed to extract meaningful features, 
which can give different weight responses to each element in the 3D data. Two element 
attention modules are employed to enhance the important spectral features and 
strengthen the interesting spatial features, respectively. 

Second, the proposed element attention modules are implemented through several 
simple activation operations and elementwise multiplication operations. Therefore, the 
implementation of the attention module does not add too many parameters, which makes 
the network model suitable for small sample learning. 

Third, the proposed attention modules can be easily plug and play, and can be 
achievable based on a single branch, so it is more time-efficient. 

 
Figure 1. The elemental attention mechanism used in the 3D-CSSEAN. 

 
Figure 2. The proposed framework of the 3D-CSSEAN. 

The rest of this paper is organized as follows: In Section 2, the existing attention meth-
ods for HSI classification are discussed. The proposed 3D-CSSEAN model is described in 
detail in Section 3. Experimental results and analysis are presented in Section 4. In Section 
5, the influence of attention block numbers and different training sample numbers on the 
model are discussed. Finally, conclusions are summarized in Section 6. 

2. Related Work 
In this section, the existing attention methods for HSI classification are reviewed 

briefly. According to the different ways of paying attention to spectral and spatial fea-
tures, these methods can be roughly divided into three categories: 
1. Global operation-based methods. These methods use a global operation on an HSI 

or its feature map, such as global pooling or global convolution, to obtain the spec-
tral attention weight or spatial attention weight [26,29]. As shown in Figure 3a, a 
spectral weight vector of the HSI is obtained by global operation of spatial dimen-
sion, and then the weight vector is multiplied by the HSI to achieve the spectral at-
tention. Similarly, in Figure 3b, a spatial weight plane of the HSI is obtained by 

Figure 2. The proposed framework of the 3D-CSSEAN.

First, a cascade element attention network is proposed to extract meaningful features,
which can give different weight responses to each element in the 3D data. Two element
attention modules are employed to enhance the important spectral features and strengthen
the interesting spatial features, respectively.

Second, the proposed element attention modules are implemented through several
simple activation operations and elementwise multiplication operations. Therefore, the
implementation of the attention module does not add too many parameters, which makes
the network model suitable for small sample learning.

Third, the proposed attention modules can be easily plug and play, and can be achiev-
able based on a single branch, so it is more time-efficient.

The rest of this paper is organized as follows: In Section 2, the existing attention
methods for HSI classification are discussed. The proposed 3D-CSSEAN model is described
in detail in Section 3. Experimental results and analysis are presented in Section 4. In
Section 5, the influence of attention block numbers and different training sample numbers
on the model are discussed. Finally, conclusions are summarized in Section 6.

2. Related Work

In this section, the existing attention methods for HSI classification are reviewed
briefly. According to the different ways of paying attention to spectral and spatial features,
these methods can be roughly divided into three categories:

1. Global operation-based methods. These methods use a global operation on an HSI or
its feature map, such as global pooling or global convolution, to obtain the spectral
attention weight or spatial attention weight [26,29]. As shown in Figure 3a, a spectral
weight vector of the HSI is obtained by global operation of spatial dimension, and then
the weight vector is multiplied by the HSI to achieve the spectral attention. Similarly,
in Figure 3b, a spatial weight plane of the HSI is obtained by global operation of
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the spectral dimension, and subsequently, spatial attention features are obtained by
multiplying the spatial weight plane by the HSI.

2. Correlation-based methods. Spatial location correlation and inter-channel correlation
are used to describe the degree of attention [27,30]. The channel attention module can
be illustrated as Figure 4a. Firstly, the original HSI or 3D feature tensor is reshaped
to a plane with C height and N width, where C is the spectral dimension and N is
the number of pixels. Next, matrix multiplication is performed on the plane and
its transpose to obtain the channel correlation matrix. Finally, the channel attention
features are obtained by multiplying the channel correlation matrix with the transpose
matrix. The spatial attention features can also be obtained in a similar way, and the
spatial attention module is shown in Figure 4b.

3. Multifeature-based methods. These methods usually appear in the form of two
branches; the rough network structure is shown in Figure 5. The attention module
is composed of a trunk and mask [31], and the trunk branch is composed of some
residual blocks, and the mask branch is composed of a symmetrical downsampler–
upsampler structure. Different features can be extracted by different network struc-
tures in two branches. Finally, the attention features are obtained by multiplying
different features between the trunk branch and mask branch. Similarly, attention
modules are composed of two branches extracting different scale spectral–spatial
features [28]. The parts of interest in the images are obtained by multiplying different
scale features between two branches. By adopting different structures or utilizing dif-
ferent scales, these attention models can extract meaningful information and improve
the performance of classification tasks.
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The above three kinds of attention methods may help deep networks pay more
attention to the region of interest in space and important spectral bands. Recently, a
multiattention fusion network (MAFN) [32] was proposed to merge multiple attention
features for classification. MAFN is a method that combines the global operation-based
method and the correlation-based method. However, these methods still have room for
improvement. For global operation-based methods, the global pooling is too simple and
crude to capture certain local attention features. For correlation-based methods, they have
too high a computational burden due to matrix multiplication. For multifeature-based
methods, they suffer from the small sample learning issue and computational burden
because two branch networks inevitable increase the parameters. In this paper, the element
attention mechanism is used to extract the spectral–spatial attention features, which is more
meaningful for HSI classification. At the same time, the design of a single branch network
structure can produce a network with less computing burden and higher time efficiency.

3. Proposed Method

As illustrated in Figure 2, the proposed 3D-CSSEAN contains four main modules: data
dimension reduction module, spectral element attention module, spatial element attention
module, and prediction layers. The 3D-CSSEAN firstly uses several 3D convolution
operations for data-dimension reduction and spectral–spatial feature extraction. Then, the
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element attention mechanism is used to make the model focus on the primary spectral
features and strengthen meaningful spatial features as well as to suppress unnecessary
features. Finally, prediction layers are used to obtain the classification results. To fully
utilize the spectral–spatial information of the HSI, each labeled pixel is first expanded into
a 3D image patch centered on it, and then the patch is used as the input of the 3D-CSSEAN
for training and testing. The training objective of the network is to update the parameters
of the 3D-CSSEAN by minimizing cross-entropy loss between the predictive output and
the truth label of the patch center pixel.

3.1. Data Dimension Reduction Module

Commonly, the utilization of hundreds of bands in the HSI is not only not optimal for
classification but also increases the computational burden, especially for deep learning with
a limited training data set. Therefore, data dimension reduction is necessary to improve
the classification effect and time efficiency. The input of our model is a 3D image patch.
Let the patch size be ω × ω × B, where ω × ω represents the spatial neighborhood of
the centered pixel, and B is the band number of the HSI. In the proposed framework, for
shallow feature extraction and spectral dimension reduction, a data dimension reduction
module is designed based on a 3D convolutional operation, as shown in Figure 2. The i-th
output of (k + 1)-th 3D convolutional layer can be formulated as

Pk+1
i =

nk

∑
j=1

Pk
j ∗Wk+1

i + bk+1
i , i = 1, 2, · · · nk+1 (1)

Pk+1 = G
(

Pk+1
)

(2)

where Pk
j ∈ Rω×ω×ck ,1 is the j-th component of Pk, Pk ∈ Rω×ω×ck ,nk

represents the input

feature tensor of the (k + 1)-th convolutional layer, ω × ω × ck is the size of the feature
tensor, ω×ω represents the spatial size and ck represents the spectral size, nk is the number
of the convolutional kernel in the k-th convolutional layer, Wk+1

i and bk+1
i indicate weights

and the bias of the i-th convolutional operation in the (k + 1)-th layer, respectively, and
∗ denotes the 3D convolutional operation. After each convolution operation, batch nor-
malization (BN) is used to regularize the training process, as in prior work [20]. Moreover,
G(·) represents the BN operation and rectified linear unit (ReLU) activation function.

If the output data dimension of the convolution operation is expected to be smaller
than the input data, then the convolution stride needs to be set greater than 1 or the convo-
lution kernel size needs to be greater than 1 without a boundary padding. In the proposed
model, three 3D convolutional layers, C1, C2, and C3, are used for spectral-dimension reduc-
tion, as shown in Figure 2. These convolutional layers used a 3D convolution kernel with
1× 1× Li, Li > 1 and added the subsampling procedure with a stride of (1, 1, Si), Si ≥ 1,
where i is 1, 2, or 3 corresponding to C1, C2, and C3. The kernel size 1× 1× Li specify the
height, width, and spectral dimensionality of the 3D convolution window, respectively. In
particular, the convolutional layer C3 integrates all the spectral features into one dimension
by not padding the boundary, which is convenient for subsequent spatial feature extraction.

To better understand this process, an example diagram is used to illustrate the data
dimension reduction module on the Indian Pines data set. As shown in Figure 6, let the
input of the model be a tensor with a size of 7× 7× 200 where 7× 7 represents the spatial
size of the tensor, 200 is the spectral dimensionality. The first convolutional layer C1 uses
a convolution operation with a stride size of 2 to reduce the spectral dimension. The
spectral dimension has been reduced from 200 to 97. The second convolutional layer
C2 uses a convolution kernel with 1× 1× 7 without a boundary padding to reduce the
spectral dimension. The spectral dimension has been reduced from 97 to 91. Finally,
the convolutional layer C3 uses a convolution kernel with 1× 1× 91 without a boundary
padding to integrate all the spectral features into one dimension.
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3.2. Spectral Element Attention Module

Following the data dimension reduction module, a spectral element attention module
is designed to extract deep meaningful spectral features for each patch. The spectral
element attention module is composed of several attention blocks, which are shown in
Figure 7. The red dotted box in Figure 7 represents an attention block, which can be defined
as follows:

temp = tanh
(

Pk ∗Wk+1 + bk+1
)

(3)

weighted_P = so f tmax(temp) (4)

Pk+1 = G
(

weighted_P× Pk
)

(5)

where Pk is the input tensor of the spectral element attention block, Pk+1 is the output
of the spectral element attention block, Wk+1 and bk+1 indicate weights and the bias
of the convolutional operation in the (k + 1)-th layer, respectively, ∗ represents the 3D
convolutional operation, and × represents the elementwise multiplication operation. To
extract spectral features, a 1× 1× Le, Le > 1 convolution kernel is used, where Le represents
the kernel size of spectral dimension. Moreover, tanh(·) and so f tmax(·) represent the tanh
and so f tmax activation function, respectively. The tanh activation function can play a
role in contrast stretching, which can increase the relative separability of data around
zero. The so f tmax activation function can map the outputs to a probability distribution
ranging from 0 to 1, which are considered to be the weight map (or mask) of the spectral
features. The attention block can pay the different levels of attention to spectral features via
elementwise multiplication operation between weighted_P and Pk. Finally, the output of
the element attention block is obtained through the BN layer and the activation layer. Since
this method can give different attention weight for each element in the tensor, this attention
block is called an element attention block. It should be noted that the output tensors of the
convolution operation are the same size as the input tensors through the padding strategy,
and thus the implementation of elementwise multiplication can be guaranteed.
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To illustrate the method more clearly, an example diagram is used to illustrate the
spectral element attention block. As shown in Figure 8, let the input of a spectral element
attention block be a feature tensor with size of (7× 7× 91, 24), where 7× 7 represents



Remote Sens. 2021, 13, 2451 8 of 20

the spatial size of feature map, 91 is the spectral dimensionality, and 24 is the number
of the 3D feature map. First, a convolution layer with kernel size 1× 1× 3 is used to
extract spectral features from the input data. The tanh activation and so f tmax activation
are utilized to transform spectral features to attention weights. Finally, spectral attention
features are obtained by elementwise multiplication between the original feature tensor
and the attention weights.
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From the above process, it can be seen that the spectral element attention block first
extracts the features by 3D convolution. Then it converts the features into attention weights
by two simple activation functions. Finally, the elementwise multiplication between the
weights and the features of the previous layer is performed. The element attention method
can give different weights to any element in the tensor, thereby achieving more attention to
detail features. This method considers all the elements of the feature map, so local details
will not be lost. Meanwhile, this single-branch implementation does not add many training
parameters, so the model is easy to converge and implement for small data sets. However,
there are still several limitations to this module. Because the values of weighted_P are in
the range [0, 1], its multiplication over Pk features may degrade them in deeper layers.
Drawing on the idea of a residual network [20], this problem can be mitigated by adding
Pk+i+1 and Pk+i. Equation (5) is reformulated as follows:

Pk+i+1 = G
(

weighted_P× Pk+i
)
+ Pk+i i = 1, 2, · · · , M (6)

where + denotes the elementwise addition, and Pk+i and Pk+i+1 represent the input and
output of i-th attention block, respectively.

3.3. Spatial Element Attention Module

The spatial element attention module has a similar structure to the spectral element
attention module. Unlike the spectral element attention module, the convolutional kernel
size is La × La × 1, La > 1 in the spatial element attention module for the spatial feature
extraction. The structure of a spatial element attention block is shown in Figure 9. A convo-
lution layer with kernel size 7× 7× 1 is used to extract spatial features from the input data
firstly. Then spatial attention weights and attention features are obtained in the same way
as the spectral element attention module. It should be noted that the input of the spatial
module is (7× 7× 1, 24), because the C3 convolutional layer reduces the spectral dimen-
sion to 1, as shown in Figure 2. The spatial element attention module is also composed of
several spatial element attention blocks, as shown in Figure 7.
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As can be seen from the above introduction, regardless of the spectral feature or the
spatial feature, different attention degrees can be obtained in this way of element attention,
so this model does not need to design different global pooling methods based on the
spectral feature and the spatial feature.

Finally, in the prediction layers, the average pooling layer is used to reduce the
dimensions of the feature tensor, while a flatten layer, a fully connected layer, and a
so f tmax activation function are adopted for classification.

3.4. Analysis of the Role of the tanh Function

In this section, the influence of the tanh function on the data is briefly analyzed.
The function curve of the tanh function in the interval of [−5, 5] is shown in Figure 10.
For values outside the interval of [−5, 5], the value of the tanh function was infinitely close
to −1 as the value of the horizontal axis became smaller and smaller. On the other hand,
the larger the number of the horizontal axis, the closer the value of the function became to 1.
It can be seen that the tanh function had a higher slope at the 0 point and its surroundings
compared to the other positions. This also means that the image contrast stretch in this
area was greater than in other areas. Moreover, the preprocessed data conformed to the
Gaussian distribution with 0 mean unit variance, so there were many values distributed
near 0. Thus, the tanh function could increase the relative separability of most data. At
the same time, the tanh function could also suppress the contrast at some too large or too
small values. In order to show the effect of the tanh function, the visualization result of the
image after tanh transformation is provided in Figure 11. Figure 11a–c show the images
before transformation, and Figure 11d–f show the results transformed by the tanh function.
It can be clearly seen from the figure that most details of Figure 11d–f are clearer and easier
to identify than in Figure 11a–c.
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4. Experimental Results
4.1. Experimental Setup

This section evaluates the performance of our method on three public hyperspectral
image data sets. The Indian Pines data set includes 16 vegetation classes and has 224 bands
from 400 to 2500 nm. After removing water absorption bands, it had 145 × 145 pixels
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with 200 bands. The Kennedy Space Center data set includes 13 classes and has 224 bands
from 400 to 2500 nm. After removing water absorption bands, it had 512 × 453 pixels with
176 bands. The Salinas Scene data set includes 16 classes and has 224 bands from 360 to
2500 nm. After removing water absorption bands, it had 512 × 217 pixels with 204 bands.

In the Indian Pines data set, the labeled samples were unbalanced. In the Kennedy
Space Center data set, the number of labeled samples was small. Compared with the
Indian Pines and Kennedy Space Center, the labeled samples in the Salinas Scene data set
were larger and more balanced. Therefore, these three data sets represented three different
situations. The performance of the proposed method was verified in three different cases,
which could better demonstrate the generalization ability of the method. For the Indian
Pines and Kennedy Space Center data sets, about 5%, 5%, and 90% of the labeled samples
were randomly select as training, validation, and testing data sets, respectively. For the
Salinas Scene data set, due to the large number of overall labeled samples, a smaller
training ratio was set. The ratio was about 1%:1%:98% for the Salinas Scene data set.
Moreover, all three data sets were normalized to a Gaussian distribution with zero mean
and unit variance. The overall accuracy (OA%), average accuracy (AA%), and Kappa
coefficient (Kappa × 100) were used to evaluate the classification performance of the
proposed methods. The higher these index values, the better the classification performance
of the method. Each method was randomly run ten times, and the mean and standard
deviation of the classification index were reported. All the experiments were implemented
with a GTX 2080Ti GPU, 16 GB of RAM, Python 3.6, TensorFlow 1.10, and the Keras
2.1.0 framework.

To express more clearly, Table 1 shows the shape of input data and output data and
the specific parameters of the convolutional operation in the 3D-CSSEAN for the Indian
Pines data set. The settings of Kennedy Space Center and Salinas Scene data sets are same
as Indian Pines except for the band number of the input data. Cspe and Cspa in Table 1
indicate the convolution operation in the spectral element attention module and spatial
element attention module, respectively. For each convolutional layer, nk were set to be 24
for each convolutional layer, and experiments show that the change of nk in a small range
had little impact on the result.

Table 1. The input, output, and parameters of convolutional operation for the Indian Pines data set.

Layer Kernel Size Stride Input Shape Output Shape

C1 1× 1× 7 (1,1,2) 7× 7× 200, 1 7× 7× 97, 24
C2 1× 1× 7 (1,1,1) 7× 7× 97, 24 7× 7× 91, 24

Cspe 1× 1× 3 (1,1,1) 7× 7× 91, 24 7× 7× 91, 24
C3 1× 1× 91 (1,1,1) 7× 7× 91, 24 7× 7× 1, 24

Cspa 3× 3× 1 (1,1,1) 7× 7× 1, 24 7× 7× 1, 24

4.2. Comparison and Analysis of Experimental Results

To evaluate the superiority and effectiveness of the proposed 3D-CSSEAN model,
some machine learning and deep learning classification methods were compared with
it. These methods included a traditional machine learning method SVM, state-of-the-art
3D deep learning models such as SSRN [20] and HybridSN [21], and the latest attention
networks, such as CDSCN [28] and MAFN [32]. SVM was implemented by scikit-learn
tools of the machine learning. The Radial Basis Function (RBF) was selected as the kernel
function on the three data sets. The grid search method was used to determine the best
values of parameters C and gamma. Other comparison methods were implemented through
code published in their papers [20,21,28,32]. For fairness of comparison, the input image
patch size was set to 7× 7× B for all methods except HybridSN, where B was the band
number of the HSI. For HybridSN, in order to make the network work without changing the
network structure, the input image patch size was set to 11× 11× B, which was the closest
parameter setting. For SVM and HybridSN, the number of PCA principal components was
set to 30, which is the same as in the literature on HybridSN [21].
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Classification results of the different methods on testing data of the three data set are
reported in Tables 2–4. As shown, 3D-CSSEAN achieved the best results on most indicators
compared with the other methods. In our cases, the classification performances of all
deep learning methods were better than those of SVM, which indicates that these deep
learning models are generally superior to the traditional machine learning method in HSI
classification. On the Indian Pines data set, the 3D-CSSEAN, MAFN, and CDSCN achieved
better results than other methods. These results show that in the case of imbalanced
categories, these attention models pay more attention to meaningful features, so they
achieved better results. Compared with the two other attention methods, the 3D-CSSEAN
increased the score at least 0.89%, 1.52%, and 1.01% in the OA, AA, and Kappa, respectively.
Moreover, the AA of the 3D-CSSEAN was 0.89% higher than the best result of the other
compared methods. These results indicate that the proposed method has good stability
and robustness under the condition of unbalanced samples.

Table 2. Classification results for Indian Pines data set. Bold represents the best results.

Class SVM HybridSN SSRN CDSCN MAFN 3D-CSSEAN

1 100 89.01 90.00 89.82 96.53 100
2 58.08 87.41 93.77 94.24 95.22 96.24
3 73.78 86.04 88.60 94.89 93.15 96.66
4 89.81 89.56 92.28 91.40 90.74 94.79
5 96.70 95.69 97.40 98.83 97.50 98.41
6 98.31 96.75 97.73 98.39 98.97 97.92
7 90.00 96.31 50.00 98.38 83.69 94.39
8 93.24 92.42 96.85 97.78 99.36 99.75
9 80.00 78.81 30.00 98.75 97.95 98.57
10 70.79 87.32 90.83 94.33 94.49 96.35
11 71.34 90.72 94.89 95.03 98.28 98.25
12 61.91 89.28 94.11 91.15 93.84 97.38
13 100 94.55 99.73 98.81 96.89 98.07
14 93.54 94.62 97.11 97.51 99.29 98.33
15 89.72 93.16 94.58 92.49 95.09 94.66
16 99.17 90.49 98.34 97.90 92.53 94.30

AA 85.40 ± 3.12 90.76 ± 2.47 87.89 ± 6.48 95.61 ± 0.73 95.22 ± 1.16 97.13 ± 0.83
Kappa 73.65 ± 0.88 89.25 ± 1.23 93.40 ± 1.60 94.59 ± 1.06 95.99 ± 0.88 97.00 ± 0.65

OA 77.17 ± 0.74 90.60 ± 1.07 94.21 ± 1.41 95.26 ± 0.92 96.48 ± 0.78 97.37 ± 0.57

Table 3. Classification results for the Kennedy Space Center data set. Bold represents the best results.

Class SVM HybridSN SSRN CDSCN MAFN 3D-CSSEAN

1 79.54 87.31 98.33 98.83 99.07 99.68
2 46.90 55.77 97.18 96.30 100 98.43
3 52.25 54.38 89.80 86.46 97.79 93.81
4 41.52 42.92 85.10 86.83 99.51 93.42
5 53.95 65.45 86.70 85.22 98.51 94.13
6 65.72 53.67 93.06 95.59 98.99 97.73
7 82.09 74.41 93.99 89.82 95.50 95.53
8 58.55 69.22 96.88 96.81 98.19 98.99
9 85.18 93.66 99.63 99.76 93.13 99.94
10 34.22 48.32 99.94 99.81 100 99.94
11 100 95.25 99.05 99.53 100 99.40
12 53.54 65.27 99.56 99.75 100 99.67
13 94.20 90.42 100 99.70 100 100

AA 65.21 ± 1.39 68.93 ± 2.75 95.34 ± 2.02 94.95 ± 1.19 98.02 ± 0.57 97.74 ± 0.99
Kappa 66.96 ± 1.19 71.48 ± 2.72 96.26 ± 1.63 96.54 ± 0.70 98.42 ± 0.38 98.48 ± 0.59

OA 70.43 ± 1.05 74.41 ± 2.45 96.64 ± 1.46 96.89 ± 0.62 98.60 ± 0.62 98.64 ± 0.53
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Table 4. Classification results for the Salinas Scene data set. Bold represents the best results.

Class SVM HybridSN SSRN CDSCN MAFN 3D-CSSEAN

1 100 99.95 100 99.97 99.92 99.98
2 99.66 99.74 99.87 99.91 99.94 99.79
3 100 99.87 99.59 98.73 99.5 98.49
4 99.84 99.05 99.20 99.46 97.04 99.28
5 97.99 96.11 99.42 99.05 98.87 99.42
6 100 99.84 99.98 99.91 99.53 99.97
7 99.78 99.72 99.99 99.95 99.85 99.84
8 83.92 93.90 92.84 90.42 97.23 97.33
9 99.62 99.50 99.86 99.73 99.71 99.79
10 99.30 98.36 99.39 97.87 98.49 99.31
11 99.98 98.70 97.60 97.67 97.36 97.27
12 99.39 99.07 99.04 99.33 99.16 99.74
13 97.18 97.5 99.49 99.56 95.86 98.86
14 99.78 94.51 97.29 97.28 98.61 98.44
15 88.59 90.68 93.87 87.57 93.22 94.40
16 99.64 98.96 100 99.98 98.76 99.99

AA 97.79 ± 0.22 97.84 ± 0.46 98.59 ± 0.14 97.9 ± 0.36 98.32 ± 0.28 98.87 ± 0.30
Kappa 93.94 ± 0.44 96.38 ± 0.54 97.08 ± 0.28 95.39 ± 0.83 97.7 ± 0.29 98.17 ± 0.34

OA 94.57 ± 0.39 96.75 ± 0.49 97.38 ± 0.25 95.86 ± 0.75 97.93 ± 0.26 98.35 ± 0.31

On the Kennedy Space Center data set, the 3D-CSSEAN, SSRN, CDSCN, and MAFN
achieved at least 22% improvement compared to HybridSN and SVM. The reasons for this
may be that HybridSN and SVM use PCA for dimension reduction, while the 3D-CSSEAN,
SSRN, CDSCN, and MAFN are end-to-end network structures. The data dimension
reduction module in the end-to-end is implemented in a supervised way, so the effect
is better than the unsupervised way of PCA. Compared with SSRN and CDSCN, the
3D-CSSEAN achieved 2% and 1.75% improvement on OA, respectively. As for the latest
MAFN, the 3D-CSSEAN also achieved comparable results. MAFN was slightly better
than the 3D-CSSEAN on AA. The possible reason is that the spatial distribution of some
categories in the Kennedy Space Center data set was relatively scattered. MAFN uses the
correlation-based attention method to extract spatial features. Correlation-based methods
may better capture the connections between scattered samples of these categories, so as to
obtain more ideal results. The increase in accuracy of these categories can improve AA. On
the Salinas Scene data set, all methods achieved higher than the 94% overall accuracy, while
the 3D-CSSEAN was 0.42, 0.47, and 0.55 higher than the best result of the other methods
on OA, Kappa, and AA, respectively.

In general, the three attention methods, CDSCN, MAFN and 3D-CSSEAN, achieved
good results, indicating that the attention features extracted by them are beneficial to
classification. These results indicated that the proposed element attention method can also
effectively improve the classification performance. According to the results of the three
data sets, the 3D-CSSEAN has good generalization ability on different data sets.

The classification maps of the five methods and the corresponding ground truth maps
of the three data sets are shown in Figures 12–14. It can be clearly seen from these results
that the higher the classification accuracy, the better the continuity of the classification
map. For the Indian Pines data set, there were obvious noise and discontinuous regions,
as shown in Figure 12b, while the classification effect of the 3D-CSSEAN was relatively
good. As shown in Figure 13, although there are very few labeled samples in the Kennedy
Space Center data set, the 3D-CSSEAN still achieved good results. On the contrary, many
obvious misclassified pixels can be seen in Figure 13b,c. All methods achieved over 94%
overall accuracy on Salinas Scene data sets; however, there were still significant differences,
which can be observed in Figure 14. It can be seen from Figure 14g that the 3D-CSSEAN
still performed well at the edge of the category and the easily confused area.
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Training and testing times provide a direct measure of the computational efficiency of
HSI classification methods. In Table 5, the training time and the test time on the test data
of different methods are shown. As presented in Table 5, because their inputs were the
data under dimension reduction through PCA, the training time of SVM and HybridSN
was significantly lower than that of other methods. Additionally, the time efficiency of the
3D-CSSEAN was higher than that of SSRN, CDSCN, and MAFN. As for MAFN, this may
be because it uses a mixture of global operation-based and correlation-based methods to
extract attention features, so it is relatively time-consuming. In particular, the training and
testing time of the 3D-CSSEAN was about half that of the CDSCN method. The possible
reason for this is that CDSCN adopts the dual branches mode, while the 3D-CSSEAN
adopts the single branch mode, and thus it can save about half of the running time.
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Table 5. Training and testing times of different models for the three HSI data sets.

Indian Pines Kennedy Space Center Salinas Scene

SVM Train. (s) 0.10 0.74 0.80
Test. (s) 1.34 6.30 37.55

HybridSN Train. (s) 13.82 10.48 15.28
Test. (s) 0.62 0.33 3.60

SSRN Train. (s) 89.23 45.16 82.11
Test. (s) 3.25 1.41 16.94

CDSCN Train. (s) 114.47 61.49 121.19
Test. (s) 4.36 2.04 25.15

MAFN Train. (s) 374.62 264.07 389.35
Test. (s) 10.38 5.41 88.43

3D-CSSEAN Train. (s) 60.20 33.91 64.00
Test. (s) 2.32 1.05 14.40

4.3. Ablation Studies

Three ablation experiments were conducted to analyze the contribution of different
attention modules to HSI classification. The results are shown in Table 6. NONE means the
3D-CSSEAN without spectral and spatial attention module. SPE-EAN indicates the 3D-
CSSEAN only with the spectral attention module, and SPA-EAN indicates the 3D-CSSEAN
only with the spatial attention module. The experimental results showed that any kind of
attention module is helpful for classification. The role of the spatial attention module is
more obvious than that of the spectral attention module. In terms of OA indicators, SPA-
EAN increased 1.25%, 0.87%, and 1.06% more than SPE-EAN on Indian Pines, Kennedy
Space Center, and Salinas Scene data sets, respectively. These results suggest that the
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spatial element attention module is more conducive to acquiring discriminative features for
classification. The OA obtained by the 3D-CSSEAN had obvious improvement compared
with the module without spectral–spatial attention. The OA of the 3D-CSSEAN was
3.17%, 3.66%, and 1.99% higher than without attention modules on Indian Pines, Kennedy
Space Center, and Salinas Scene data sets, respectively. It can be seen from the results
of ablation experiments that the proposed cascaded spectral–spatial element attention
module can obtain more meaningful spectral and spatial features, thereby improving the
final classification results.

Table 6. OA (%) of the 3D-CSSEAN with different attention modules on the three data sets. Bold
represents the best results.

Attention Module Indian Pines Kennedy Space Center Salinas Scene

NONE 94.20 ± 0.83 94.98 ± 0.95 96.36 ± 0.98
SPE-EAN 96.01 ± 0.48 96.85 ± 0.80 97.16 ± 1.35
SPA-EAN 97.26 ± 0.69 97.72 ± 0.69 98.22 ± 0.31

3D-CSSEAN 97.37 ± 0.57 98.64 ± 0.53 98.35 ± 0.31

To verify the contribution of tanh activation function to the classification task, a series
of experiments was conducted on the three data sets. Experiment results are shown in
Table 7. As can be seen from Table 7, AA, Kappa, and OA were all improved on the three
data sets by using the tanh function. Compared with the model without tanh, the OA
score’s enhancements obtained by the 3D-CSSEAN with tanh were 0.56% (Indian Pines),
0.49% (Kennedy Space Center), and 0.12% (Salinas Scene). The AA score’s increases were
0.49% (Indian Pines), 0.82% (Kennedy Space Center), and 0.04% (Salinas Scene). The Kappa
coefficient’s improvements were 0.64% (Indian Pines), 0.55% (Kennedy Space Center), and
0.14% (Salinas Scene). These results indicate that the tanh function is beneficial to enhance
the separability of features and improve the classification performance. In addition, the
standard deviation of all the results also decreased through using the tanh function. This
also shows that the stability of the model is improved by using the tanh function.

Table 7. Experiment results of the 3D-CSSEAN without or with tanh activate function on Indian Pines, Kennedy Space
Center (KSC), and Salinas Scene data sets. Bold represents the best results.

Data Set AA (without) AA (with) Kappa
(without) Kappa (with) OA (without) OA (with)

Indian Pines 96.64 ± 1.06 97.13 ± 0.83 96.36 ± 0.76 97.00 ± 0.65 96.81 ± 0.67 97.37 ± 0.57
KSC 96.92 ± 1.32 97.74 ± 0.99 97.93 ± 0.83 98.48 ± 0.59 98.15 ± 0.75 98.64 ± 0.53

Salinas Scene 98.83 ± 0.33 98.87 ± 0.30 98.03 ± 0.37 98.17 ± 0.34 98.23 ± 0.34 98.35 ± 0.31

5. Discussion
5.1. Influence of the Attention Block Number

On three public data sets, the influence of the attention block number on the clas-
sification performance was analyzed. The experimental results are shown in Figure 15.
In the figure, iSPE_jSPA of the horizontal axis represents i attention blocks in the spectral
element attention module and j attention blocks in the spatial element attention module.
Figure 15a–c, respectively, show the influence of the attention block number on overall
accuracy, average accuracy, and Kappa coefficient. As can be seen from the figure, on
the Salinas Scene data set, the number of attention blocks had little effect on the results.
Particularly, the model with 1SPE_1SPA achieved good performance of OA at over 98%,
indicating that the network structure with only one spectral element attention block cascad-
ing to one spatial element attention block extracted enough features for the improvement
of the classification performance.
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Figure 15. Classification performance of the 3D-CSSEAN with different numbers of attention blocks. IN, KSC, and SA
represent the Indian Pines, Kennedy Space Center, and Salinas Scene data sets, respectively. (a) Overall accuracy; (b) average
accuracy; (c) Kappa coefficient.

On the Indian Pines and Kennedy Space Center data sets, when the number of the
spectral attention block was 1, three indicators all fluctuated greatly with the increase of
spatial attention modules. In the case of 1SPE_3SPA, all the indicators were significantly
reduced. This result shows that when the spectral features are not sufficiently extracted,
blindly adding spatial depth features will not bring good results. When the spectral feature
block was greater than 2, the indicators on the Kennedy Space Center data set tended to
be stable, and at the same time, the fluctuation range on the Indian Pines data set was
also narrowing.

When the number of spectral attention modules was 2, and the number of spatial
attention modules was from 1 to 2, both OA and Kappa increased slightly on the three data
sets. In the case of 2SPE_2SPA, the best OA was achieved on Kennedy Space Center and
Salinas Scene data sets. As for the Indian Pines data set, when the number of attention
module increased, the improvement in classification performance was limited. Further-
more, as the number of attention block increased, the time efficiency was bound to decrease.
Overall, the network with 2SPE_2SPA could achieve the best or very close to the best on
three indicators. In addition, it had good performance on the three data sets, indicating
that its generalization performance was better. Based on the above analysis, the network
structure of our final model is 2SPE_2SPA.

5.2. Influence of Different Training Sample Numbers

To evaluate the performance of the proposed 3D-CSSEAN, in this paper, under differ-
ent numbers of training samples, four groups of labeled samples with different percentages
were randomly selected as training samples for experiments. Specifically, 1%, 3%, 5%,
and 10% of each category were randomly selected from the labeled samples as training
samples on the Indian Pines data set and Kennedy Space Center data set, and 0.1%, 0.5%,
1%, and 3% of each category were randomly selected from the labeled samples as training
samples on the Salinas Scene data set. The experiment results are shown in Figure 16.
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Figure 16. Overall accuracy (%) of the 3D-DSSEAN with different training sample proportions on the three data sets:
(a) Indian Pines; (b) Kennedy Space Center; (c) Salinas Scene.

On the Indian Pines data set, the advantages were more obvious when 1% and 3%
of the labeled samples were used for training. Meaningful features extracted by the
3D-CSSEAN were more conducive to improving the classification performance in the case
of small samples. Moreover, there was a significant decrease in the OA of CDSCN when
only 3% of the labeled samples were used for training, indicating that CDSCN is prone to
overfitting small training data. However, the 3D-CSSEAN did not increase many training
parameters in the implementation of the attention module, and thus this problem can
be avoided to some extent. On the Kennedy Space Center data set, the three different
attention models, the 3D-CSSEAN, MAFN, and CDSCN, achieved better results than other
methods, especially at 1% and 3%. These results indicate that these three attention features
are beneficial for classification on the Kennedy Space Center data set. On the Salinas Scene
data set, all methods achieved relatively close results, but the results of the 3D-CSSEAN
were always the highest. In most cases, all methods could achieve good results, but in
0.10% of cases, the 3D-CSSEAN and MAFN had more obvious advantages.

In general, on Indian Pines and Salinas Scene data sets, the 3D-CSSEAN consistently
outperformed the other approaches on all the training samples. As for the Kennedy Space
Center data set, the results of the 3D-CSSEAN and MAFN were very close, and these results
were better than those from the other comparison methods. Through these experimental
investigations, it can be concluded that the 3D-CSSEAN has better classification perfor-
mance and robustness in different training sample sets, and especially in the case of small
samples, this advantage is more obvious. In addition, the MAFN method based on multiple
attention combinations also demonstrated its competitiveness, especially on the Kennedy
Space Center data set, where the spatial distribution of categories was relatively scattered.
This shows that the combination of multiple attention methods is a promising research
direction. In the future, perhaps the combination of the proposed element attention method
and other attention methods will also produce more competitive results.

6. Conclusions

In this paper, a 3D cascaded spectral–spatial element attention network (3D-CSSEAN)
is proposed to extract the meaningful features for hyperspectral image classification.
The spectral element attention module and the spatial element attention module can
make the network focus on primary spectral features and meaningful spatial features.
Two element attention modules were implemented through several simple activation func-
tions and elementwise multiplication. Therefore, the proposed model not only can obtain
features that facilitate classification, but also has high computational efficiency. Since the
implementation of the attention module does not add too many training parameters, it also
makes the network structure suitable for small sample learning.
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To evaluate the effectiveness of the method, extensive experiments were implemented
on three public data sets: Indian Pines, Kennedy Space Center and Salinas Scene. Com-
pared with the machine learning method, the popular deep learning methods and the at-
tention methods, the proposed method obtained better classification performance. In cases
with small samples, the advantages of the proposed method are more obvious. These re-
sults verify that the attention features obtained by the 3D-CSSEAN are beneficial for
classification, and the 3D-CSSEAN is suitable for small sample learning. To evaluate the
effectiveness of attention modules, several ablation experiments were conducted. From the
results of the ablation experiments, both the spectral element attention module and the
spatial element attention module have improved classification performance.

Extensive experiments showed that in the case of limited training samples, how to ex-
tract more meaningful features for classification is a direction worth exploring. In addition,
the fusion of multiple attention features may be a kind of potential method, but how to
ensure time efficiency may be a direction to be studied in the future.
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