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Abstract: There are two problems with using global navigation satellite system-interferometric
reflectometry (GNSS-IR) to retrieve the soil moisture content (SMC) from single-satellite data: the
difference between the reflection regions, and the difficulty in circumventing the impact of seasonal
vegetation growth on reflected microwave signals. This study presents a multivariate adaptive
regression spline (MARS) SMC retrieval model based on integrated multi-satellite data on the impact
of the vegetation moisture content (VMC). The normalized microwave reflection index (NMRI)
calculated with the multipath effect is mapped to the normalized difference vegetation index (NDVI)
to estimate and eliminate the impact of VMC. A MARS model for retrieving the SMC from multi-
satellite data is established based on the phase shift. To examine its reliability, the MARS model
was compared with a multiple linear regression (MLR) model, a backpropagation neural network
(BPNN) model, and a support vector regression (SVR) model in terms of the retrieval accuracy with
time-series observation data collected at a typical station. The MARS model proposed in this study
effectively retrieved the SMC, with a correlation coefficient (R2) of 0.916 and a root-mean-square
error (RMSE) of 0.021 cm3/cm3. The elimination of the vegetation impact led to 3.7%, 13.9%, 11.7%,
and 16.6% increases in R2 and 31.3%, 79.7%, 49.0%, and 90.5% decreases in the RMSE for the SMC
retrieved by the MLR, BPNN, SVR, and MARS model, respectively. The results demonstrated the
feasibility of correcting the vegetation changes based on the multipath effect and the reliability of the
MARS model in retrieving the SMC.

Keywords: GNSS-IR; signal-to-noise ratio; soil moisture content retrieval; vegetation moisture
content; MARS

1. Introduction

The soil moisture content (SMC) is an important index for terrestrial hydrologic cir-
culation and research in fields such as agriculture, meteorology, and hydrology. Accurate
real-time SMC is an important reference for agricultural irrigation, meteorological forecast-
ing, and water resource recycling [1,2]. Global navigation satellite system-interferometric
reflectometry (GNSS-IR) is a new microwave sensing technique that primarily takes ad-
vantage of the interference effect that is generated by direct and surface-reflected GNSS
signals at the receiver, to retrieve surface parameters based on the characteristics of the
interference signal. This technique is mainly employed to retrieve the SMC, snow depths,
and vegetation parameters [3,4].
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In recent years, researchers in China and other countries have achieved marked
progress in the use of GNSS-IR to retrieve the SMC, made breakthroughs in areas such
as the establishment of empirical models and the selection of optimum characteristic
components, and determined a technical route for retrieving the SMC in single surface-
cover areas [5–8]. Larson et al. proposed a normalized microwave reflection index and
found a good correlation between normalized microwave reflection index (NMRI) and
vegetation water content [9–11]. Chew et al. established a database for correcting the phase
of the reflection signal based on the law of different vegetation perturbation reflection
signals through a large number of simulation experiments, which further improved the
accuracy of inversion of soil moisture [12,13]. Wan et al. established that the error of
inversion of vegetation moisture content using this model was less than 1 kg/m2 [14]. Small
et al. verified the effect of three different algorithms to weaken vegetation moisture content
from bare soil, single vegetation, and multiple vegetation, respectively [15,16]. To address
the impact of the surface vegetation moisture content (VMC) on SMC retrievals, Liang
et al. have successively tested the performance of linear regression and backpropagation
neural network (BPNN) [17] models in reducing the impact of the VMC. Most of the
aforementioned soil moisture inversion algorithms are based on specific GNSS reference
stations or the selection of specific satellites with a high inversion accuracy. That is,
these models do not have generalized application and require the artificial selection of
satellites with good quality data. Thus, there is an urgent need to develop models that can
automatically select high-quality data for soil moisture inversion.

Overall, the current GNSS-IR SMC retrieval methods are mostly limited to the technical
route for retrievals from single-satellite data [3–5]. There are relatively large errors and
uncertainties in the available empirical or semi-empirical models, and most methods are
applicable only to single experimental scenarios (e.g., bare soil) [18]. Considering that
the advantages of the comprehensive use of multiple satellites in responding to GNSS-IR
information from various angles are promising for reducing the impact of the composition
of ground objects and VMC surrounding stations, recent studies have begun to establish
combined least-squares (LS) and support vector regression (SVR) models and methods that
jointly retrieve the SMC from multi-satellite GNSS-IR signals [19]. However, these relevant
models are unable to account for the impact of seasonal vegetation growth on the reflected
microwave signal.

Consequently, a novel GNSS-IR method to correct reflection signals for vegetation
error was proposed in this study. And the attenuation effect of vegetation cover on
the reflection signal was analyzed. The multipath signals obtained in the absence of
measured VMC data were used to correct for the effect of vegetation seasonal changes
on the reflection signal. A GNSS-IR soil moisture inversion model with multi-satellite
data fusion was proposed based on the GNSS-IR information response from different
perspectives of multiple satellites, thereby solving the problems of generalization and low
automation of existing multi-satellite soil moisture inversion algorithms. The proposed
method was implemented as follows: the correlation between the multipath information
for the L1 carrier and the normalized difference vegetation index (NDVI) was modeled to
estimate the phase shift induced by vegetation information and reduce the characteristic
phase component of the signal reflected by vegetation. Then, a nonlinear regression model
based on the multivariate adaptive regression spline (MARS) was established and used to
retrieve the SMC from the multi-satellite data integrated using the GNSS-IR technique [20].
The SMC was retrieved using four models, namely, a multiple linear regression (MLR)
model, a BPNN model, an SVR model, and the MARS model, from time-series observation
data collected at a typical station. In addition, the four models were compared in terms of
the retrieval accuracy to evaluate the feasibility and accuracy of the proposed model.
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2. Materials and Methods
2.1. GNSS-IR SMC Retrieval Principle

The signal-to-noise ratio (SNR), which is a measure of the signal quality of the antenna
of a receiver, is primarily affected by the antenna gain, receiver noise, and multipath
effect, the last of which has a particularly pronounced impact. When a satellite is at a low
elevation angle θ, the SNR is subject to a significant multipath effect, and the direct and
reflected signals have approximately the same frequency and produce a relatively stable
interference effect at the antenna. In addition, the interference signal oscillates periodically.
Let us assume that reflection occurs only once. In Figure 1, I and Q are the in-phase and
orthogonal space, respectively, of the vector signal within the carrier tracking loop of the
receiver, and the signal received by the receiver is a vectorial superposition of the direct
and reflected signals [21,22].
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Figure 1. The figure on the left shows the geometric principle of signal reflection. The figure on the right is the principal
diagram of the receiver antenna gain interferometry. The left half of the right figure is a diagram of the internal antenna
gain (dB) of the receiver at a low satellite altitude angle and relatively low gains of the direct and reflected signals. Thus, the
signal-to-noise ratio is small, and the oscillation of the reflected multipath signal depends on the distance difference in the
travel distance of the direct and reflected signals to the antenna.

The SNR can be represented as:

SNR2 = A2
d(θ) + A2

m(θ) + 2Ad(θ)Am(θ) cos ϕ, (1)

where the SNR is the composite signal that is formed after interference; Ad and Am are
the amplitudes of the direct signal and the reflected signal, respectively; θ is the elevation
angle of the satellite; ϕ is the difference between the phases of the direct signal and the
phases of the reflected signals; and δφ, φc, and φd are the phase error after one occurrence of
reflection, the phase of the composite signal, and the phase of the direct signal, respectively.

When interference occurs once, the direct signal travels a shorter distance to reach the
antenna than the reflected signal, as shown in Figure 1 [23]. The difference ∆S between
the distances that the direct and reflected signals travel to reach the antenna is expressed
as [9–11]:

∆S = Sm − Sd = 2h sin θ, (2)

where Sm is the distance from the reflected signal to the receiver antenna through the
ground and Sd is the distance to the receiver antenna after the direct signal minus the same
distance as the reflected signal. Let us assume that the GNSS signal is reflected once and
that the satellite is at a low θ. Thus, the reflected signal can be approximated from the
horizontal reflecting surface, that is, ϕ is dictated by the distance h between the antenna of
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the receiver and the reflecting surface as well as θ. For a GNSS signal with a wavelength of
λ, ϕ can be derived using (3):

ϕ =
2π

λ
∆S =

4πh
λ

sin θ. (3)

Thus, the rate of change in ϕ with time is expressed as:

dϕ

dt
= 4π

h
λ

cos θ
dθ

dt
, (4)

where t is time, h is the antenna height, θ is the satellite altitude angle, and λ is the
global positioning system (GPS) L2 carrier wavelength. According to (4), when h remains
unchanged, as θ gradually increases, there is a gradual decrease in the rate of change in the
oscillation of the observed SNR. By letting sin θ = x, we can further simplify (4) as follows:

dϕ

dx
= 4π

h
λ

. (5)

According to (5), ϕ changes linearly with the sine of θ. Because the direct component
of the interference signal is substantially greater than its reflected component, based on (1),
the SNR is fitted to a low-order polynomial. The fitted result is approximated as the direct
component. In addition, the reflected component is separated from the interference signal.
The reflected signal can be represented by [14]:

SNRm = Am cos(
4πh

λ
sin θ + ϕ), (6)

where SNRm is the residual SNR, Am is the reflected signal amplitude, and ϕ is the reflected
signal phase. The peak frequency f is obtained using the Lomb–Scargle spectral analysis
method based on the sine of the low θ and the value of the reflected signal. Next, f is
converted to an equivalent h based on the following relation: h = 2 f λ. Subsequently, the
phase shift of the reflected signal is determined by fitting with (6). The phase shift of the
reflected signal is mapped to the SMC.

2.2. Vegetation Error Correction Based on the Multipath Effect

A microwave signal that is reflected by surface vegetation contains a large amount
of VMC information [24,25], which significantly affects the SMC retrieval accuracy of
GNSS-IR. Therefore, it is necessary to consider the vegetation information in the retrieval
of the SMC using GNSS-IR. Based on the GPS pseudorange and carrier phase, Larson and
Small (2014) proposed a normalized microwave reflection index (NMRI) and mapped it to
the NDVI [7,16]. The multipath error for the L1 carrier (MP1) can be represented by:

MP1 = P1 −
f 2
1 + f 2

2
f 2
1 − f 2

2
λ1 ϕ1 +

2 f 2
2

f 2
1 − f 2

2
λ2 ϕ2, (7)

where MP1 is the multipath error for the L1 carrier, P1 is the observed pseudorange of the
L1 carrier, f1 and f2 are the frequencies of the L1 carrier and L2 carrier, respectively; λ1 and
λ2 are the wavelengths of the L1 carrier and L2 carrier, respectively, and ϕ1 and ϕ2 are the
observed phases of the L1 carrier and L2 carrier, respectively.

Based on MP1, which changes with the epoch, the root mean square (RMS) of the MP1
for each single satellite is calculated. Subsequently, the RMS of the MP1 of a single day
is calculated by a weighted summation of the value observed by each satellite [26]. The
NMRI can be represented by:

NMRI =
max(RMSMP1)− RMSMP1

max(RMS)
, (8)
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where max(RMSMP1) is the average value of the largest 5% of the RMSMP1 values in the
annual time series and RMSMP1 is the RMS of the MP1 of a single day. For the same period
as that of the NDVI values, the NMRI values are obtained by downsampling the calculated
values of the NMRI. In addition, the mapping model is employed to calculate the NDVI of
the experimental period.

The NDVI is a parameter that reflects the vegetation growth conditions and vegetation
coverage. The vegetation surrounding a station is the primary factor that causes a shift in
the phase of the reflected signal. In the absence of measured VMC data, the NDVI is an
important factor that reflects the shift in the phase of the reflected signal. To ensure that the
mathematical scale of the NDVI is consistent with that of the phase of the reflected signal,
the value calculated by zeroing the median of the largest 15% of the NDVI values in the
annual time series is employed to approximately replace the vegetation-induced phase
shift ∆ϕveg(t). The corrected phase shift of the reflected signal can be represented by:

ϕr(t) = ϕ(t)− ∆ϕveg(t), (9)

where ϕr(t) is the corrected phase and ϕ(t) is the original phase of the SNR of the reflected
signal. The SMC can be retrieved from ϕr(t).

2.3. MARS Model

The SMC retrieved from single-satellite data is unable to sufficiently reflect the SMC
surrounding a station. In addition, MLR hardly reflects the inverse accuracy. To address
these problems, this study presents a MARS model that is capable of combining multi-
satellite data to produce sufficient SMC information surrounding a station and improve
the retrieval accuracy. The MARS method is a data analysis technique that was proposed
by U.S. statistician Jerome Friedman in 1991 [27–29]; it has been extensively applied due to
its high modeling efficiency, and high interpretability. This technique can be divided into
three steps, namely, a forward stepwise procedure, a backward pruning procedure, and
model selection. In the forward stepwise procedure, a basis function (BF) is automatically
established based on the input data. Based on the BF, the data are divided into different
spatial regions. Subsequently, a new BF is established by fitting a linear regression model
in each region. An overfitted model is obtained when the forward stepwise procedure is
completed. In the backward pruning procedure, the BFs that contribute insignificantly
to the overfitted forward stepwise model are removed while ensuring their accuracy. An
optimum combination of satellites is selected as a regression model.

The BFs in MARS are composed of truncated spline functions or the product of
multiple spline functions. BFs can be defined as:[

Skm(xv(k,m) − t)
]
+
=

{
x− tkm(x > tkm)
0 (x ≤ tkm)

, (10)

[
Skm(xv(k,m) − t)

]
+
=

{
tkm − x (x < tkm)
0 (x ≥ tkm)

, (11)

where Sm(x) is the mth spline function, t is the location of the node of the spline function,
that is, all the observations of each input satellite as nodes, v(k, m) is an independent
variable identifier, and tkm is the location of the identified node. Based on Equations (10)
and (11), the MARS model can be defined as:

∧
y = a0 +

M

∑
m=1

am

km

∏
k=1

[
Skm(xv(k,m) − tkm

]
+

, (12)

where ŷ is the predicted value of the output variable of the model, which is the predicted
value of soil moisture, a0 is a constant parameter, am is the coefficient of the mth BF, and M
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is the number of BFs, that is, the number of spline functions contained in the model. The am
of a combination of BFs is determined by calculating the sum of squares of the LS residuals.

The BFs that contribute insignificantly to the overfitted MARS model are eliminated
by backward pruning. Thus, an optimum combined BF model is obtained. An optimum
MARS model is determined by generalized cross-validation (GCV). An optimum MARS
model is obtained at the minimum GCV.

GCV(λ) =

n
∑

i=1
(yi −

∧
yi)

2

(1−M(λ)/N)2 , (13)

where λ is the number of terms in the model, M(λ) is the number of effective parameters
in the model, which is equal to the number of terms in the model, plus the number of
parameters at the optimal node location., N is the number of BFs, and ŷi is the optimum
model value that is estimated in each step, which is the predicted value of soil moisture.

3. Data Sources

The GPS observation data and reference SMC data that are collected at the P041 station
(Figure 2) of the U.S. Plate Boundary Observatory (PBO) between days of year (DOYs)
147 and 360 of 2012 were selected as the experimental data in this study. Located in the
Colorado, the U.S., and positioned at an altitude of 1728.8 m, the P041 station (39.94949◦N,
105.19427◦W) is surrounded by flat terrain and is unobstructed by large obstacles. At this
station, the reflected signal features are affected primarily by vegetation and precipitation.Remote Sens. 2021, 13, 2442 7 of 18 
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Figure 2 shows the observed SMC and precipitation data series for DOYs 147–360
of 2012, which are presented in a broken line graph and a histogram, respectively. As
demonstrated in Figure 2, eight significant precipitation events occurred during the ex-
perimental period, with a maximum precipitation of 21.8 mm. There was a considerable
increase in the SMC during the precipitation events, particularly on DOYs 188–191, 209–215,
255–257, 270, and 298. Continuous precipitation led to a significant nonlinear increase
in the SMC. As precipitation decreased or stopped, there was a decrease in the SMC.
Evidently, precipitation was the primary factor that caused sudden changes in the SMC.
The precipitation at the P041 station during the experimental period was appropriate and
suitable for SMC retrieval.

4. Experiment and Results
4.1. Experimental Technical Scheme

Figure 3 shows the flow chart of the soil moisture inversion technique in this article.
From the figure, it can be seen that the technical route of the article can be divided into three
lines: (1) GNSS-IR soil moisture inversion data pre-processing, extracting the characteristic
parameters of the reflection signal from the observation data acquired by the original GNSS
receiver. (2) Establish a vegetation error correction model using GNSS multi-path data and
MODIS NDVI data to correct the influence of vegetation interference on the reflected signal.
(3) Inverse the soil moisture by establishing a multivariate adaptive regression model and
do a comparative analysis with BPNN, SVRM, and MLR models.
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Machine learning algorithms are used in current soil moisture inversion models to
improve the accuracy of the inversion process. However, as the machine learning algorithm
is a black box that contains the defects of the model itself, mathematical expressions for the
soil moisture cannot be obtained, and the model parameters are difficult to modulate. The
proposed MARS model for soil moisture inversion adaptively combines multiple satellite
data and selects the best combination of satellites for soil moisture inversion, yielding
highly accurate results and mathematical expressions.

4.2. Reflected Signal Feature Parameter Extraction

GNSS receiver observation data are in the format of carrier phase and pseudorange,
and GNSS-IR soil moisture inversion requires the use of satellite altitude angle and L2
carrier signal-to-noise ratio data. This needs to be calculated from the GNSS observation
file and the navigation file by using the relevant equations to calculate the signal-to-noise
ratio, satellite altitude angle, and other relevant data, respectively.

The upper panel of Figure 4 is a plot of the SNR versus the satellite altitude angle.
The L2 carrier SNR is shown in blue, and the direct signal data are shown in red. At
low satellite altitude angles, there is a severe multipath effect for the SNR, which exhibits
periodic oscillations. As the satellite altitude angle gradually increases, there is considerable
antenna gain, and the SNR stabilizes. To extract the reflected signal data from the GNSS
SNR data, the direct signal is separated from the SNR by using Equation (1) and fitting the
SNR data by a low-order polynomial. The lower parr of Figure 4 shows the nonlinear least-
squares cosine fit to the reflected signal. The reflected signal is a nonlinear least-squares
cosine, which is fitted by Equation (6) to extract the reflected signal amplitude, phase,
and frequency.
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4.3. Vegetation Impact Correction

When using GNSS-IR to retrieve the SMC, changes in the VMC yield corresponding
an increase or decrease in the phase shift of the reflected signal. Therefore, it is necessary to
correct the vegetation impact. Figure 5a shows the nonlinear LS cosine fit of the reflected
signals on DOYs 160, 210, 260, and 310. As demonstrated in Figure 5a, the vigorous
vegetation growth in the summer (DOY160) produced the smallest amplitude of the
reflected signal of the DOYs that were compared, whereas the amplitude of the reflected
signal in the winter (DOY310) was the largest. Figure 5b shows the Lomb–Scargle spectral
analysis plots for the corresponding DOYs. As demonstrated in Figure 5b, as a result
of the vegetation growth cycle, there was a corresponding increase or decrease in the
main frequency on each DOY. To address the changes in the reflected signal caused by
vegetation in different seasons, the previously established NMRI–NDVI correlation model
was employed to correct the phase shift of the reflected signal.
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Figure 5. (a) The nonlinear least square cosine fitting diagram with the typical characteristics of
four days during the experimental period. (b) The upper right figure is the L-S spectrum analysis
diagram at the corresponding time; (c) The NMRI-NDVI diagram; (d) The inverse NDVI linear
regression diagram.

Figure 5c shows the distribution of single-day NMRI values and 16-day NDVI values
in the period from 2008 to 2012. The NMRI changed periodically with vegetation in the
time series and its fluctuations tended to be consistent within the time domain. In addition,
the peak and valley values of the NMRI matched relatively well. The NMRI values from the
same period as that of the NDVI values were obtained by downsampling. A simple linear
regression model between the NMRI and the NDVI was established. As demonstrated in
Figure 5d, the correlation coefficient R and the RMS error (RMSE) of the linear regression
inversion model were approximately 0.851 and 0.043 cm3/cm3, respectively. This finding
suggests a relatively strong linear relationship between the NMRI and the NDVI.

Based on the phase shift estimated using the NDVI, the phase shift of the reflected
signal was corrected. Due to the limited length of this article, the corrected phase shifts
of only the four satellites with pseudorandom noise numbers (PRN) 6, 9, 11, and 19 are
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presented, as shown in Figure 6 (in each plot, the blue line and red line show the uncorrected
original phase and the corrected phase shift, respectively). As demonstrated in Figure 6, the
phase shift of the reflected signal was primarily corrected for DOYs 150–250. The corrected
phase shift fluctuated less than the original phase. In addition, the phase shift of the
reflected signal fluctuated to a relatively large extent several times during the experimental
period, which was related to the sharp increase in the SMC due to continuous precipitation.
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As demonstrated in Figure 6, the response to the SMC varied among the satellites. This
response was primarily caused by the differences among the geometric motion trajectories
relative to the GPS antennas during the observation period and the performance of the
satellites as well as the multipath surface environment. Therefore, the direct retrieval of
the SMC from single-satellite data involves relatively large uncertainties, and it is difficult
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to employ a method to treat the outliers in single-satellite data. In this study, the MARS
model was used to treat the values observed by multiple satellites as input and to establish
BFs for all the observed values by forward fitting. Moreover, the BFs that contribute
insignificantly to SMC retrievals were eliminated by the GCV. Thus, the automatic selection
of a combination of satellites with the highest SMC retrieval accuracy by the MARS model
was achieved.

4.4. Soil Moisture Inversion Results

MARS is a model that is specifically utilized to process high-dimensional data. Thus,
the observation data collected by 17 effective satellites during the observation period
were used as input, and the combination of satellites in the optimum model was treated
as output. Based on these data, the MARS method was employed to establish an SMC
retrieval model. The maximum number of interactive BFs was set to 1, and the number
of maximum BF values was set to 40. An optimum SMC retrieval model was obtained at
a minimum GCV of 0.0008, as shown in Equation (14). Table 1 summarizes all the BFs in
Equation (14).

y = 0.1766 + 0.034BF1+0.054BF2 − 0.507BF3 − 0.073BF4 − 0.061BF5
−0.079BF6 − 0.471BF7+0.082BF8+0.092BF9+0.801BF10 − 0.302BF11

(14)

Table 1. BFs in MARS.

BF No. BF Variable Coefficient

BF1 X16 PRN16 0.034
BF2 Max(0, 0.065-X9) PRN9 0.054
BF3 Max(0, 0.682-X9) PRN9 −0.507
BF4 Max(0, 0.742-X4) PRN4 −0.073
BF5 Max(0, 0.920-X5) PRN5 −0.061
BF6 Max(0, 0.995-X14) PRN14 −0.079
BF7 Max(0, X14-0.995) PRN14 −0.471
BF8 Max(0, X15-0.195) PRN15 −0.082
BF9 Max(0, X17-0.304) PRN17 0.092

BF10 Max(0, X9-1.029) PRN9 0.801
BF11 Max(0, X9-0.682) PRN9 −0.302

By the stepwise selection of variables using the “forward” and “backward” algorithms
of MARS, an optimum combination of satellites (i.e., those with PRN numbers 4, 5, 9, 14,
15, 16, and 17) for SMC retrievals was determined.

To examine the feasibility and efficacy of the MARS models and considering that
machine learning algorithms solve high-dimensional nonlinear problems with self-learning
and self-adaptive capabilities, four schemes (1–4) were formulated for comparative analy-
sis. Specifically, schemes 1–4 involved the multi-satellite integration-based MARS estima-
tion model, a multi-satellite-based MLR estimation model, a multi-satellite-based BPNN
model [30], and a multi-satellite-based SVR estimation model [31]. To reduce the modeling
errors, the method described previously was employed to standardize the phase shift of
the reflected signal. In addition, the feasibility of vegetation impact correction in each of
the four SMC retrieval schemes was investigated. Moreover, 70% of the data collected at
the P041 station on DOYs 147–360 of 2012 were randomly selected to establish an SMC
retrieval model, and the remaining 30% of the data were applied to examine the reliability
and accuracy of the model.

Figure 7 shows the validation of the vegetation-uncorrected and vegetation-corrected
SMC values that were retrieved using the four models for the experimental period (blue
and green lines signify the retrieved SMC values and measured SMC values, respectively).
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Figure 7. (a) MLR invert the soil moisture comparison map for the two conditions of uncorrected
phase and corrected phase. (b) SVR invert the soil moisture comparison map for the two conditions
of uncorrected phase and corrected phase. (c) BPNN invert the soil moisture comparison map for
the two conditions of uncorrected phase and corrected phase. (d) MARS invert the soil moisture
comparison map for the two conditions of uncorrected phase and corrected phase.

As demonstrated in Figure 7, the SMC retrieved using the MLR model was, to a
certain extent, consistent with the measured SMC in terms of the variation trend, but
its curve did not satisfactorily coincide with that of the measured SMC. Compared to
the retrieval accuracy of the other three models, the SMC retrieval accuracy of the MLR
model needs to be improved. While the BPNN, and SVR models were able to retrieve the
changes relatively satisfactorily in SMC, they failed to give a specific explicit expression.
The MARS model was able to retrieve the variation trend of the SMC more satisfactorily,
and its estimation error was more stable. This model effectively improved the low SMC
retrieval accuracy associated with the MLR model. Moreover, the SMC that was retrieved
using each of the four models without vegetation correction exhibited certain fluctuations.
Furthermore, the SMC retrieved from the corrected phase shift using each of the four
models was considerably more accurate than that retrieved from the original phase. This
finding further demonstrates the feasibility of correcting vegetation changes when using
GNSS-IR to retrieve SMC.
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5. Discussion
5.1. Correction of Vegetation Error Term Analysis

Considering Figures 5 and 6 together shows that the calculated NMRI for station P041
is correlated with the NDVI. The effect of seasonal vegetation changes on the reflection
signal over the investigated time period has the same periodicity as the vegetation growth
season. During the summer season, relatively luxuriant vegetation has a strong effect
on the reflected signal, resulting in a decrease in the amplitude, phase, and frequency of
the reflected signal. Figure 6 shows that the vegetation correction is most noticeable in
the summer. By comparison, relatively sparse vegetation in the winter has a relatively
small effect on the reflected signal, and the phase correction of the reflected signal is not
discernible in the figure.

Figure 8 verifies the accuracy and reliability of the vegetation correction. The corre-
lation plot of the results obtained using the four models validates the proposed MARS
model and the vegetation error correction. The results show that the correlation of all four
models improves by 10% by correcting the vegetation error. This result demonstrates that
the NMRI calculated using the GNSS multipath signal can be used to effectively correct the
phase error from the seasonal vegetation changes.
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Figure 8. (a) Linear regression analysis of the estimation results of MLR with the uncorrected and
corrected phases and the reference value of soil moisture. (b) Linear regression analysis of the
estimation results of SVR with the uncorrected and corrected phase and the reference value of soil
moisture. (c) Linear regression analysis of the estimation results of MLR with the uncorrected and
corrected phases and the reference value of soil moisture. (d) Linear regression analysis of the
estimation results of MLR with the uncorrected and corrected phases and the reference value of
soil moisture.

5.2. Soil Moisture Inversion Correlation Analysis

In order to further evaluate the performance of each scheme comprehensively and
verify the reliability and generalizability of the MARS model proposed in this paper, the
correlation coefficient R, root mean square error (RMSE), and mean absolute error (MAE)
are used for accuracy evaluation. Figure 8 shows the R values for the four models with the
uncorrected and corrected phase shifts.

Table 2 shows that the indexes for the machine learning algorithms were relatively
similar to those for the MARS model.

Table 2. Statistics of the SMC estimation accuracy of each model.

Before Vegetation Correction After Vegetation Correction

MLR SVR BPNN MARS MLR SVR BPNN MARS

R 0.792 0.816 0.836 0.821 0.819 0.929 0.934 0.957
RMSE 0.126 0.115 0.076 0.040 0.096 0.064 0.051 0.021
MAE 0.097 0.086 0.034 0.032 0.060 0.045 0.032 0.017

The R values for the SVR, BPNN, and MARS models were 0.816, 0.836, and 0.821 before
vegetation correction and 0.929, 0.934, and 0.957 after vegetation correction, respectively.
This finding suggests that the accuracy was improved by at least 11.7% after vegetation
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correction. After vegetation correction, the accuracy of the MARS model was 16.9% higher
than that of each of the other three models, and its RMSE and MAE were 0.021 cm3/cm3 and
0.017 cm3/cm3, respectively, which were the smallest of the four models. A comprehensive
comparative analysis based on Figures 7 and 8 reveals the following results: The MARS
estimation model based on integrated multi-satellite data ensured local error stability
during the estimation process and obtained an optimum combination of satellites for SMC
retrievals by eliminating overfitted BFs during the modeling process by GCV. Compared
to convention conventional methods, the MARS model was capable of more effectively
inhibiting the gross errors caused by single-satellite data.

We analyzed the soil moisture inversion error, calculated the absolute soil moisture
inversion error (the difference between the inversion error and the true value, as shown in
Figure 9) and analyzed the interval distribution pattern.
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Figure 9 is a statistical histogram of the proportion of the absolute error for the soil
moisture inversion obtained using the four models. There is a large proportion of small
absolute errors in the inverse soil moisture. The absolute error distribution for the MARS
model lies within the range –0.04~0.04, which is narrower than that of the other three
models and conforms to a normal distribution overall. These results further illustrate the
advantages resulting from the high accuracy of the MARS model for soil moisture inversion.

As the MARS estimation model is based on integrated multi-satellite data, the ad-
vantages of multiple satellites are combined to obtain GNSS-IR information from various
angles. The selection of an optimal combination of satellites for SMC retrieval produces
complementary information from the phase shifts of the different satellites. The MARS
model was found to adapt satisfactorily to the phase shift from seasonal vegetation growth.
The MARS model obtained by GCV was not overfitted, resulting in satisfactory perfor-
mance. The MARS model exhibited superior performance to the conventional MLR, SVR,
and BPNN models under the same conditions.
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6. Conclusions

Long-term accurate monitoring of the SMC, which is an important index that measures
global water circulation, is exceedingly important and has significant application prospects.
Based on the current limitations in GNSS-IR SMC research in areas such as data utilization
and application scenarios, a MARS SMC retrieval model based on integrated multi-satellite
data, which accounts for the impact of VMC, was established in this study by combining
the technical approaches of vegetation impact correction and multi-satellite data integration
by using GNSS-IR multi-path and signal-to-noise ratio data. The following conclusions
were derived from the experimental analysis:

(1) The NMRI that was generated based on MP1 exhibits notable periodicity and is
strongly linearly correlated with the NDVI. The zeroed NDVI can adequately correct
the phase shift of the reflected signal caused by vegetation.

(2) The MARS algorithm fully realized the advantages of multi-satellite data integration
in retrieving SMC and effectively addressed that the SMC estimated from single-
satellite data cannot sufficiently reflect actual surface conditions. In addition, GCV
was conducive to eliminating the satellites that significantly interfere with SMC
retrievals and determining the combination of satellites with the highest SMC re-
trieval accuracy.

(3) Compared to the SVR and BPNN models, the MARS model could obtain a combined
multi-satellite expression when it was used to retrieve the SMC and had excellent
generalization capability. In addition, the MARS algorithm could fully exploit its
capabilities to ensure fast modeling, a relatively stable fitting process, and a relatively
stable estimation error.

It is feasible and effective to use the MARS model to retrieve the SMC from integrated
multi-satellite data. This method is, to a certain extent, better than the available models and
SMC retrieval methods in reliability and stability. However, the GNSS-IR SMC retrieval
process is affected by terrain conditions and soil roughness, and the physical mechanism
of the interaction between the reflected signal and vegetation remains unclear. This topic
warrants further investigation.
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