
remote sensing  

Technical Note

Quantitatively Estimating of InSAR Decorrelation Based on
Landsat-Derived NDVI

Yaogang Chen 1 , Qian Sun 2,3,* and Jun Hu 1

����������
�������

Citation: Chen, Y.; Sun, Q.; Hu, J.

Quantitatively Estimating of InSAR

Decorrelation Based on

Landsat-Derived NDVI. Remote Sens.

2021, 13, 2440. https://doi.org/

10.3390/rs13132440

Academic Editor: Tal Svoray

Received: 23 May 2021

Accepted: 21 June 2021

Published: 22 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
ygchen@csu.edu.cn (Y.C.); csuhujun@csu.edu.cn (J.H.)

2 College of Geographic Science, Hunan Normal University, Changsha 410081, China
3 Key Laboratory of Geospatial Big Data Mining and Application, Changsha 410081, China
* Correspondence: sandra@hunnu.edu.cn; Tel.: +86-151-1110-0330

Abstract: As a by-product of Interferometric Synthetic Aperture Radar (SAR, InSAR) technique,
interferometric coherence is a measure of the decorrelation noise for InSAR observation, where the
lower the coherence value, the more serious the decorrelation noise. In the densely vegetated area, the
coherence value could be too low to obtain any valuable signals, leading to the degradation of InSAR
performance and the possible waste of expensive SAR data. Normalized Difference Vegetation Index
(NDVI) value is a measure of the vegetation coverage and can be estimated from the freely available
optical satellite images. In this paper, a multi-stage model is established to quantitatively estimate
the decorrelation noise for vegetable areas based on Landsat-derived NDVI prior to the acquisition of
SAR data. The modeling process is being investigated with the L-band ALOS-1/PALSAR-1 data and
the Landsat-5 optical data acquired in the Meitanba area of Hunan Province, China. Furthermore,
the reliability of the established model is verified in the Longhui area, which is situated near the
Meitanba area. The results demonstrate that the established model can quantitatively estimate InSAR
decorrelation associated with the vegetation coverage.

Keywords: InSAR; coherence; vegetation area; NDVI; landsat

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) has proved to be an effective tool
for monitoring surface deformation with its advantages of all-weather, all-day, large-scale,
and satisfactory precision [1–5]. However, as repeat-pass interferometry, InSAR is very
sensitive to vegetation coverage on the ground since the deformation signal is susceptible
to the serious decorrelated noise due to vegetation changes during the revisiting period
of SAR images [6]. Especially for SAR data with short wavelengths, decorrelated noise
can even swamp the deformation signal [7]. As a result, the reliability and accuracy of the
InSAR deformation monitoring results are not stable in the vegetable area. It is difficult to
accurately judge the monitoring performance of the SAR data used in the area of interest
prior to the acquisition of SAR data, which means that there is certain blindness in data
selection. This will result in InSAR technology failing to perform its best in subsequent
deformation monitoring and interpretation, and even lead to the waste of expensive data
resources. In recent years, the rapid development of SAR satellites has provided a wide
space for data selection in the monitoring of surface deformation. Different parameters
(e.g., polarization modes, incident angles, and spatial resolutions) can be customized
according to actual needs. It will become a normal trend to integrate multiple (including
multi-temporal, multi-orbit, multi-frequency, and multi-polarization) SAR data for surface
deformation monitoring. If the performance of InSAR deformation measurements can be
accurately estimated before acquiring SAR data, it can not only help to select the most
suitable SAR data configuration, but also provide a way to access the accuracy of SAR data.
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As one of the most important indexes for evaluating the performance of InSAR mea-
surement, coherence can be divided into spatial and temporal components [8]. The spatial
coherence properties can be calculated by theoretical formulas, but the temporal coherence
cannot be directly measured [9]. In general, the temporal coherence can be separated from
the total coherence by removing other components based on the composition principle of
coherence [10]. Tian et al. [11] proposed a method for temporal decorrelation analysis of
echo signals, but the essence of this method is still based on the decomposition of coherence.

Temporal decorrelation is mainly caused by the change of scattering characteristics of
ground objects during the satellite revisit period [12,13]. Therefore, in a vegetable area, the
decorrelation caused by vegetation change dominates the temporal decorrelation. The most
direct way to evaluate the decorrelation noise is to find the relationship between vegetation
cover and temporal decorrelation. To date, some preliminary attempts had been made.
Coherence has been widely used in land classification, but its relationship with vegetation
coverage is rarely quantified [14,15]. It has been confirmed that the performances of the
coherences are different for various types of vegetation cover [16,17]. In addition, both the
height and density of vegetation are important factors affecting coherence [18]. In general,
coherence and vegetation density show a negative correlation, that is, coherence decreases
with the increase of vegetation density [19]. Some studies had suggested that there was a
certain non-linear relationship between coherence and some vegetation indices, but the
reliability of this relationship needs to be verified [20]. Most of these pieces of research focus
on the qualitative analysis [21,22], while the quantitative relationship between coherence
and vegetation coverage is still unclear.

Normalized Difference Vegetation Index (NDVI) is a widely used measurement of
vegetation coverage, which can be derived from freely available optical satellite images
(e.g., Landsat images) [23]. It had been proved that coherence is related to NDVI [20,24–26].
This provides an opportunity for the quantitative estimation of InSAR decorrelation noise.
In this paper, based on the ALOS-1/PALSAR-1 and Landsat5 images acquired in Meitanba
area, Hunan Province, China, we found a nonlinear relationship between InSAR coherence
and NDVI, and established a multi-stage model to quantitatively estimate decorrelation
noise. In addition, the performance of the established model was assessed in Longhui area,
Hunan Province, China.

This paper is organized as follows. In the next section, the study area and the pro-
cessing procedures of Landsat5 and ALOS-1/PALSAR-1 data are described in detail. The
proposed method for establishing the model is introduced in Section 3. Section 4 is dedi-
cated to the presentation of the obtained results. Finally, conclusions and further thoughts
are addressed.

2. Study Area and Datasets
2.1. Study Area

The test site is the Meitanba area located in Hunan Province, China (see Figure 1a).
There is abundant vegetation in this area. Since this area is characterized by gentle terrain
and the slope angles are basically less than 10◦, the influence of spatial decorrelation is
small. In addition, we chose Longhui area as the validation area to further verify the
reliability of the decorrelation evaluation model. Longhui area is also located at Hunan
Province and near the Meitanba area (see Figure 1a), where vegetation is dense and the
terrain is complex and diverse. To reduce the influence of topography, the areas with
relatively flat terrain are selected.
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Figure 1. (a) Optical image of the study area. Green and red rectangles represent the coverages of 
Landsat5 and ALOS-1/PALSAR-1 images, respectively. Black boxes indicate the locations of Meit-
anba and Longhui areas. (b) NDVI image of the Meitanba area; (c) NDVI image of the Longhui area. 

2.2. Landsat5 Data 
In this study, we collected the cloud-free Landsat5 TM images acquired in May 2008, 

which is used to represent the vegetation coverage in the study area (Table 1). First, radi-
ation calibration and atmospheric correction were both carried out for the used Landsat5 
TM images, which produced the reflectivity values of the red and near-infrared bands. 
Then, the common areas were extracted by selecting control points for image registration 
and mosaic clipping. Finally, the NDVI value was derived based on the Landsat5 images 
by using Equation (1). = −+  (1) 

where  and  are the reflectance values in near-infrared and red bands, respec-
tively. NDVI is commonly used to monitor vegetation cover and growth, whose range is 
in [−1,1]. The negative value indicates that the surface coverages are water, ice, or snow, 
which have very high reflectivity to visible light. Zero indicates bare soil, rock, or build-
ings. The positive value refers to the presence of vegetation, and the value of NDVI in-
creases with the increase of vegetation coverage. The NDVI results in Meitanba area and 
Longhui area are shown in Figure 1b,c, respectively. 

Table 1. Landsat5 images used in the study. 

Location Data Resolution 
Meitanba 21 May 2008 30 m Longhui 21 May 2008 

2.3. ALOS-1/PALSAR-1 Data 
Ascending PALSAR-1 images in HH polarization modes acquired by ALOS-1 satel-

lite are employed in the study. The incident angle is 38.74 degrees (Table 2). The SAR 
interferometric image pairs were processed with two-pass differential interferometry. 
Multi-look processing was adopted to suppress noises as well as to resample the PALSAR-
1 images to the same resolution as the Landsat5 images. 

Figure 1. (a) Optical image of the study area. Green and red rectangles represent the coverages of
Landsat5 and ALOS-1/PALSAR-1 images, respectively. Black boxes indicate the locations of Meitanba
and Longhui areas. (b) NDVI image of the Meitanba area; (c) NDVI image of the Longhui area.

2.2. Landsat5 Data

In this study, we collected the cloud-free Landsat5 TM images acquired in May 2008,
which is used to represent the vegetation coverage in the study area (Table 1). First, radia-
tion calibration and atmospheric correction were both carried out for the used Landsat5
TM images, which produced the reflectivity values of the red and near-infrared bands.
Then, the common areas were extracted by selecting control points for image registration
and mosaic clipping. Finally, the NDVI value was derived based on the Landsat5 images
by using Equation (1).

NDVI =
PNIR − PRED
PNIR + PRED

(1)

where PNIR and PRED are the reflectance values in near-infrared and red bands, respectively.
NDVI is commonly used to monitor vegetation cover and growth, whose range is in [−1,1].
The negative value indicates that the surface coverages are water, ice, or snow, which
have very high reflectivity to visible light. Zero indicates bare soil, rock, or buildings. The
positive value refers to the presence of vegetation, and the value of NDVI increases with
the increase of vegetation coverage. The NDVI results in Meitanba area and Longhui area
are shown in Figure 1b,c, respectively.

Table 1. Landsat5 images used in the study.

Location Data Resolution

Meitanba 21 May 2008
30 mLonghui 21 May 2008

2.3. ALOS-1/PALSAR-1 Data

Ascending PALSAR-1 images in HH polarization modes acquired by ALOS-1 satellite
are employed in the study. The incident angle is 38.74 degrees (Table 2). The SAR interfero-
metric image pairs were processed with two-pass differential interferometry. Multi-look
processing was adopted to suppress noises as well as to resample the PALSAR-1 images to
the same resolution as the Landsat5 images.
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Table 2. ALOS-1/PALSAR-1 images used in the study.

Location Master Date Slave Date Bt B⊥ Resolution

Meitanba 11 January 2008 26 February 2008 46 day 437 m
30 mLonghui 16 January 2008 17 April 2008 92 day 752 m

Coherence represents the degree of similarity between two single-look complex images
(SLC). It is often used to evaluate the quality of interference fringes, as is the correlation
coefficient between two real images. The greater the coherence, the higher the quality of
InSAR observation. Coherence measure γ is defined as the magnitude of the correlation
coefficient between two accurately co-registered complex images u1 and u2 [27]

γ =
|E[u1u∗2 ]|√

E
[
|u1|2

]
E
[
|u2|2

] (2)

where E[·] indicates the mathematical expectation and the symbol ∗ represents complex
conjugate. The total coherence is the sum of geometric decorrelation, temporal decor-
relation, and thermal decorrelation. Thermal noise is generally ignored, and geometric
coherence can be removed according to [9]. In addition, to ensure that the coherence and
NDVI images are in the same coordinate system, the Landsat5 and PALSAR-1 images are
co-registered based on the 1 arcsecond SRTM DEM.

3. Methodology

In this section, the modeling process is demonstrated in detail by exploiting the
Landsat5 and PALSAR-1 images acquired in the Meitanba area. However, it is difficult
to build a model directly from the data since gross errors will degrade the correlation
between coherence and NDVI. For example, the measurements of NDVI are sensitive to
soil moisture and atmosphere [28]. InSAR coherence observations are greatly affected by
the window size used in the calculation [8]. As a result, no obvious trend can be obtained
between coherence and NDVI when the data are directly used. Therefore, a novel sampling
procedure was proposed to eliminate gross errors before building the model.

3.1. Sampling Based on Correlation Estimation Model

The proposed sampling procedure is based on a correlation estimating model and
includes three steps. First, for the interesting pixel position, two moving windows of
the same sizes were opened in the NDVI and coherence images, respectively, which had
been co-registered. Second, the correlation coefficient of all the pixels in the two windows
was calculated based on the basic idea of the Pearson correlation coefficient [29]. If the
correlation coefficients of the two moving windows meet the preset threshold, all the
pixels in the two windows are taken as observation samples, otherwise, these pixels are
discarded. Third, the previous operations were conducted window-by-window until the
entire image was traversed by the moving window. Because the quality of the observed
data is affected by many uncertainties, the optimal window size and correlation threshold
could be different for the sampling of different data. As for the selection of moving window
and correlation threshold, we carried out a large number of experiments with different
values and found that a window size of 50 × 50 and a threshold of 0.8 could yield ideal
results, which were used to select samples in this study. The correlation coefficient of the
two windows is calculated by Equation (3).

R =
∑m ∑n

(
Amn − A

)(
Bmn − B

)√(
∑m ∑n

(
Amn − A

)2
)(

∑m ∑n
(

Bmn − B
)2
) (3)
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where R is the correlation coefficient between the two windows, m and n represent the
sizes of the window. A and B represent the average values of all the pixels in two windows,
respectively. The schematic diagram of the proposed sampling procedure is shown in
Figure 2.
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the increase of NDVI. This indicates that the L-band SAR data is greatly affected by the 

Figure 2. Schematic diagram of the proposed sampling procedure. R is the correlation coefficient
between the two windows. R0 is the preset threshold.

3.2. Effect of Perpendicular-Temporal Baseline Variation

In order to consider the effect of time, the relationship between perpendicular-temporal
baselines and coherence is analyzed. Figure 3a shows the coherence variations over tem-
poral and spatial baselines associated with the ALOS-1 interferograms acquired in the
Meitanba area. As observed, the effect of temporal baseline on coherence is greater than
that of spatial baseline. This is because the topography of the study area is relatively flat
and the effect of spatial decorrelation is small in the L-band observation. In addition, the
spatial coherence has been removed based on the theoretical formula [9] when establishing
the model. Figure 3b shows the coherence decreases exponentially with temporal baselines,
proving that coherence is highly dependent on temporal baselines. Therefore, it is reason-
able to add an exponential decay factor to the model. The orange curve represents the
coherence as a function of temporal baselines, fitted by the iterative least squares method.
The coefficients a and τ were then obtained as 0.87 and 172 days, respectively, with 95%
confidence interval.
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Figure 3. (a) Correlation between coherence and perpendicular-temporal baseline variation. Circle
sizes stand for different coherence values. (b) Coherence variations over temporal baselines. The
blue stars indicate the mean coherence values of the study area at different temporal baselines and
the orange line represents the fitting curve. a = 0.87, τ = 172 days.

3.3. Establishment of Decorrelation Noise Model

The data selected by the proposed sampling procedure were analyzed in order to
investigate the relationship between the Landsat5/NDVI and PALSAR-1/coherence in
Meitanba area. As shown in Figure 4, it is obvious that there is a strong correlation between
the NDVI and the coherence of the study area. In the areas with high vegetation coverage,
the coherence of the SAR image is low. On the contrary, the coherence of the SAR image is
high in the areas with low vegetation coverage. This is consistent with the actual situation.
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When the NDVI is in the range of [−0.1, 0.32], the linear relationship is found between
coherence and NDVI. The main reason is that vegetation coverage is low in this interval,
and the L-band SAR data has a strong penetration ability for the low vegetation coverage.
As the NDVI exceeds 0.32, the coherence starts to decrease rapidly with the increase of
NDVI. This indicates that the L-band SAR data is greatly affected by the high vegetation
coverage. When the NDVI is exceeding 0.57, vegetation is so dense that SAR data is
invalid. When the NDVI is less than −0.1, the surface is covered by water, ice or snow, and
coherence is set to zero.
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Therefore, the qualitative relationship between NDVI and coherence can be divided
into three different sections. When the NDVI is in [−0.10, 0.32], the NDVI and coherence
values behave as a linear relationship. When the NDVI is in [0.32, 0.57], they show a
logarithmic trend. Otherwise, NDVI is assigned to zero. Some studies had suggested that
there was a certain exponential/logarithmic relationship between coherence and some
vegetation indices [20]. In addition, the coherence decays exponentially with increase of the
temporal baselines [17]. Therefore, a temporal decay factor is added to better describe the
variation of coherence over time. Finally, a three-stage model is constructed to represent
the relationship between the Landsat5/NDVI and PALSAR-1/coherence as Equation (4).

γ0 =


0 , −1 ≤ NDVI〈0.1, NDVI〉0.57

a·e− t
τ ·NDVI + b , −0.1 ≤ NDVI < 0.32

k·e− t
τ · ln NDVI∞−NDVI

NDVI∞−NDVI0
+ c, 0.32 ≤ NDVI ≤ 0.57

(4)

where γ0 represents coherence. t is the temporal baseline of the interferometric pair.
τ represents temporal decay factor, which is an empirical value and set as 172 days in this
study. NDVI0 is the mean value of NDVI, and NDVI∞ is the max value of NDVI0. a, b, k,
and c are the parameters, which are required to be estimated.

To enhance the robustness and reduce the influence of gross errors, the model is
fitted by the least absolute method (i.e., L1 norm) [30]. By using the Landsat5/NDVI and
PALSAR-1/coherence of the Meitanba area, we yield a = −0.1141, b = 0.9176, k = 0.6438,
c = 0.8631.

4. Results and Discussion

Based on the constructed model, the coherence is estimated from the original NDVI
data in Meitanba area. As shown in Figure 5a,b, the true coherence is basically the same as
that estimated by the constructed model. The difference image is obtained by subtracting
the estimated coherence from the true coherence (Figure 5c). It can be found that the
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differences are randomly distributed without significant trend error. Relatively larger
errors are mainly concentrated in the red circle area of Figure 5c. This can be ascribed to the
considerable spatial decorrelation caused by serious terrain undulation in this area, which
cannot be completely removed. As shown in Figure 5d, it is found that the errors basically
obey the Gauss distribution and mainly concentrate between −0.2 and 0.2. Therefore, it
can be confirmed that the model is applicable and has no systematic deviation.
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In order to evaluate the migration of the constructed model, another experiment was
conducted in Longhui area. The method and the process of data reprocessing are the same
as those in Meitanba area. It is worth noting that, in order to minimize the difference
between the two regions, the histogram specification of NDVI was made before estimating
coherence in Longhui area in order to keep the same distribution characteristics as that of
NDVI in Meitanba area.

As shown in Figure 6a,b, the true coherence and the estimated coherence by the
model in Longhui area are also very similar. The differences between them are random but
somewhat larger than that in Meitanba area (Figure 6c). In addition, the differences are
still basically characterized by the Gauss distribution (Figure 6d) and mainly concentrate
between −0.4 and 0.4, demonstrating that the constructed model is reasonable. The reason
that the error in the estimation of coherence in Longhui area is larger than that in Meitanba
area may be four fold. (1) Since southern China is cloudy and foggy, the utilization rate
of optical data is quite low. Therefore, the discrepancy between the acquisition times of
the optical and SAR images is large, which inevitably leads to errors in the estimation.
(2) The regional differences in climate and topography between the Meitanba and Longhui
areas will degrade the migration of the constructed model. (3) The InSAR coherence in
Longhui area has a longer temporal baseline than that in Meitanba area. The impact of the
changeful vegetation cover cannot be neglected. (4) The bias could be caused by the spatial
decorrelation since the perpendicular baselines of the used InSAR pairs are around 700 m.
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The model constructed in this study explores the preliminary relationship between
vegetation cover and InSAR decorrelation. However, the fitting of the model will inevitably
be affected by some factors. The date difference between optical and SAR data could
affect the estimation of the model. Generally, this impact is small in the short period,
especially when no sudden change occurs in the environment. Since the Landsat5-derived
NDVI is mainly used as a reference to characterize the influence of vegetation coverage,
a temporal decay factor is added into the constructed model to compensate for the effect
induced by the date difference. In addition, because the imaging geometries of the optical
image and the SAR image are different, it is difficult to achieve sufficiently high accuracy
for the registration of the two based on extra DEM [31]. In addition to this, the accurate
estimation of NDVI is affected by precipitation, atmosphere, and soil moisture [32,33].
The inherent seasonal changes and attitude disturbances of the vegetation itself will also
have an impact [34]. For example, the coherence of the same season in different years may
be better than the coherence of different seasons in the same year. In the future, some
factors can be considered to improve the model. For example, multi-polarization SAR
data can characterize morphological structure and dielectric constant characteristics of
the vegetation layer, which can help us to further analyze the temporal decorrelations
and reconstruct a high-quality surface phase [35]. In addition, the complex geometric
structure of vegetation often results in the asymmetric scattering of echo signals, which
makes the scattering mechanism of vegetation more complex and should be considered in
the construction of the model [35].

5. Conclusions

A quantitative evaluation model of L-band InSAR decorrelation is established based
on the Landsat5-derived NDVI in this study, which reveals the interaction between InSAR
decorrelation and vegetation coverage. It is found that the coherence and the NDVI show
different relationships in different ranges. When the vegetation is scarce, coherence and
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NDVI show a linear relationship. With the increase of vegetation, the relationship becomes
logarithmic gradually. When the vegetation is flourishing, the coherence tends to zero.
In addition, the coherence decreases exponentially with increasing temporal baseline.
Therefore, a three-stage model is constructed by exploiting the ALOS-1 PALSAR-1 and
Landsat5 data acquired in Meitanba area, and is validated by using the similar data in
Longhui area. Such a study allows us to access the monitoring performance of SAR
data and provide guidance for data selection. More factors such as topography, type of
vegetation, climate conditions, polarization mode of SAR data can be considered in future
work [31–35]. In addition, other quantitative evaluation models can be constructed for X-
and C-band InSAR decorrelation.
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