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Abstract: With rapid urbanization in recent decades, more and more urban renewal has taken place
in China. Meanwhile, the early developed areas without change have become old towns, which
need special attention in future city planning. However, other than field surveys, there is no specific
method to identify old towns. To fill this gap, we used time-series image stacks established from
Landsat Surface Reflectance Tier 1 data on the Google Earth Engine (GEE) platform, facilitated by
Global Urban Boundary (GUB), Essential Urban Land Use Categories (EULUC) and Global Artificial
Impervious Area (GAIA) data. The LandTrendr change detection algorithm was applied to extract
detailed information from 14 band/index trajectories. These features were then used as inputs to
two methods of old town identification: statistical thresholding and random forest classification.
We assessed these two methods in a rapidly developing large city, Hangzhou, and subsequently
obtained overall accuracies of 81.33% and 90.67%, respectively. Red band, NIR band and related
indices show higher importance in random forest classification, and the magnitude feature plays an
outstanding role. The final map of Hangzhou during the 2000–2018 period shows that the old towns
were concentrated in the downtown region near West Lake within the urban boundaries in 2000, and
far fewer than the renewed areas. The results could serve as references in the provincial and national
planning of future urban developments.

Keywords: old town; renewed area; Landsat time-series image stacks; LandTrendr; thresholding;
random forest; classification; satellite imagery; urban preservation

1. Introduction

Old towns (OT), namely old construction areas, refer to constant urban impervious
areas where structural features have not changed within a certain time frame. In contrast,
renewed areas (RA) refer to urban surface structures that have been through subsequent
changes at least once. The conversion between impervious and non-impervious surfaces,
or the demolition and reconstruction of old buildings, both belong to urban renewal.

During the past 40 years, China’s urban land has expanded more than 12 times [1,2]. In
the meantime, some built-up areas older than 35 years have also undergone re-construction.
The average building age in China is only 23 years [3]. Old towns as a whole or in part
may have preservation values for cultural and historical reasons. However, in rapidly
developing cities, old built-up areas are disappearing quickly due to urban-rebuild projects.
Excessively fragmented land blocks and landscapes resulting from disordered construction
seriously affect the appearance of a city, causing a loss of the historical style in cities. What
is even worse, disordered re-constructions over old town areas are particularly disturbing
socially and culturally, destroying the original characteristics and unique glamour of
cities [4] in people’s precious memories of their hometowns. The problem has become so
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serious that the Chinese government has decided to monitor the level of destruction of
old towns.

Since 2012, Ecological Civilization has been officially adopted as a means to achieve
sustainable development and build Beautiful China. It has now been widely recognized
that many old but historic parts of cities deserve preservation in the trend of urban renewal.
The Chinese government has formulated the Arable Land Minimum, Ecological Redline
Policy and other urban development boundaries [5] to protect basic farmland and the
ecological environment. In other words, local governments need to activate the stock and
strictly control the increased use of new land resources that are currently non-urban. Hence
there is a requirement to go for re-construction in built-up areas to improve the quality of
urban development. Thus, urban planners and developers face the issue of which part of
an old town can be replaced and which part should be preserved. However, many cities
do not have maps of old construction areas or the age of built-up areas, nor do they have
adequate methods for the mapping of old towns.

Although there are existing annual maps of urban boundaries [2], they do not pro-
vide information about urban renewal. The purpose of this study is to come up with a
suitable method to distinguish re-built areas in original built-up areas of a certain age. In
China, constructions older than 20 years, are considered old towns. To discover whether
an area has experienced renewal in old built-up areas, change detection is indispensable.
Relevant algorithms include VCT [6], LandTrendr [7,8], BFAST [9], CCDC [10], COLD [11],
TSCCD [12], etc., mostly for forests [13–15], grasslands [16], croplands [17] and impervi-
ous surfaces [18]. When fitting time-series spectral trajectories and depicting interannual
dynamics, LandTrendr can capture gradual long-term subtle changes and short-term muta-
tions to satisfy various needs and purposes, thus achieving effective segmentation [7,8].
This method allows arbitrary cutting of band trajectories to obtain intuitive line segments
and vertices with practical meaning. The line segments represent different land surface
stages and their turning vertices represent actual ground change events. The segments and
vertices can provide rich information about the events, such as start and end values, start
and end years, magnitude, duration, change rate and so on. In this way, we can extract
abundant land surface change signals from the spectral trajectories, which are critical for
subsequent identification. Moreover, this algorithm controls noise by empirical parameter
setting. Therefore, we used LandTrendr for modeling and segmentation, focusing on the
interannual variability of spectral features. Afterward, statistical thresholding and random
forest classification methods were adopted to utilize the extracted signals and features and
judge from them.

Since 2000, the rapid growth of China’s economy and gradual adjustment of land
policy have continued to influence the urbanscape. Taking Hangzhou as an example, we
developed a mapping framework for extracting old towns and renewal areas after 2000.
We hope the method developed here can be applied to other cities for old town mapping.

2. Data and Methods
2.1. Study Area and Samples

Hangzhou, the capital city of Zhejiang Province (Figure 1a), has a subtropical monsoon
climate with plains and hills as the main terrain characteristics. By the end of 2018, the
land area of the city had reached 16,850 km2, with a total population of 9.806 million
and a population density of 582 person/km2 (from Hangzhou Statistical Yearbook 2019,
http://tjj.hangzhou.gov.cn/art/2019/10/23/art_1229453592_3819412.html, accessed on
18 December 2020). The developed area in the urban district increased rapidly from
177.18 km2 in 2000 to 615.22 km2 in 2018. There are 13 jurisdictions in Hangzhou, including
10 districts, 2 counties and 1 county-level city (Figure 1b).

http://tjj.hangzhou.gov.cn/art/2019/10/23/art_1229453592_3819412.html
http://tjj.hangzhou.gov.cn/art/2019/10/23/art_1229453592_3819412.html
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Figure 1. Study area. (a) The location of Hangzhou in Zhejiang Province; (b) administrative division of Hangzhou in 2018
and internal urban boundaries in 2000 and 2018.

The region of interest (ROI) in the research was determined by Global Urban Bound-
aries (GUB) [19] and Essential Urban Land Use Categories (EULUC) [20] datasets. GUB
data provides clear urban-rural boundaries, enabling us to focus on human activities within
the urban built-up outlines. The overlaying of urban boundaries in 2000 and 2018 can
highlight the difference between the extent of old built-up areas and the newly expanded
regions. Rural areas included in the rapid urban expansion may constitute the phenomenon
of villages-in-city [21]. On this basis, EULUC parcels remove main roads, mountains and
waters, specifically orienting to human settlements.

According to multi-year high-resolution remote sensing images available in Google
Earth, two categories of samples, namely, old towns and renewed areas, were collected
separately through manual interpretation. Plots were first randomly selected on the images
inside urban boundaries in 2018. Only those with a complete image series from 2000 to
2018 and clear land-use status were then collected as sample plots. Here, a complete image
series means land surface structures and changes of plots can be checked from continuous
images without lengthy time gaps. As a result, a total of 450 sample units were divided
into a training set and a validation set with a 2:1 ratio (Figure 2). The land surface features
in old towns were consistent in dense images, and did not change with time, while those in
renewed areas had changed at least once between 2000 and 2018.

The flow of data processing is shown in Figure 3. Google Earth Engine (GEE) was
used as the platform to construct our mapping framework. It almost covered all the
procedures, including Landsat data preparation, image stacks generation, LandTrendr
fitting, segmentation, band trajectory inspection and random forest classification.
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Figure 2. Distribution of training and validation samples. (A), (B) and (C) are enlarged views of
dense samples.

Figure 3. The flowchart of main procedures in the research. (a) Data preparation; (b) fitting and
segmentation; (c) classification and validation.

2.2. Data Preparation

Considering the integrity of satellite imagery and the balance of temporal frequency
and spatial resolution, Landsat images are a relatively optimal source of remote sensing.
For urban studies, finer resolution data is desirable, but it may be hard to include most data
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sources from early observations due to the later launch time of satellites, which is critical to
thoroughly understand a pixel’s history. The 30-m Landsat Enhanced Thematic Mapper
Plus (ETM+) and Operational Land Imager (OLI) data are sufficient to cover the whole
period 2000–2018. We used atmospherically corrected Surface Reflectance Tier 1 products,
which include the mask of cloud, shadow, water and snow with CFMASK [22,23] and
the spectral transformation from OLI to ETM+ [24]. A medoid approach [25] assigns the
spectral value closest to the median among all candidate images with different timestamps
to a given pixel, which can reduce data volume and minimize atmospheric impact [26].
Annual compositing in this way was applied through the green season in a certain year,
to generate image collections of 14 available bands/indices in the functions library of the
LandTrendr JavaScript module on GEE, including B1, B2, B3, B4, B5, B7, NDMI, NBR, NDVI,
NDSI, TCB, TCG, TCW, TCA (Table 1). Therefore, for a given band, each year corresponds
to one image layer. Arranging and stacking all the image layers within the study period
in chronological sequence, every pixel will also correspondingly have a spectral value
sequence. Afterward, its spectral value sequence will be transferred to LandTrendr for
fitting and segmentation. The same stacking process was applied for all the bands, that
is, each pixel can obtain 14 spectral value sequences. We included 14 bands because we
expected to integrate, extract and use spectral information as much as possible to improve
classification accuracy and avoid omissions.

Table 1. Definition for spectral bands and indices.

Index Name Formula Reference

B1 Thematic Mapper-equivalent Band 1 B1 = Blue [25]
B2 Thematic Mapper-equivalent Band 2 B2 = Green [25]
B3 Thematic Mapper-equivalent Band 3 B3 = Red [25]
B4 Thematic Mapper-equivalent Band 4 B4 = NIR [25]
B5 Thematic Mapper-equivalent Band 5 B5 = SWIR1 [25]
B7 Thematic Mapper-equivalent Band 7 B7 = SWIR2 [25]

NDMI Normalized Difference Moisture Index NDMI = (NIR − SWIR1)/(NIR + SWIR1) [27]
NBR Normalized Burn Ratio NBR = (NIR − SWIR2)/(NIR + SWIR2) [28,29]

NDVI Normalized Difference Vegetation Index NDVI = (NIR − Red)/(NIR + Red) [30,31]
NDSI Normalized Difference Snow Index NDSI = (Green − SWIR1)/(Green + SWIR1) [32]

TCB Tasseled-Cap Brightness

TCB(L5 TM) = 0.2909B1 + 0.2493B2 + 0.4806B3 +
0.5568B4 + 0.4438B5 + 0.1706B7

TCB(L7 ETM+) = 0.3561B1 + 0.3972B2 + 0.3904B3 +
0.6966B4 + 0.2286B5 + 0.1596B7

[33–35]

TCG Tasseled-Cap Greenness

TCG(L5 TM) = −0.2728B1 − 0.2174B2 − 0.5508B3 +
0.7721B4 + 0.0733B5 − 0.1648B7

TCG(L7 ETM+) = −0.3344B1 − 0.3544B2 − 0.4556B3 +
0.6966B4 − 0.0242B5 − 0.2630B7

[33–35]

TCW Tasseled-Cap Wetness

TCW(L5 TM) = 0.1446B1 + 0.1761B2 + 0.3322B3 +
0.3396B4 − 0.6210B5 − 0.4186B7

TCW(L7 ETM+) = 0.2626B1 + 0.2141B2 + 0.0926B3 +
0.0656B4 − 0.7629B5 − 0.5388B7

[33–35]

TCA Tasseled-Cap Angle TCA = arctan(TCG/TCB) [36]

2.3. LandTrendr

Since the spectral variation within built-up areas may not be significant due to the
similarity of building materials, we expected to capture disturbance to the maximum
extent [7] and improve the sensitivity of emergency response, rather than smoothing the
overall trend. After sufficient testing and adjustment, the main parameters in the function
were set as shown in Table 2 based on foregoing considerations. It is hard to define the
change direction explicitly due to complicated human intervention, so both gain and loss
were taken into account. Our target was the greatest one with the largest change magnitude
(mag, multiplied by 1000) among all segments of a trajectory (just like successive parts of
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red broken lines in Figure 4). Then the change rate of this segment can be calculated from
its duration (dur):

rate =
mag
dur

(1)

Table 2. Main parameter settings of LandTrendr in this research.

Parameters. Value Parameters Value

Start Year 2000 Prevent One Year Recovery false
End Year 2018 Recovery Threshold 1
Start Date 1 June p-value Threshold 0.1
End Date 30 September Best Model Proportion 0.75

Max Segments 8 Min Observations Needed 6
Spike Threshold 1 Delta gain/loss

Vertex Count Overshoot 3 Sort greatest

Mag, dur, rate are three basic features of the greatest segment. Taking NDMI, NBR,
NDVI as examples, Figure 4a shows the time series trajectories of a typical renewed area.
The bold crimson lines in the curves refer to the greatest segments, the slope of which
is equivalent to the rate mentioned before. In this region, the original residence was
demolished in 2007 and rebuilt afterward, so the indices fluctuated greatly after 2007, with
high mag. Mag of NDMI was usually less than that of NBR and NDVI, and there may
be time differences between indices. On the contrary, we expected the ideal trajectory of
an old town to converge to a horizontal straight line. Therefore, in Figure 4b, the index
trajectories of a typical old town were much smoother with low mag. It is worth noting
that if the curve is stable enough, the greatest segment will cover the entire period, like
NDVI in Figure 4b.

Figure 4. Cont.
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Figure 4. Typical samples and their index time series. The bold crimson lines refer to the greatest
segments. (a) A typical renewed area; (b) a typical old town.

2.4. Statistical Thresholding (ST)

Normalized Difference Built-up Index (NDBI) [37] is an excellent indicator for built-up
areas. From Equation (2) and Table 1, we can see that NDMI is equivalent to reverse NDBI.
We do not mind the change direction of segments in the research, so NDMI can replace
NDBI to obtain relevant information about built-up areas. NDVI contains much information
about vegetation. NBR shows a high Signal to Noise Ratio (SNR) and prediction ability
when detecting disturbance [14]. Therefore, we took statistical analysis for the three
representative indices to determine the thresholds between the old and the renewed.

NDBI =
SWIR1−NIR
SWIR1 + NIR

(2)

Each index has mag in two directions, gain and loss, and we take the higher value
as ∆Index in Equation (3), where Index refers to NDMI, NBR or NDVI. Figure 5a shows
the density curves of ∆Index for old town and renewed area sets separately. It is obvious
that notable differences exist between the two sample categories. The ∆Index values of old
towns are quite concentrated and generally low, while those of renewed areas are relatively
more scattered and higher. The greatest absolute difference between the two categories is in
NDVI, and the least is in NDMI, which can be seen from their distinct averages. However,
there are also partial overlaps between them leading to incomplete separation. The box
plots in Figure 5b show similar differences. Additionally, by Kolmogorov-Smirnov test
based on cumulative distribution function, there are significant differences between ∆Index
of old and renewed samples, with no significant differences between the training and
validation set in each category. Therefore, it is feasible to determine general thresholds
for classification according to the differences between old and renewed training samples.
For NDMI or NBR, the threshold is determined by the maximum in the upper quartile
(Q3) of training samples of old towns and the lower quartile (Q1) of training samples of
renewed areas (Equation (4)). Because NDVI is affected by some external factors (such as
vegetation growth and landscape greening), the limit for it should be relaxed. Therefore, its
threshold is determined by the upper edge (Q3 + 1.5IQR) of training samples of old towns
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(Equation (4)). The final thresholds are 142 for NDMI, 260 for NBR and 275 for NDVI. Only
when the mags of three indices are all no more than the corresponding thresholds, can a
pixel be judged as an old town.

4 Index = MAX
{

gain magIndex, loss magIndex
}

(3)

ThresholdIndex =

{
MAX{4Indexot : Q3,4Indexrt : Q1}, Index = NDMI or NBR

4Indexot : (Q3 + 1.5IQR) , Index = NDVI
(4)

where,

ot: training samples of old towns
rt: training samples of renewed areas.

Figure 5. Statistical graphs of ∆NDMI, ∆NBR and ∆NDVI for sample sets. (a) Density curves and corresponding dotted
average lines; (b) box plots.

2.5. Random Forest (RF)

Random forest was first introduced by Leo Breiman and Adele Cutler [38,39], and it
belongs to the range of supervised machine learning. According to the idea of ensemble
learning, the random forest classifier contains numerous decision trees, and meanwhile
trains the samples and makes predictions based on various features. It shows stable,
robust and excellent classification performance [40] and is able to deal with huge and
high-dimensional datasets, equipped with rapid learning ability and high flexibility.

We expected to make full use of multi-dimensional spectral space in mapping. There-
fore, a total of 84 features composed of the mag/dur/rate in gain/loss of the 14 bands/indices
were used as inputs to the random forest classifier on GEE. The same training set was used
to train the model, then generating the classification result for the whole ROI.

2.6. Post-Processing

Since some non-built-up areas that should not be included were still mixed in the
results, which would affect the statistics of old towns and renewed areas, we used Global
Artificial Impervious Area (GAIA) [1,2] data to mask out those areas. In GAIA, local maps
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of China cover 1978–2017 with more precise details, while global maps cover 1985–2018
with more macro patterns. To satisfy the study period 2000–2018 and meanwhile improve
the precision, a non-impervious (non-urban) pixel can be confirmed only when it exists in
both maps. The obtained non-impervious areas were composited with classification results
to remove undesired non-built-up areas.

3. Results and Comparison
3.1. Validation and Comparison

The randomly distributed validation set includes 50 old sample units and 100 renewed
sample units. As shown in Table 3, the overall accuracy (OA) of ST is 81.33%, and pro-
ducer’s accuracy (PA) and user’s accuracy (UA) of renewed areas are much higher than
those of old towns. The overall accuracy of RF is 90.67%, which is nearly 10% higher than
the former, and PA/UA of the two categories are also largely improved. Moreover, there
is more balance between omission and commission errors, indicating that the RF result is
more robust. In contrast, ST appears relatively plain and limited.

Table 3. Confusion matrices for two methods. ST: statistical thresholding; RF: random forest; PA: producer’s accuracy; UA:
user’s accuracy; OA: overall accuracy.

Method Category Old Renewed Total PA (%) UA (%) OA (%) Kappa

ST Old 34 12 46 68.00 73.91 81.33 0.57
Renewed 16 88 104 88.00 84.62

Total 50 100 150

RF Old 41 5 46 82.00 89.13 90.67 0.79
Renewed 9 95 104 95.00 91.35

Total 50 100 150

Because the sample units unevenly fell into districts of Hangzhou, we screened out
districts with more than 6 sample units to calculate local overall accuracies and to observe
the spatial distribution pattern of mapping accuracies (Figure 6). The overall accuracies in
the districts with fewer validation sample units are not representative enough and biased,
so they were not taken into account. Despite the general similarity, certain differences still
exist in the two mapping results. On the whole, all the available accuracies are higher than
70%. However, the local accuracies of the random forest result perform better than those of
the statistical thresholding result, just like the situation for the entire study area. In terms
of the detailed common ground between the two results, both Yuhang and Binjiang show
remarkable accuracies (all 100%), which are also the main expanded regions. Additionally,
Shangcheng and Gongshu in the RF result also have similarly ideal accuracies (94.87% and
100%, respectively). However, Shangcheng and Jianggan in ST and Xiacheng in RF were
mapped relatively poorly with higher errors than other districts, where the land use is
more fragmented, complex and mixed.

In addition, we compared the actual classification quality of the two methods through
local viewing. The selected part is close to West Lake, with dense commercial and residen-
tial land (Figure 7a). Old towns in the ST result are relatively fragmented, presenting poor
identification for the renewed core commercial blocks with small spectral variation, such
as the lakeside zone in the lower-left corner. This may be related to the spectral similarity
of soil, cement and other building materials before, during and after reconstruction, as well
as the resolution limitation and spectral mixing. In the RF result, the connectivity of homo-
geneous areas is higher, forming obviously concentrated blocks, which can provide more
intuitive and practical information. From three description perspectives of mag/dur/rate
simultaneously, the full use of change signals in 14 indices enables more accurate judgment
for commercial blocks. The red/black boxes indicate the West Lake Cultural Plaza. During
the 2000–2018 period, its original residential buildings were demolished and then rebuilt
into commercial buildings and a square ahead. In the RF result, the whole region was
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effectively identified as renewed areas. However, in the ST result, in spite of successful
identification for the commercial buildings, the method failed to identify the square with
mainly cement surfaces and greenbelts. On the whole, the RF method is more accurate,
robust and reliable.

Figure 6. Local overall accuracies (OA) in partial districts. (a) ST result; (b) RF result.

We also magnified the northwestern, northeastern, southwestern and southeastern
parts of this extent and covered the 2000 orthophoto with semi-transparent ST result and
RF result, to inspect the details (Figure 7b). It can be seen that in the magnified perspective,
the RF result similarly presents better accuracy and connectivity in many homogeneous
neighborhoods, which is generally consistent with the ground truth. On the other hand,
the RF method is relatively more aggressive, and consequently, some actual old towns were
misjudged as renewed areas.

3.2. Supplement of Random Forest Result

From the importance of 84 features in random forest classification (Figure 8), mag is
the decisive factor in classification and contains a lot of information related to changes.
Contrarily, dur appears less important. Summing the importance for each index, B3, TCG,
NBR, B4 and NDVI perform better in classification, so the Red and NIR bands are more
effective and powerful in identifying old towns.

Figure 9 shows partial random forest results in Hangzhou. It can be intuitively felt
that old towns are far fewer than renewed areas in main municipal districts, and are
mostly distributed in Shangcheng, Xiacheng and Xihu Districts. These are also the earliest
developed areas in Hangzhou, where old and new buildings often coexist adjacently. Old
towns are concentrated in the urban center near the West Lake within the urban boundaries
in 2000, and gradually extend and diffuse outwards with density decreasing. The traditional
central market position of the lakeside zone can be traced back to the 1910s, which also
laid the foundation for the subsequent spreading urbanization and modernization [41].
Between the urban boundaries in 2000 and 2018 are the expanded zones, most of which
used to be countryside. These areas usually experienced urban renewal and became built-
up areas. Many agricultural lands still remain on the east side of Xiaoshan, that is, the
lower-right corner in the figure showing the main districts. Old towns, mainly in the form
of cottages, are arranged systematically and distributed in the gaps among fields. In Lin’an,
most old towns are also distributed inside the urban boundaries in 2000 to the west of
Qingshan Lake. Old towns in Tonglu mainly gather along the Fuchun River, especially
where it joins the tributary Fenshui River. In Chun’an, the residents also live near water.
Old towns are compactly located on the northeastern lakeshore of Qiandao Lake, at the



Remote Sens. 2021, 13, 2438 11 of 17

foot of the mountains, and the human habitation has gradually extended eastward into
gentle valleys, developing livable built-up areas through artificial transformation.

Figure 7. Local comparison of two methods’ results. (a) A selected extent near the West Lake;
(b) four magnified regions with the 2000 orthophoto covered with semi-transparent ST result and
RF result. They are northwestern, northeastern, southwestern and southeastern parts of the former
extent, respectively.



Remote Sens. 2021, 13, 2438 12 of 17

Figure 8. Importance of features in the random forest classification.

Figure 9. Random forest result and Landsat images of partial regions in Hangzhou, including main
districts, Lin’an, Tonglu and Chun’an. Landsat 7 ETM+ images in 2000 are composited by B3, B2, and
B1 in the red, green, and blue channels. Landsat 8 OLI images in 2018 are composited by B4, B3, and
B2 in the three channels.
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Most regions in Hangzhou have experienced urban renewal (1411.77 km2), and the
total area of old towns is 134.24 km2, accounting for 8.68% of its urban area (OT + RA)
(Table 4). Within the urban boundaries in 2000, the area of old towns is 59.06 km2, account-
ing for 19.79% of the urban area, which is mainly residential. Within the expanded zones
between the urban boundaries in 2000 and 2018, although the actual area of old towns
(75.18 km2) is more than the former, its percentage is only 6.03%. This means that much
earlier urban centers are more likely to remain the same as before, and renewal occurs
more frequently in the suburbs. Urban expansion involves not only planning adjustment
and population migration, but also surface reconstruction.

Table 4. Area statistics of old towns (OT) and renewed areas (RA) in different scales.

Scale Area of OT (km2) Area of RA (km2) Percentage of OT (%)

GUB 2000 59.06 239.37 19.79
2018 134.24 1411.77 8.68

Difference 75.18 1172.40 6.03

Districts Shangcheng 6.24 9.57 39.47
Xiacheng 6.07 21.17 22.27
Jianggan 9.91 123.99 7.40
Gongshu 6.28 49.85 11.18

Xihu 13.85 95.57 12.65
Binjiang 2.96 41.10 6.73
Xiaoshan 35.88 423.98 7.80
Yuhang 24.24 380.64 5.99
Tonglu 6.22 50.74 10.92

Chun’an 1.42 13.82 9.30
Jiande 4.70 33.71 12.23

Fuyang 10.33 112.70 8.40
Lin’an 6.15 54.92 10.07

In 13 jurisdictions, Shangcheng District located in the core of Hangzhou, has the
highest percentage of old towns, accounting for 39.47% (Table 4), in spite of its actual area
being small. The next is the adjacent Xiacheng District, accounting for more than one-fifth
(22.27%). The percentage of Xiaoshan is not high (7.80%), but it possesses the largest old
town area (35.88 km2). The smallest area is in Chun’an, which is also the seat of Qiandao
Lake, with many surrounding hills in the territory. The lowest percentage is in Yuhang.
As we can see in Figure 10, from downtown outwards, the area of old towns in districts
presents a low-high-low change process in general, while the corresponding percentage
presents an opposite high-low-high change tendency.
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Figure 10. Spatial patterns in districts and counties. (a) Histogram for each district; (b) area of old towns; (c) percentage of
old town area in urban area (OT + RA).

4. Discussion

In order to capture more significant interannual differences, we did not include the
non-green season images in annual compositing, which may meanwhile omit the surface
changes before June or after September in a year. Observation conditions and noise will
also influence the image quality. The fitting of LandTrendr cannot guarantee that it is
consistent with the actual change, such as smoothing small fluctuations when detecting
a disturbance. Therefore, the setting of control parameters is particularly critical, which
should be adjusted cautiously according to our specific needs.

Currently, the inputs of the random forest method are features of the greatest segments
in band/index trajectories. When considering introducing more information as a classifica-
tion basis, we also tried to add the fastest segments to double the feature quantity. However,
the classification effect was not improved as well as we expected, and the accuracy was
even lower. The reason may be that some of the added features did not contain more
valuable information, and even belonged to noise for the classifier, or an excessive quantity
of features led to the over-fitting problem. Therefore, we only kept the greatest segments.

The spatial scope of multi-year high-resolution images is limited in Google Earth,
and is mostly concentrated in densely populated areas. High-quality satellite imagery is
often missing in the urban fringe, so there is a certain spatial bias in the obtained samples.
Additionally, we tried to expand the period to 1990, but the high-resolution images from
1990 to 2000 in most areas were hard to acquire. Further, 30-m resolution Landsat imagery is
not fine enough to observe the internal changes inside built-up areas, leading to insufficient
samples. Thus, it is impossible to conduct effective training and validation and ensure
the credibility of the results. Next, we hope to obtain other useful data sources, such as
official approval documents on real estate development, enabling us to judge accurately
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when collecting samples without fine images. Therefore, maps of old towns with different
duration can be composited to increase information capacity in the data.

Uncertainty also exists on the map, especially in the city center. House repair, roof
material replacement, nearby shed construction, surrounding plant growth over years
and tree canopy sheltering are all possible error sources, resulting in false positives, while
sometimes the spectral curves cannot accurately indicate surface changes, which will result
in false negatives. The mixture inside a pixel will also affect the judgment of the classifier.

Auxiliary data may influence the results. GUB does not necessarily coincide with
the actual urban boundaries. The compositing of the GAIA product may lead to a certain
degree of error accumulation. Therefore, more efforts need to be made to ensure that urban
boundaries are precisely mapped.

5. Conclusions

In the process of rapid urban expansion and renewal, some old towns have been
preserved. We used the LandTrendr algorithm to extract knowledge from Landsat time-
series image stacks during the period 2000–2018, and adopted statistical thresholding and
random forest classification methods to map old towns in Hangzhou respectively. Random
forest is clearly superior, with better overall accuracy of 90.67%. In the classification, B3,
TCG, NBR, B4 and NDVI had higher importance, indicating that the Red and NIR bands
contain more significant information about built-up areas. In the map of Hangzhou, old
towns are concentrated in the city center near West Lake, which are mainly residential and
only account for about one-tenth of the renewed areas. The percentage of old towns in urban
areas within the 2000 urban boundaries was about three times that within the expanded
zones during the period 2000–2018. Shangcheng District has the highest percentage, and
Xiaoshan District has the largest area, relative to the lowest percentage in Yuhang and
the smallest area in Chun’an. Although this research takes Hangzhou as an example, the
mapping framework based on the GEE platform can be easily migrated to other regions
and different periods with targeted regional samples. Through Cloud Computing, national
and even global maps could be produced at little cost.

Because the classification completely relies on spectral information, image quality
and disturbance detection appear particularly critical, and to some extent, the errors can
be reduced through parameter optimization. Moreover, the sample quality depends on
the artificial visual interpretation of observers and affects the capacity of the classifier. In
future, the rules of the statistical thresholding method will be further revised and expanded
to meet higher accuracy and interpretability. We will also test alternative change detection,
mapping algorithms and multi-algorithm integration to extract old towns. The distribution
of old towns in this research can provide some guidance for urban planning and highlight
the remaining areas lagging behind urban development.
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