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Abstract: Armillaria genus represents one of the most common causes of chronic root rot disease in 

woody plants. Prompt recognition of diseased plants is crucial to control the pathogen. However, 

the current disease detection methods are limited at a field scale. Therefore, an alternative approach 

is needed. In this study, we investigated the potential of hyperspectral techniques to identify fungi-

infected vs. healthy plants of Vitis vinifera. We used the hyperspectral imaging sensor Specim-IQ 

to acquire leaves’ reflectance data of the Teroldego Rotaliano grapevine cultivar. We analyzed three 

different groups of plants: healthy, asymptomatic, and diseased. Highly significant differences were 

found in the near-infrared (NIR) spectral region with a decreasing pattern from healthy to diseased 

plants attributable to the leaf mesophyll changes. Asymptomatic plants emerged from the other 

groups due to a lower reflectance in the red edge spectrum (around 705 nm), ascribable to an accu-

mulation of secondary metabolites involved in plant defense strategies. Further significant differ-

ences were observed in the wavelengths close to 550 nm in diseased vs. asymptomatic plants. We 

evaluated several machine learning paradigms to differentiate the plant groups. The Naïve Bayes 

(NB) algorithm, combined with the most discriminant variables among vegetation indices and spec-

tral narrow bands, provided the best results with an overall accuracy of 90% and 75% in healthy vs. 

diseased and healthy vs. asymptomatic plants, respectively. To our knowledge, this study repre-

sents the first report on the possibility of using hyperspectral data for root rot disease diagnosis in 

woody plants. Although further validation studies are required, it appears that the spectral reflec-

tance technique, possibly implemented on unmanned aerial vehicles (UAVs), could be a promising 

tool for a cost-effective, non-invasive method of Armillaria disease diagnosis and mapping in-field, 

contributing to a significant step forward in precision viticulture. 

Keywords: agriculture 4.0; chlorophyll; early diagnosis; fungal tree pathogens; mycology; plant  

disease; plant pathology; smart viticulture; vegetation indices; wine grapes 

 

1. Introduction 

The Armillaria (Fr.: Fr.) Staude is a globally distributed and widely studied genus of 

pathogenic fungus belonging to the Basidiomycota class, Agaricales order, and Tricholo-

mataceae family [1,2]. It spreads under the soil through root contact or complex structures 

named rhizomorphs, which can grow relatively fast for a hundred meters and penetrate 

Citation: Calamita, F.; Imran, H.A.; 

Vescovo, L.; Mekhalfi, M.L.; La 

Porta, N. Early Identification of Root 

Rot Disease by Using Hyperspectral  

Reflectance: The Case of  

Pathosystem Grapevine/Armillaria. 

Remote Sens. 2021, 13, 2436. 

https://doi.org/10.3390/rs13132436 

Academic Editor: Danfeng Hong 

Received: 10 May 2021 

Accepted: 18 June 2021 

Published: 22 June 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Remote Sens. 2021, 13, 2436 2 of 23 
 

 

the root bark of the hosts [3,4]. Armillaria spp. are opportunistic parasites; however, some 

species, such as A. mellea (Vahl) P. Kumm., are considered the primary parasites of 

stressed trees [5] and are going to increase their damage under climate change conditions 

[6]. Moreover, the modern context of agricultural intensification may offer an opportunity 

for Armillaria to adapt to single monocultures with a resulting disease grimness amplifi-

cation [5]. Armillaria spp. can parasitize a wide range of plant species in forests, both co-

nifers and broadleaves [7], and in garden trees and shrubs [8], and it can cause extensive 

losses in fruit orchards, such as apples and berries [9], pears [10], peaches [11,12], and 

kiwifruits [13], as well as grapevines [14–17]. 

1.1. Root Symptoms 

The host infection normally has a chronic course, resulting in a rot collar and roots 

that lead to its death after several years [5]. Roots appear dark, are easily removable from 

the ground, and have a fibrous consistency [18,19]. Furthermore, it is possible to perceive 

a strong scent of fresh mushrooms by smelling the roots, especially in humid conditions 

[20]. By scratching the collar and main roots’ bark with a small knife, it is possible to notice 

a white mycelium that ends in the typical fan shape (Figure 1). Dark brown rhizomorphs 

can be found in roots and soil. The presence of fruiting bodies is sporadic in the vineyard 

and could occur exclusively in autumn and after several years of infection [20].  

 

Figure 1. Underground symptoms of Armillaria root rot in grapevine. Panel (a) shows the rotting 

wood and whitish mycelium in the subcortical area of the collar; panel (b) shows the fan mycelium 

in a detached fragment of collar cortex. Photo from the author, Mezzolombardo, TN, 24-08-2019.  

1.2. Foliar Symptoms 

While the observation of plant collars could be sufficient to obtain an accurate diag-

nosis [18], on the other hand, the disease is not easily ascribed from foliar symptoms them-

selves due to their unspecificity. Additionally, foliar symptoms become visible when the 

diseased have reached an advanced stage and the host has been compromised [14]. Ac-

cording to Baumgartner et al. [14], foliar symptoms do not appear until one-half to three-

quarters of the main host root is colonized by Armillaria mellea. Aboveground Armillaria 

symptoms in grapevines include lower plant vigor and low fruit production with a gen-

erally suffering appearance, a higher number of lateral shoots, dwarf, and wilting leaves, 

and stunted and not lignified shoots [14,18,20].  
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1.3. Disease Diagnosis  

Since there are no effective plant protection products on the market to control the 

pathogen [7], disease assessment is crucial for pest management. In fact, an accurate diag-

nosis in the field will improve the efficiency of prophylactic methods [5,21], such as the 

prompt elimination of infected plants, root residual removal, crop rotations, and the use 

of less susceptible rootstocks [16]. Traditionally, the disease damage assessment was esti-

mated using a visual approach, relying upon direct observation in the vineyard. However, 

this method is time consuming, labor intensive, and costly for disease monitoring in large-

scale farming. Consequently, there is a need to develop new approaches that can enhance 

or supplement traditional techniques. Additionally, early disease detection would in-

crease the effectiveness of preventive measures typically used to face the pathogen. This 

study aims to investigate the potential of an alternative and non-destructive method to 

detect root rot disease in grapevines early. 

1.4. The Potential of Hyperspectral Sensors 

Hyperspectral technology may represent a valuable alternative to traditional disease 

assessment and has proven to be a promising tool for disease diagnosis [22]. The use of 

spectral sensors for crop disease assessment started many decades ago. In the early 1980s, 

Toler et al. [23] used aerial color infrared photography to evaluate root rot disease of cot-

ton and wheat stem rust. Reflectance data turned out to be capable of detecting pathogen-

induced biophysical-specific changes in the plant leaf and canopy [24]. Since then, how-

ever, remote sensing technologies have significantly progressed, and, in 2020, the possi-

bility to automatically classify cotton root rot disease based on unmanned aerial vehicles 

(UAVs) was reported for the first time [25]. Modern hyperspectral imaging sensors with 

super spatial, spectral, and radiometric resolutions offer enhanced capabilities to detect 

and map disease symptoms on a large scale. These sensors capture reflectance character-

istics of the target materials and the reflected light recorded with a high spectral and spa-

tial resolution [26]. The recent advances in hyperspectral imaging sensors are expected to 

improve disease detection, because they allow a pixel-wise attribution of disease-specific 

symptoms and healthy tissue [27]. In this context, different spectral methods used to eval-

uate the vegetation status both quantitatively and qualitatively and vegetation indices 

(VIs) are among the most common [26]. 

Several recent studies, using different sensors, have confirmed the potential of hy-

perspectral data to detect plant pathologies in a reliable manner in various pathosystems 

associated with grapevines, such as leafroll-associated virus-3 [22,28,29], grapevine trunk 

disease [30–32], Flavescence dorèe [33–35], and powdery mildew [36]. However, to date, 

there are no available data concerning grapevine root rot disease identification through 

hyperspectral images, thus making this work the pioneer. 

The hyperspectral imaging sensor Specim IQ that we used in our study has a wide 

variety of applications in remote sensing and precision agriculture. This sensor is used to 

study, in a non-invasive manner, the physiology, architecture, and biochemistry of crop 

plants or natural vegetation in different environmental conditions and on different scales. 

For instance, it was implemented for stress detection in plant phenotyping processes and 

in plant pigment composition studies. The camera can be considered a novel valuable tool 

for hyperspectral imaging use in the context of plant research and phenotyping strategies 

[26]. In a recent publication, the sensor was used to detect a common root rot pathogen 

(Bipolaris sorokiniana) affecting the seedlings of wheat [37]. Analogously, Barreto et al. [38] 

used this sensor for measuring the root rot disease incidence in celery leaves caused by 

Rhizoctonia solani.  

In this study, we analyzed the leaf level reflectance of grapevine cv. Teroldego Rotal-

iano from diseased, healthy, and asymptomatic plants to understand whether there are 

characteristic spectral changes, across the visible and near-infrared (NIR) domains, asso-

ciated with the infection. We assumed that leaf reflectance provides relevant information 
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to identify Armillaria infections in grapevines even though foliar symptoms are not yet 

visible. 

2. Materials and Methods 

2.1. Study Site 

The vineyard object of study is located in the Piana Rotaliana on the northeast side 

of Italy (Figure 2). The Piana Rotaliana is a winegrowing region where Armillaria mellea 

has been a grave problem for several years [15]. The surface is predominantly cultivated 

with the native red grape variety named Teroldego Rotaliano (about 2000 ha). The soil is 

characterized by a good water drainage capacity [20], and it is classified as post-glacial 

alpine [39] formed in the Pleistocene age by deposits from glaciers, landslides, rock glaci-

ers, and alluvial debris, with a sandy and gravelly texture.  

The selected vineyard is located on the northeast of Piana Rotaliana (46°13’36’’N, 

11°04’39’’E) at 250 m a.s.l., and it was planted in 2005 with the native grape variety 

Teroldego Rotaliano. The vines were grafted into Teleki 5C rootstock, while the training 

system was the double pergola. The vine spacing was 5 m × 0.8 m, the rows were oriented 

ca. east–west. We found the typical fan mycelium attributable to Armillaria spp. in several 

plants within the vineyard and, more rarely, rhizomorphs in their collars. The vineyard 

was uprooted at the end of the season in 2019, and this allowed us to collect and thor-

oughly examine the vine roots. 

 

Figure 2. Photo of the winegrowing region Piana Rotaliana located in Trentino region in the north-

east side of Italy. From the author, Tor di Visione, (TN), 26-07-2019. 

2.2. Foliar Sampling 

We collected three fresh leaves for each plant in the first week of September 2019, 

(between 9 p.m. and 11 p.m.). Once detached, the leaves were immediately placed in a 

refrigerated thermic box at 6 °C, and then transported to the Spectra lab and stored in 

darkness at 6 °C before spectral measurements were taken [32]. They were analyzed 

within two hours after field collection. We used a controlled foliar selection process in 

order to minimize the variability among the plants and compare equal leaves. We col-

lected the leaves from the first branch of lateral shoots, generally located between the third 

and the fourth vineyard trellis wires. We exclusively harvested mature leaves with a well-

exposed upper sheet to sunlight. Moreover, we made sure they were physically intact, 

apparently healthy on both faces, and they all had approximately homogeneous sizes. 

Furthermore, plants suspected to be infected by other pathogens were previously ex-

cluded. 
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2.3. Root Sampling and Inspection 

The grapevines were uprooted in the first week of October 2019, using a mechanical 

excavator. Plant roots were visually assessed, and three portions about 7 cm–8 cm long 

with a diameter from 1.5 cm to 3.0 cm were taken as a sample for each plant. The portions 

were chosen from rot or suspected areas. Roots without any evidence of root rot were also 

collected. We thoroughly washed the samples using fresh and clean water to remove soil 

debris and disinfected them with the following procedure. They were soaked in a backer 

with a solution of 30% of a commercial preparation of sodium hypochlorite (NaOCl con-

centration 5%), 70% of sterile water, and 0.01% of Tween-20 for 5 min, while the liquid 

was kept with agitation by a magnetic anchor at room temperature. After disinfection, the 

roots were washed twice for two minutes with sterile water in a sterile backer and then 

rinsed. At this point, they were incubated in humid chambers made of transparent sterile 

nylon bags inflated by air and wet paper inside. We kept the humid chambers in closed 

boxes placed in a dark room for about a month until the final visual disease assessment 

based on mycelium growth. For the species identification, we relied on Pertot et al. [40]. 

2.4. Plant Groups 

For the plant grouping, we matched the foliar and root symptoms of each vine as in 

Figure 3. Healthy plants were those without symptoms either in canopy or roots, diseased 

plants were those with symptoms in leaves and the presence of Armillaria mellea in roots, 

and asymptomatic plants were those without any foliar symptoms but infected by the 

pathogen and in closest proximity to the diseased ones. In total, we selected 35 grapevines 

for the sample, from which 7 were healthy, 12 diseased, and 16 asymptomatic. 

 

Figure 3. Plant classification illustration: “Healthy”, with no symptoms in leaves and roots; “Dis-

eased”, symptomatic in both roots and leaves; “Asymptomatic”, with symptoms in roots but not in 

leaves. 

2.5. Hyperspectral Data Acquisition 

We used the hyperspectral camera Specim IQ (Specim, Spectral Imaging Ltd., Oulu, 

Finland) to measure leaf reflectance. Specim IQ is a portable sensor capable of acquiring 

the reflected electromagnetic radiation from an object in 204 narrow bands with a spectral 

range from 397 nm to 1003 nm, a spectral resolution of 7 nm, and a spectral sampling of 

3.5 nm. It performs the measurements by lines scanning 512 pixels and records the image 

in a square with a resolution of 512 × 512 px.  

The sensor was placed on its tripod ground base at 74 cm from the ground, and nadir 

images were collected. The measurements were conducted in a dark room, where light 

was provided by two Helder Systemlicht C12 halogen lamps (Helder Systemlicht GmbH, 

Runkel/Lahn, Germany) placed toward the leaves at 120 cm height. The camera shutter 

speed was set at 13 milliseconds per pixel, corresponding to 36 s per photo. We performed 

spectral data acquisition including three leaves in each image. The leaves were placed on 

the ground with the upper surface oriented upwards, as shown in Figure 4, and arranged 

with the Spectralon panel nearby used for white calibration. The use of the white reference 
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target ensures the calibration of the radiance images though the SPECIM camera software, 

which provides calibrated reflectance imagery as an output. We cut petioles to properly 

expand the leaves on the ground before spectral analyses.  

We analyzed the images using ENVI software (L3Harris Geospatial Solutions Inc., 

Broomfield, CO, USA). First, we extracted the leaves as the region of interest (ROI) and 

excluded background pixels. Then, we calculated the mean reflectance of the leaves, by 

averaging all pixel values included in the ROI. Noisy bands at the tails from 397 nm to 423 

nm and bands from 954 nm to 1003 nm were eliminated, minimizing the background noise 

[38]. 

 

Figure 4. Panel (a) shows a sample of an RGB photo of three leaves made with the Specim IQ camera. 

Panel (b) shows a sample of the hyperspectral image made with Specim IQ of the same leaves. 

In this study, we calculated a set of 18 VIs potentially capable of discriminating 

against infected and uninfected vines. Table 1 includes the equations and the references 

for every selected VI. Some VIs are used in the literature to detect leaf chlorophyll content 

(NDchl, REIP3, LCI, Chlred-edge, Vog2, SR750/710), while others are correlated with an-

thocyanin content (mARI, ARI) and carotenoid content (mCRIRE). Further computed VIs 

are normally used to retrieve other key vegetation parameters, e.g., plant status or bio-

mass (NDVI, GNDVI, AVI, MGVI, DVI, GDVI, OSAVI). Lastly, the index Ctr4 linked to 

plant-related stresses [41] and the water band index (WBI) linked to the water content [42] 

were computed. 

Table 1. Vegetation indices used for measuring reflectance changes between leaves from asymptomatic, diseased, and 

healthy plants of armillaria-diseased grapevines. 

Number Vegetation Index Abbreviation Equation Related to Reference 

1 
Anthocyanin Reflectance In-

dex  
ARI (����)�� − (����)�� anthocyanins [43]  

2 
Modified Anthocyanin Re-

flectance Index 
mARI ((����)�� − (����)��) × ���� anthocyanins [44]  

3 
Carotenoid Reflectance Index 

Red Edge 
mCRIRE ((����)�� − (����)��) × ���� carotenoid [44] 

4 
Normalized Difference Chlo-

rophyll 
NDchl (���� − ����)/(���� + ����) chlorophyll [45]  
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5 Red Edge Inflection Point 3 REIP3 
�((���� + ����) 2⁄ ) − �����

/(����

+ ����) 
chlorophyll [46]  

6 Leaf Chlorophyll Index LCI (���� − ����)/(���� + ����) chlorophyll [47]  

7 Vogelmann Indices 2 Vog2 (���� − ����)/(���� + ����) chlorophyll [24]  

8 Zarco-Tejada and Miller SR750/710 ����/���� chlorophyll [48]  

9 Chlorophyll Red Edge Chlred-edge (���� ����⁄ )�� chlorophyll [44]  

10 Difference Vegetation Index DVI ����/���� vegetation [49]  

11 
Normalized Difference Vege-

tation Index 
NDVI (���� − ����)/(���� + ����) vegetation [49] 

12 Misra Green Vegetation Index MGVI 
−0.386(����) − 0.530(����)
+ 0.535(����) + 0.532(����) 

vegetation [49] 

13 
Green Normalized Difference 

Vegetation Index 
GNDVI (���� − ����)/(���� + ����) vegetation [50]  

14 Ashburn Vegetation Index AVI 2.0 ×  (����) − (����) vegetation [49] 

15 
Green Difference Vegetation 

Index 
GDVI ���� − ���� vegetation [51] 

16 
Optimized Soil-Adjusted 

Vegetation Index 
OSAVI 

(1 + 0.16)
/((���� − ����) (���� + ���� + 0⁄

vegetation [48] 

17 Simple Ratio Carter4 Ctr4 ����/���� stress [52]  

18 Water Band Index WBI ����/���� water content [42] 

2.6. Statistical Analyses 

In a preliminary analysis, we calculated the standard deviation within each group of 

plants with the following Equation (1): 

� = �∑�� − ��
�

�
 (1)

where X represents the single plant reflectance, x ̅ represents the group-averaged reflec-

tance, and n represents the number of plants within the group. 

Afterward, we performed an inferential statistical analysis in three different steps as 

shown in Figure 5. In step 1, we identified the most relevant wavelengths to discriminate 

diseased, healthy, and asymptomatic groups. For this purpose, we used the same statisti-

cal approach used in Manevski et al. [53] to discriminate different types of vegetation. In 

this approach, we performed both parametric and non-parametric ANOVA (Kruskal–

Wallis) tests for every single wavelength. Afterward, we performed the respective para-

metric and non-parametric cross-validations using Tukey HSD and the Wilcox test. 

In step 2, we computed and selected the most relevant VIs to separate the groups of 

plants. In order to do so, we relied on Naidu et al. [28], and Avola et al. [54]; however, 

since not all of the data were normally distributed, we performed a non-parametric 

ANOVA test in addition to the parametric ANOVA suggested by the authors. Before per-

forming the statistical tests, we verified assumptions of the ANOVA using Shapiro and 

Bartlett tests [55,56]. Afterward, we performed the respective parametric and non-para-

metric cross-validations using Tukey HSD and the Wilcox test. 

In step 3, we tested and validated several machine learning classification paradigms 

based on a combination of the first five most discriminant variables among spectral bands 

and VIs. The variables’ discrimination power was evaluated according to the ANOVA test 
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and cross-validation results (see Table A1 and Table A2 for p-values of VIs and Table S1 

for p-values of wavelengths). We verified data assumptions using the Shapiro test and 

Box’s M test, and statistical transformations were made (Table S2). In this work, we used 

six multi-class classification methods, both linear and non-linear, in order to identify the 

most powerful method for detecting Armillaria disease. The classifiers used were the 

following: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), 

regularized discriminant analysis (RDA), simple k-nearest neighbor (SkNN), Naïve Bayes 

(NB), and recursive partitioning regression tree (RPART). The LDA classifier develops a 

linear boundary by fitting a multivariate normal density with pooled covariance estimates 

for each class [54,57–62], whereas the QDA is a non-linear model that constructs a non-

linear boundary by fitting multivariate normal densities with covariance estimates 

separated by groups [58,61]. The LDA is a simple model that works better while 

classifying small sample sizes and requires a shorter computation time, whereas the QDA 

is better suited for a complex dataset. Afterward, we operated the regularized 

discriminant analysis (RDA) with the intent to optimize the model. The RDA function 

builds a classification rule using regularized group covariance matrices that are supposed 

to be more robust against multicollinearity in the data [63,64]. The SkNN is a broadly used 

machine learning algorithm that works well on simple recognition problems in 

supervised learning [59]. It is one of the most straightforward classification algorithms, 

and it can be used for classification and regression problems, providing highly 

competitive results. In SkNN, each neighbor is assigned with a contribution weight so that 

the nearer neighbors contribute more than the distant ones to the average [65,66]. The NB 

classifier is a probabilistic statistical classification method, which is based on the 

application of the Bayes theorem (Bayesian statistics) [58,67]. The RPART is a potent and 

simple algorithm similar to the regression trees used by Breiman et al. (1984) [68], which 

differs mainly from its handling of surrogate variables. In this study, the dataset was 

randomly split into two parts, where 65% was used as a training set while the remaining 

35% as a validation set.  

2.7. Accuracy Assessment 

Accuracy assessment is an indispensable procedure to evaluate classification perfor-

mance [25]. To assess the accuracy of classifications, the confusion matrix was generated 

including the overall accuracy (OA) in Equation (2), error of omission (EO) in Equation 

(3), error of commission (EC) in Equation (4), and the kappa coefficient. Errors of omission 

refer to plants that belong to a class but are not classified into that class. For example, a 

high omission error of the diseased group means that a large number of Armillaria-infested 

plants are classified healthy. This error is termed producer’s accuracy. Errors of commis-

sion refer to plants that belong to one class but are classified into another class. For exam-

ple, a high commission error of the diseased group means that many healthy plants are 

misclassified as Armillaria-infected plants. For an accurate classification, both omission 

and commission errors should be at a low level. The accuracy metrics were calculated 

using the following formulas: 

Overall Accuracy (%) = �
(TP + TN)

(TP + TN + FP + FN)
� × 100 (2)

Omission  Error (%) = �
FN

FN + TP
� × 100 (3)

Commision  Error (%) = �
FP

FP + TP
� × 100 (4)

where TP and TN are true positive (diseased correctly detected) and true negative 

(healthy plants correctly detected), respectively. FP and FN are mean false positive 

(healthy plants detected as diseased) and false negative (diseased plants detected as 

healthy), respectively. All the statistical analyses were carried out using R studio. 
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Figure 5. Analytical framework of the implemented statistical analyses. 

3. Results 

After the incubation period, we found the Armillaria spp. mycelium in roots of both 

diseased and asymptomatic grapevines. Figure 6a shows the white Armillaria mycelium 

with its typical fan shape growing outside the root bark. Figure 6b,c illustrate the myce-

lium growing under the root bark that, in turn, is cracked by the radial expansion of the 

pathogen. 

 

Figure 6. Panel (a) shows an example of the typical mycelial fan of Armillaria spp. found on incu-

bated roots; panel (b) shows an example of the Armillaria subcortical mycelium; panel (c) shows the 

longitudinal bark breaking caused by the mycelium expansion. From the author, Edmund Mach 

Foundation. 

Once we grouped the plants into healthy, diseased, and asymptomatic groups ac-

cording to their root and foliar symptoms, we measured their leaf reflectance and then 

calculated the spectral averages for each group. The resulting mean hyperspectral signa-

tures are reported in Figure 7. Among the mean signatures, noticeable differences occur 
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in the following spectral domains: green, red edge, and NIR. The most prominent differ-

ences appear across the NIR spectral region, ranging from 750 nm to 951 nm (Figure 7c). 

Slight differences are also observed in Figure 7a in the green spectrum (from 515 to 643 

nm) and in Figure 7b in the red edge spectrum (from 693 to 720 nm). The ribbons behind 

each group represent their standard deviations.  

In order to highlight the spectral divergences between the groups, we calculated the 

mean reflectance differences of asymptomatic vs. diseased and healthy vs. diseased 

plants. The results are illustrated in Figure 8a. The difference between healthy and dis-

eased groups in the NIR domain represent from 5% to 6% of the total reflectance, and it 

increases together with the wavebands, reaching the maximum difference at 951 nm. 

Asymptomatic plants are characterized by slightly smaller peaks of reflectance near 566 

nm–705 nm compared to those of the other groups. Figure 8b shows the standard devia-

tion within each group of plants and therefore the dispersion of data. 

 

Figure 7. Mean hyperspectral signatures of the three plant groups plus their standard deviations in 

the ribbons. Panel (a) highlights the signatures in the green spectrum, panel (b) in red edge, and 

panel (c) in the NIR spectrum. 
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Figure 8. Panel (a) shows mean reflectance of healthy minus diseased plants and asymptomatic mi-

nus diseased plants; panel (b) shows the standard deviations within each group of plants. 

As a result of the parametric and non-parametric statistical tests performed on the 

dataset, Figure 9 reports the relative level of significance associated with every single spec-

tral band. Each color in the band matrix is linked with a different p-value. The spectral 

bands in green are characterized by a very high discrimination power (p-value < 0.01), the 

spectral bands in light green are characterized by a high discrimination power (p-value < 

0.025), while the spectral bands in gray are characterized by a low or absent discrimination 

power. Please find the results of the parametric ANOVA, non-parametric ANOVA, and 

their relative cross-validation tests for every single spectral band in Table S1. Overall, the 

parametric ANOVA was more sensitive than the non-parametric ANOVA test, as it de-

tected a higher number of significant and highly significant spectral bands, which is con-

sistent with the results of [53]. Nevertheless, both tests confirmed the significant differ-

ences between reflectance in several narrow bands in all three two-by-two comparisons 

(Table S1). Diseased vs. healthy plants showed highly significant differences in the NIR 

spectrum (from 750 nm to 951 nm). The most relevant wavelengths were observed at 889 

nm, 920 nm, and 902 nm, (p-value < 0.00019). Moreover, significant differences in the NIR 

region were found between asymptomatic and diseased plants with the peak at 868 nm 

(p-value = 0.0181) according to the parametric ANOVA test. Asymptomatic plants resulted 

in a significantly different red edge spectrum (693 nm–714 nm) from that of the other two 

groups with the lowest p-value at 705 nm (p-value = 0.0015). Moreover, asymptomatic 

plants compared to diseased ones showed significant differences in the green spectrum 

(516 nm–643 nm) with the lowest p-value at 566 nm (p-value = 0.0023). 
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Figure 9. Sensitivity matrix of vegetation spectral discrimination based on the type of statistical test. 

Parametric versus non-parametric analysis of variance (ANOVA) for the three spectral libraries. p-

value < 0.025 (**), p-value < 0.01 (***). 

The 18 investigated VIs produced relevant results in terms of healthy, asymptomatic, 

and diseased grapevine discrimination. Indeed, all VIs, except for WBI, produced p-values 

lower than 0.01 in the ANOVA tests. However, any of the VIs could discriminate the 

whole three groups of plants singularly, suggesting that a plant classification may only be 

possible with a combination of VIs. Results of non-parametric and parametric statistical 

analyses on VIs are reported, in Table A1 and Table A2, respectively. 

Figure 10 illustrates the VIs values in box plots. Within each index, the three plant 

groups are identified with different colors and classified with different letters according 

to the cross-validation test results. As we expected, healthy plants exhibit higher values 

in those VIs related to vegetation vigor/biomass, such as GNDVI, GDVI, MGVI, OSAVI, 

NDVI, AVI, and DVI. Moreover, VIs related to anthocyanin content, such as mCRIRE and 

mARI, exhibit higher values in healthy plants than diseased plants. At the same time, 

healthy and asymptomatic plants show significant divergences in the following VIs: Ctr4, 

REIP3, Chlred-edge, SR750.710 and Vog2. Finally, all the VIs, except for the mCRIRE and 

WBI, showed significant differences between asymptomatic and diseased plants. 
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Figure 10. Vegetation indices values in sort of box plots with their quantiles, mean, and maximum. Within each single 

vegetation index, plant groups are identified by different colors and classified with letters as a result of the Tukey (HSD) 

cross-validation test (p-value < 0.05). 

For the classification purpose, we defined three different classification models that 

are illustrated in Table 2. The first model compares healthy vs. diseased plants, the second 

model healthy vs. asymptomatic, while the third model compares healthy vs. asympto-

matic vs. healthy plants. In accordance with the results of the implemented statistical in-

vestigation, we selected, for each classification model, a combination of the five most dis-

criminant variables among VIs and spectral narrow bands. 
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Table 2. Three classification model builds based on different combinations of relevant variables. 

Model Groups Variables used 

1 Healthy vs. Diseased GDVI, MGVI, AVI, OSAVI, R920 

2 Healthy vs. Asymptomatic R705, R711, R708, R714, R717 

3 Healthy vs. Asymptomatic vs. Diseased GDVI, NDchl, MGVI, OSAVI, GNDVI 

Aiming to evaluate the performances of different classification algorithms (SkNN, 

LDA, QDA, RDA, NB, and RPART), we reported in Table 3 the relative classification met-

rics. The RPART resulted to be the most powerful algorithm in classifying healthy vs. 

diseased plants (model 1) with an OA of 95% and a kappa coefficient equal to 0.89. More-

over, the RPART showed the lowest EO of 7% meaning that Armillaria-infested plants 

were not classified as diseased, and the lowest EC of 0% meaning that none of the healthy 

plants were misclassified as diseased. On the other hand, QDA resulted to be the most 

powerful algorithm in classifying healthy vs. asymptomatic plants (model 2) with an OA 

of 80% and a kappa coefficient equal to 0.49. In the case of QDA, the EO and EC resulted 

equal to 6% and 50%, respectively. However, the classification algorithm that showed the 

best performance on average for the Armillaria root rot disease detection was the NB. The 

NB stood out from the other models due to its performance in classifying healthy vs. 

asymptomatic vs. diseased plants (model 3) with an OA of 76%, kappa coefficient of 0.56, 

and 17% and 31% for the EO and EC, respectively. Moreover, the NB algorithm reached a 

remarkable level of accuracy in all three models, with an OA of 90%, 76%, and 76%, re-

spectively, in the first, second, and third classification models. If we consider the averaged 

results among the three classification models, the NB shows the highest values of kappa 

coefficient equal to 0.56, as well as the lowest values of EO and EC equal to 17% and 31%, 

respectively. The NB is followed by the RPART algorithm in the classification accuracy 

rating, which reached, on average, an OA of 78% and a kappa coefficient of 0.55, as well 

as 17% and 31% of EO and EC, respectively.
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Table 3. Classification metrics corresponding to SkNN, LDA, QDA, RDA, NB, and RPART classifiers. 

Overall Accuracy Kappa Coefficient 

Model SkNN LDA QDA RDA NB RPART Mean Std.Dev. Model SkNN LDA QDA RDA NB RPART Mean Std.Dev. 

1 80% 90% 80% 90% 90% 95% 88% 0.061 1 0.6 0.78 0.57 0.78 0.76 0.89 0.73 0.122 

2 72% 72% 80% 76% 76% 72% 75% 0.033 2 0.29 0.23 0.49 0.31 0.31 0.34 0.33 0.087 

3 60% 57% 54% 54% 76% 68% 62% 0.088 3 0.32 0.3 0.27 0.27 0.6 0.42 0.36 0.128 

Mean 71% 73% 71% 73% 81% 78% 

  

Mean 0.40 0.44 0.44 0.45 0.56 0.55 

  

Std.Dev. 0.101 0.165 0.150 0.181 0.081 0.146 

  

Std.Dev. 0.171 0.299 0.155 0.284 0.228 0.297 

  

Error of Omission Error of Commission 

Model SkNN LDA QDA RDA NB RPART Mean Std.Dev. Model SkNN LDA QDA RDA NB RPART Mean Std.Dev. 

1 d 29% 14% 21% 14% 7% 7% 15% 0.085 1 d 0% 0% 17% 0% 6% 0% 4% 0.069 

2 a 12% 6% 6% 0% 0% 17% 7% 0.067 2 a 63% 75% 50% 75% 75% 50% 65% 0.123 

3 a 32% 42% 42% 47% 21% 5% 32% 0.160 3 a 50% 39% 33% 39% 22% 50% 39% 0.106 

3 d 30% 20% 30% 20% 20% 30% 25% 0.055 3 d 18% 26% 26% 30% 15% 11% 21% 0.074 

3 h 75% 75% 75% 75% 37% 100% 73% 0.202 3 h 3% 7% 14% 7% 37% 0% 11% 0.134 

Mean 36% 31% 35% 31% 17% 32% 

  

Mean 27% 29% 28% 30% 31% 22% 

  

Std.Dev. 0.234 0.278 0.260 0.298 0.143 0.394 

  

Std.Dev. 0.283 0.298 0.144 0.297 0.271 0.258 

  

Note: letters “a”, “d”, “h” in the first column refer to the Error of Omission and Commission of “asymptomatic”, “diseased”, and “healthy” groups, respectively. 
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4. Discussion 

The results of this study illustrate the divergences of leaf optical properties that are 

associated with the Armillaria root rot in grapevines (Figure 7), which open new perspec-

tives of investigation for future studies. We identified three different sensitive spectral 

domains (green, red edge, and NIR) among the VIS and NIR spectral range (Figure 9). 

However, we do not exclude that differences may also occur in the short-wave infrared 

domain (SWIR) [69–71], and, therefore, future investigations are encouraged. 

The NIR reflectance played a key role in the plant classification. As we can see in 

Figure 7, the NIR reflectance has an increasing pattern in all three groups starting from 

diseased, asymptomatic, up to the healthy plants. In particular, the high reflectance values 

from 750 nm up to 951 nm characterized healthy from diseased leaves, with the most rel-

evant peaks in 902 nm, 920 nm, and 889 nm. This conclusion is consistent with the litera-

ture, as it is well known that the NIR light is not absorbed by leaf pigments but mostly 

reflected and transmitted in healthy leaves [32,62,72–74]. It appears that the values in the 

NIR are much more valuable than the VIS spectral range in discriminating diseased from 

healthy plants. Similar results were also found in Zhang et al. [75] for the detection of 

tomato stress induced by the fungal pathogen Phytophthora infestans. The reflectance in 

NIR is related to the internal leaf structure, and its reflective scattering is principally due 

to the air in the leaf cell walls and to the differences in leaf cellular constituents [76–78]. 

Reflectance in the NIR-shoulder domain can also be used for assessing leaf structure, leaf 

deterioration, and senescence as shown by other authors [77]. Consequently, the reduced 

NIR reflectance observed in the canopy of root rot-affected plants may be attributed to 

leaf structural changes induced by wilting processes [79]. Moreover, the NIR response is 

often related to the leaf water content [80], despite the fact that, in our results, we did not 

observe relevant differences in the WBI index between the plant groups. This indicates 

that leaf structure deterioration associated with the Armillaria root was not associated with 

the leaf water status modifications. 

The use of VIs allowed us not only to boost the plant classification process but also 

to retrieve several leaf biophysical parameters, which, in turn, helped us to understand 

the plant health conditions and its interaction processes with the pathogen. According to 

the calculated VIs reported in Table 1, we can assume that diseased plants are character-

ized by lower vegetation vigor and leaf pigment content. Particularly, diseased plants ex-

hibited slightly different values than healthy plants in GDVI, MGVI, NDVI, AVI, DVI, 

OSAVI, and mCRIRE indices (Figure 10). These results are consistent with those of 

Nogales et al. [81], who claim that artificially inoculated grapevines with Armillaria mellea 

show significantly lower foliar chlorophyll content than healthy plants, presupposing di-

vergences in the leaf reflectance features. Moreover, since these VIs are strongly correlated 

with the vegetation biomass [48–51], and considering the reduced biomass production of 

diseased plants [15], the leaf reflectance variations may be also attributed to a change in 

the leaf biomass, leaf dry weight, and specific leaf area (SLA) in healthy vs. diseased 

plants. The OSAVI index was used in Reynolds et al. [79] and Barreto et al. [38] to discrim-

inate healthy vs. infected plants of another rot root disease caused by Rhizoctonia solani 

fungi in sugar beet [38,79]. In this pathosystem, OSAVI results were negatively correlated 

with the severity of Rhizoctonia crown root rot, suggesting the possibility of remotely de-

tecting diseased plants when at least 26–50% of the root surface has rotted. Similarly, in 

our results, OSAVI was one of the most significant VIs to separate healthy and Armillaria-

diseased vines (p-value = 0.00017), remarking the relevant role of the OSAVI index in root 

rot disease detection. 

On the other hand, the asymptomatic group stood out from the diseased one due to 

its lower reflectance in the green (near 566 nm) and red edge (near 705 nm), as well as a 

slightly higher reflectance in the infrared (near 902 nm) according to the parametric 

ANOVA test (Figure 9). Again, asymptomatic vs. diseased groups exhibited higher plant 

vigor-related index values (GDVI, MGVI, OSAVI, NDVI, AVI, GNDVI, and DVI) and 
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chlorophyll content (REIP3, Chlred-edge, NDchl, DPI, LCI, and SR750/710), as well as an-

thocyanin content (mARI, ARI), as displayed in Figure 10. 

However, the encouraging results toward an early disease detection was that the 

asymptomatic plants, apparently indistinguishable from healthy ones using a visual as-

sessment, showed significant differences in the red edge spectrum from 705 nm to 720 nm 

(Figure 9). Consequently, the VIs also computed from narrow bands within the red edge 

interval (REIP3, Chlred-edge, SR750.710) resulted in significant asymptomatic vs. healthy 

plant discrimination (Figure 10). This observation represents an essential signal, because 

asymptomatic plants represent the early stage of the disease, and the detection of them 

through hyperspectral data would allow the implementation of a decision support system 

in a modern precision agriculture system for the earliest action to contain the disease. 

Recent studies have reported that a leaf biochemical change occurs in the host after 

the Armillaria infection [81–83], which, in turn, may be involved in the modification of leaf 

optical properties [84,85]. For instance, Nogales et al. [81] observed a decrease in polyam-

ine (PA) concentration in leaves of A. mellea-infected grapevines, with a subsequent in-

crease in mycorrhized plants, while Heritage et al. [86] advocate that PA can induce leaf 

reflectance changes either in the VIS and NIR regions. The red edge domain is correlated 

with chlorophyll and nitrogen leaf content [87–89]; however, Vergara-Diaz et al. [85] ar-

gue that the red edge (around 680–780 nm) is one of the most relevant domains to retrieve 

metabolite content in Triticum durum leaves together with the NIR and SWIR regions. Fur-

thermore, specific metabolites have been associated with particular spectral bands in 

leaves affected by Erwinia amylovora [90]. As a result, we cannot exclude that the spectral 

variations, in asymptomatic and Armillaria-diseased plants, are triggered by different con-

centrations of metabolites directly involved in plant defense strategies.  

Aside from the hypotheses moved forward to address the cause of spectral diver-

gences, the implementation of machine learning paradigms achieved a remarkable accu-

racy in plant classification. On average, the validated classifiers produced a reliable level 

of OA of 88% in classifying healthy vs. Armillaria-diseased plants. As we expected, the 

accuracy decreased to 62% when we introduced a third classification group made by 

asymptomatic vines. However, it is a great encouragement that 75% of reliable accuracy 

was also obtained in the healthy vs. asymptomatic plants, as this comparison is more 

linked to an applicative approach of this technique. The NB algorithm results were the 

most performant in Armillaria disease infection recognition through hyperspectral data. 

In fact, the NB achieved an OA of 95%, 76%, and 76% for healthy vs. diseased (model 1), 

healthy vs. asymptomatic (model 2), and healthy vs. diseased vs. asymptomatic (model 

3), respectively.  

The novelty of this approach lies in the use of hyperspectral sensors and machine 

learning classification algorithms to detect root rot disease in grapevines. We believe that 

future implementation of this approach on remote sensing platforms, such as UAVs, may 

sensibly boost the method efficiency in field conditions, providing significant advantages 

to modern precision viticulture. In this regard, it would be interesting for future studies 

to investigate the latest paradigms of hyperspectral image processing and analysis [91–

93], including the hyperspectral unmixing procedure that takes into consideration various 

spectral variabilities [94]. On the other hand, the applicability of the method using reflec-

tance observations in-field needs to be verified, as leaf angle distribution-related direc-

tional effects may play a relevant role in reflectance observations. Moreover, the spectral 

differences need to be validated for the whole canopy for future practical applications of 

the methodology. Nevertheless, encouraging notice is provided by Candiago et al.[95], in 

which the authors, using a multispectral sensor from a UAV, stated that an Armillaria-

infected vineyard shows lower VIs (GNDVI, NDVI, and SAVI) compared to a healthy one. 

Moreover, a homologous conclusion was drawn by Pérez-Bueno et al. [96] for the white 

root rot of the avocado tree.  
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5. Conclusions 

In this study, we showed the effects of Armillaria root rot disease on the leaf optical 

properties of grapevines (Figure 7). We identified three different spectral regions (green, 

red edge, and NIR) that are sensitive to the disease infection (Figure 9), and we reported 

the most significant single narrow bands within each spectral domain in Table S1. Based 

on these results, simple and cheap sensors may be implemented in the future for quicker 

in situ spectral observations using wavelengths in the green (566 nm), red edge (705 nm), 

and NIR regions (902 nm). On the other hand, multispectral sensors installed on UAVs 

could be used to map the Armillaria infection, providing precious information on the dis-

ease distribution and its spreading, although the applicability of airborne imagery re-

quires future investigations. 

We also established a high discrimination potential for several VIs to separate in-

fected and non-infected plants with Armillaria root rot disease in Figure 10. The VIs that 

better ascribed the infection are the following: GDVI, MGVI, OSAVI, GNDVI, NDchl, and 

AVI. Besides this, the VIs allowed us to retrieve various vegetation parameters and spec-

ulate over the possible cause of the leaf optical changes in infected plants. We concluded 

that the spectral changes may be associated with physiological and biochemical leaf 

changes triggered by the plant–pathogen interaction processes.  

Finally, we demonstrated the possibility to detect Armillaria root rot in grapevines 

early by using hyperspectral reflectance, and further classified diseased, healthy, and 

asymptomatic plants by combining spectral narrow bands with VIs into a machine learn-

ing classification approach. Within this context, we investigated different types of classi-

fiers, including LDA, QDA, RDA, SkNN, NB, and RPART. Finally, we identified the NB 

to be the most powerful algorithm for the Armillaria disease detection in this type of ap-

proach. 

In light of the fact that no effective plant protection products are currently available 

on the market, and the only strategy to fight the disease consists in the elimination of 

infected plants, the early disease detection constitutes an essential tool for pest manage-

ment in the vineyard from which modern viticulture may sensibly benefit. This study rep-

resents the first report on the possibility of using hyperspectral data for root rot disease 

diagnosis in woody plants and can be understood as an exploratory work to access the 

feasibility of the approach. Despite the encouraging results obtained in plant classifica-

tion, there is supplementary work to be carried out for future research. For instance, fur-

ther grape varieties of both red and white need to be investigated in order to validate a 

general prediction model for the Armillaria disease detection. Thus, further research is 

planned to be carried out on artificially Armillaria-infected seedlings of different grape 

varieties growing under controlled environmental conditions in a greenhouse. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/rs13132436/s1, Table S1: Parametric ANOVA, non-parametric ANOVA, and their rela-

tive cross-validation test results for single wavelengths. Table S2: Data assumption results for linear 

discriminant analysis. Video S1: High distribution of early red canopy in grapevines due to Armil-

laria root rot in Piana Rotaliana (11 October 2019). Early red canopy symptoms often appear in post-

harvesting of the red grape variety that has already been highly compromised by the pathogen. 
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Appendix A 

Table A1. Non-parametric ANOVA and its relative cross-validation results for the VIs. 

No. Index p-Value Diseased vs. Asymptomatic Healthy vs. Asymptomatic Healthy vs. Diseased 

   Cross-Validation P-adj 

1 GDVI 0.000004  0.00005  0.52294 0.00002  

2 MGVI 0.00004  0.00130  0.27417 0.00009  

3 OSAVI 0.00009  0.00016  1 0.00259  

4 NDchl 0.00011  0.00009  0.05128 0.35577 

5 mARI 0.00012  0.00004  0.87102 0.05249 

6 Ctr4 0.00016  0.00019  0.02559  0.60489 

7 Chlred-edge 0.00016  0.00018  0.03003  0.58745 

8 REIP3 0.00019  0.00045  0.00916  0.95927 

9 SR750/710 0.00020  0.00026  0.02886  0.58745 

10 GNDVI 0.00021  0.00014  0.19992 0.15410 

11 NDVI 0.00021  0.00008  0.49839 0.13671 

12 LCI 0.00023  0.00023  0.05320 0.43261 

13 AVI 0.00025  0.03044  0.09668 0.00014  

14 DVI 0.00039  0.00014  0.88900 0.11608 

15 Vog2 0.00122  0.00155  0.04942  1.00000 

16 mCRIRE 0.00219  0.05001 0.25925 0.00276  

17 ARI 0.00908  0.00451  0.98258 0.62269 

18 WBI 0.15533 0.22688 0.70442 1 

Table A2. Parametric ANOVA and its relative cross-validation results for the VIs. 

No. Index p-Value F-Value Diseased vs. Asymptomatic Healthy vs. Asymptomatic Healthy vs. Diseased 

    Cross-Validation P-adj 

1 GDVI 6.6 × 10−7  16.42 1.4 × 10−5  5.0 × 10−1 8.7 × 10−6  

2 NDchl 1.2 × 10−5  12.69 6.7 × 10−6  6.3 × 10−2 1.6 × 10−1 

3 MGVI 1.3 × 10−5  12.63 4.3 × 10−4  3.0 × 10−1 3.9 × 10−5  

4 OSAVI 1.4 × 10−5  12.50 9.6 × 10−5  7.4 × 10−1 1.7 × 10−4  

5 GNDVI 1.5 × 10−5  12.42 7.6 × 10−6  1.7 × 10−1 6.6 × 10−2 

6 NDVI 1.7 × 10−5  12.24 9.00 × 10−6  2.50 × 10−1 4.26 × 10−2  

7 LCI 1.8 × 10−5  12.17 1.0 × 10−5  7.2 × 10−2 1.7 × 10−1 

8 Ctr4 2.0 × 10−5  12.07 1.3 × 10−5  3.8 × 10−2  2.8 × 10−1 

9 REIP3 2.2 × 10−5  11.94 1.5 × 10−5  3.5 × 10−2  3.1 × 10−1 

10 Chlred.edge 2.6 × 10−5  11.71 2.0 × 10−5  3.1 × 10−2  3.6 × 10−1 

11 mARI 2.8 × 10−5  11.62 1.7 × 10−5  4.3 × 10−1 2.4 × 10−2  

12 SR750.710 3.7 × 10−5  11.30 2.8 × 10−5  3.2 × 10−2  4.0 × 10−1 

13 AVI 7.3 × 10−5  10.47 7.6 × 10−3  1.0 × 10−1 7.2 × 10−5  

14 DVI 9.1 × 10−5  10.21 5.4 × 10−5  4.4 × 10−1 4.3 × 10−2  

15 Vog2 2.7 × 10−4  8.90 2.6 × 10−4  3.9 × 10−2  6.3 × 10−1 

16 mCRIRE 2.5 × 10−3  6.35 6.5 × 10−2 1.9 × 10−1 2.1 × 10−3  

17  ARI 5.5 × 10−3  5.47 3.7 × 10−3  4.7 × 10−1 2.8 × 10−1 

18 WBI 2.8 × 10−1 1.28 3.0 × 10−1 5.0 × 10−1  9.9 × 10−1 
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