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Abstract: Armillaria genus represents one of the most common causes of chronic root rot disease in
woody plants. Prompt recognition of diseased plants is crucial to control the pathogen. However, the
current disease detection methods are limited at a field scale. Therefore, an alternative approach is
needed. In this study, we investigated the potential of hyperspectral techniques to identify fungi-
infected vs. healthy plants of Vitis vinifera. We used the hyperspectral imaging sensor Specim-IQ to
acquire leaves’ reflectance data of the Teroldego Rotaliano grapevine cultivar. We analyzed three
different groups of plants: healthy, asymptomatic, and diseased. Highly significant differences
were found in the near-infrared (NIR) spectral region with a decreasing pattern from healthy to
diseased plants attributable to the leaf mesophyll changes. Asymptomatic plants emerged from the
other groups due to a lower reflectance in the red edge spectrum (around 705 nm), ascribable to
an accumulation of secondary metabolites involved in plant defense strategies. Further significant
differences were observed in the wavelengths close to 550 nm in diseased vs. asymptomatic plants.
We evaluated several machine learning paradigms to differentiate the plant groups. The Naïve
Bayes (NB) algorithm, combined with the most discriminant variables among vegetation indices
and spectral narrow bands, provided the best results with an overall accuracy of 90% and 75% in
healthy vs. diseased and healthy vs. asymptomatic plants, respectively. To our knowledge, this
study represents the first report on the possibility of using hyperspectral data for root rot disease
diagnosis in woody plants. Although further validation studies are required, it appears that the
spectral reflectance technique, possibly implemented on unmanned aerial vehicles (UAVs), could
be a promising tool for a cost-effective, non-invasive method of Armillaria disease diagnosis and
mapping in-field, contributing to a significant step forward in precision viticulture.

Keywords: agriculture 4.0; chlorophyll; early diagnosis; fungal tree pathogens; mycology; plant
disease; plant pathology; smart viticulture; vegetation indices; wine grapes

1. Introduction

The Armillaria (Fr.: Fr.) Staude is a globally distributed and widely studied genus of
pathogenic fungus belonging to the Basidiomycota class, Agaricales order, and Tricholo-
mataceae family [1,2]. It spreads under the soil through root contact or complex structures
named rhizomorphs, which can grow relatively fast for a hundred meters and penetrate
the root bark of the hosts [3,4]. Armillaria spp. are opportunistic parasites; however, some
species, such as A. mellea (Vahl) P. Kumm., are considered the primary parasites of stressed
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trees [5] and are going to increase their damage under climate change conditions [6].
Moreover, the modern context of agricultural intensification may offer an opportunity for
Armillaria to adapt to single monocultures with a resulting disease grimness amplifica-
tion [5]. Armillaria spp. can parasitize a wide range of plant species in forests, both conifers
and broadleaves [7], and in garden trees and shrubs [8], and it can cause extensive losses in
fruit orchards, such as apples and berries [9], pears [10], peaches [11,12], and kiwifruits [13],
as well as grapevines [14–17].

1.1. Root Symptoms

The host infection normally has a chronic course, resulting in a rot collar and roots
that lead to its death after several years [5]. Roots appear dark, are easily removable from
the ground, and have a fibrous consistency [18,19]. Furthermore, it is possible to perceive a
strong scent of fresh mushrooms by smelling the roots, especially in humid conditions [20].
By scratching the collar and main roots’ bark with a small knife, it is possible to notice a
white mycelium that ends in the typical fan shape (Figure 1). Dark brown rhizomorphs can
be found in roots and soil. The presence of fruiting bodies is sporadic in the vineyard and
could occur exclusively in autumn and after several years of infection [20].

Figure 1. Underground symptoms of Armillaria root rot in grapevine. Panel (a) shows the rotting
wood and whitish mycelium in the subcortical area of the collar; panel (b) shows the fan mycelium
in a detached fragment of collar cortex. Photo from the author, Mezzolombardo, TN, 24-08-2019.

1.2. Foliar Symptoms

While the observation of plant collars could be sufficient to obtain an accurate di-
agnosis [18], on the other hand, the disease is not easily ascribed from foliar symptoms
themselves due to their unspecificity. Additionally, foliar symptoms become visible when
the diseased have reached an advanced stage and the host has been compromised [14].
According to Baumgartner et al. [14], foliar symptoms do not appear until one-half to
three-quarters of the main host root is colonized by Armillaria mellea. Aboveground Armil-
laria symptoms in grapevines include lower plant vigor and low fruit production with
a generally suffering appearance, a higher number of lateral shoots, dwarf, and wilting
leaves, and stunted and not lignified shoots [14,18,20].

1.3. Disease Diagnosis

Since there are no effective plant protection products on the market to control the
pathogen [7], disease assessment is crucial for pest management. In fact, an accurate
diagnosis in the field will improve the efficiency of prophylactic methods [5,21], such
as the prompt elimination of infected plants, root residual removal, crop rotations, and
the use of less susceptible rootstocks [16]. Traditionally, the disease damage assessment
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was estimated using a visual approach, relying upon direct observation in the vineyard.
However, this method is time consuming, labor intensive, and costly for disease monitoring
in large-scale farming. Consequently, there is a need to develop new approaches that can
enhance or supplement traditional techniques. Additionally, early disease detection would
increase the effectiveness of preventive measures typically used to face the pathogen. This
study aims to investigate the potential of an alternative and non-destructive method to
detect root rot disease in grapevines early.

1.4. The Potential of Hyperspectral Sensors

Hyperspectral technology may represent a valuable alternative to traditional disease
assessment and has proven to be a promising tool for disease diagnosis [22]. The use of
spectral sensors for crop disease assessment started many decades ago. In the early 1980s,
Toler et al. [23] used aerial color infrared photography to evaluate root rot disease of cotton
and wheat stem rust. Reflectance data turned out to be capable of detecting pathogen-
induced biophysical-specific changes in the plant leaf and canopy [24]. Since then, however,
remote sensing technologies have significantly progressed, and, in 2020, the possibility to
automatically classify cotton root rot disease based on unmanned aerial vehicles (UAVs)
was reported for the first time [25]. Modern hyperspectral imaging sensors with super
spatial, spectral, and radiometric resolutions offer enhanced capabilities to detect and
map disease symptoms on a large scale. These sensors capture reflectance characteristics
of the target materials and the reflected light recorded with a high spectral and spatial
resolution [26]. The recent advances in hyperspectral imaging sensors are expected to
improve disease detection, because they allow a pixel-wise attribution of disease-specific
symptoms and healthy tissue [27]. In this context, different spectral methods used to
evaluate the vegetation status both quantitatively and qualitatively and vegetation indices
(VIs) are among the most common [26].

Several recent studies, using different sensors, have confirmed the potential of hy-
perspectral data to detect plant pathologies in a reliable manner in various pathosystems
associated with grapevines, such as leafroll-associated virus-3 [22,28,29], grapevine trunk
disease [30–32], Flavescence dorèe [33–35], and powdery mildew [36]. However, to date,
there are no available data concerning grapevine root rot disease identification through
hyperspectral images, thus making this work the pioneer.

The hyperspectral imaging sensor Specim IQ that we used in our study has a wide
variety of applications in remote sensing and precision agriculture. This sensor is used to
study, in a non-invasive manner, the physiology, architecture, and biochemistry of crop
plants or natural vegetation in different environmental conditions and on different scales.
For instance, it was implemented for stress detection in plant phenotyping processes and
in plant pigment composition studies. The camera can be considered a novel valuable
tool for hyperspectral imaging use in the context of plant research and phenotyping
strategies [26]. In a recent publication, the sensor was used to detect a common root
rot pathogen (Bipolaris sorokiniana) affecting the seedlings of wheat [37]. Analogously,
Barreto et al. [38] used this sensor for measuring the root rot disease incidence in celery
leaves caused by Rhizoctonia solani.

In this study, we analyzed the leaf level reflectance of grapevine cv. Teroldego Rotal-
iano from diseased, healthy, and asymptomatic plants to understand whether there are
characteristic spectral changes, across the visible and near-infrared (NIR) domains, associ-
ated with the infection. We assumed that leaf reflectance provides relevant information to
identify Armillaria infections in grapevines even though foliar symptoms are not yet visible.

2. Materials and Methods
2.1. Study Site

The vineyard object of study is located in the Piana Rotaliana on the northeast side
of Italy (Figure 2). The Piana Rotaliana is a winegrowing region where Armillaria mellea
has been a grave problem for several years [15]. The surface is predominantly cultivated
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with the native red grape variety named Teroldego Rotaliano (about 2000 ha). The soil is
characterized by a good water drainage capacity [20], and it is classified as post-glacial
alpine [39] formed in the Pleistocene age by deposits from glaciers, landslides, rock glaciers,
and alluvial debris, with a sandy and gravelly texture.

Figure 2. Photo of the winegrowing region Piana Rotaliana located in Trentino region in the northeast side of Italy. From
the author, Tor di Visione, (TN), 26 July 2019.

The selected vineyard is located on the northeast of Piana Rotaliana (46◦13′36′′ N,
11◦04′39′′ E) at 250 m a.s.l., and it was planted in 2005 with the native grape variety
Teroldego Rotaliano. The vines were grafted into Teleki 5C rootstock, while the training
system was the double pergola. The vine spacing was 5 m × 0.8 m, the rows were oriented
ca. east–west. We found the typical fan mycelium attributable to Armillaria spp. in several
plants within the vineyard and, more rarely, rhizomorphs in their collars. The vineyard
was uprooted at the end of the season in 2019, and this allowed us to collect and thoroughly
examine the vine roots.

2.2. Foliar Sampling

We collected three fresh leaves for each plant in the first week of September 2019,
(between 9 p.m. and 11 p.m.). Once detached, the leaves were immediately placed in a
refrigerated thermic box at 6 ◦C, and then transported to the Spectra lab and stored in
darkness at 6 ◦C before spectral measurements were taken [32]. They were analyzed within
two hours after field collection. We used a controlled foliar selection process in order to
minimize the variability among the plants and compare equal leaves. We collected the
leaves from the first branch of lateral shoots, generally located between the third and the
fourth vineyard trellis wires. We exclusively harvested mature leaves with a well-exposed
upper sheet to sunlight. Moreover, we made sure they were physically intact, apparently
healthy on both faces, and they all had approximately homogeneous sizes. Furthermore,
plants suspected to be infected by other pathogens were previously excluded.

2.3. Root Sampling and Inspection

The grapevines were uprooted in the first week of October 2019, using a mechanical
excavator. Plant roots were visually assessed, and three portions about 7–8 cm long with
a diameter from 1.5 cm to 3.0 cm were taken as a sample for each plant. The portions
were chosen from rot or suspected areas. Roots without any evidence of root rot were
also collected. We thoroughly washed the samples using fresh and clean water to remove
soil debris and disinfected them with the following procedure. They were soaked in a
backer with a solution of 30% of a commercial preparation of sodium hypochlorite (NaOCl
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concentration 5%), 70% of sterile water, and 0.01% of Tween-20 for 5 min, while the liquid
was kept with agitation by a magnetic anchor at room temperature. After disinfection, the
roots were washed twice for two minutes with sterile water in a sterile backer and then
rinsed. At this point, they were incubated in humid chambers made of transparent sterile
nylon bags inflated by air and wet paper inside. We kept the humid chambers in closed
boxes placed in a dark room for about a month until the final visual disease assessment
based on mycelium growth. For the species identification, we relied on Pertot et al. [40].

2.4. Plant Groups

For the plant grouping, we matched the foliar and root symptoms of each vine as in
Figure 3. Healthy plants were those without symptoms either in canopy or roots, diseased
plants were those with symptoms in leaves and the presence of Armillaria mellea in roots,
and asymptomatic plants were those without any foliar symptoms but infected by the
pathogen and in closest proximity to the diseased ones. In total, we selected 35 grapevines
for the sample, from which 7 were healthy, 12 diseased, and 16 asymptomatic.

Figure 3. Plant classification illustration: “Healthy”, with no symptoms in leaves and roots; “Dis-
eased”, symptomatic in both roots and leaves; “Asymptomatic”, with symptoms in roots but not
in leaves.

2.5. Hyperspectral Data Acquisition

We used the hyperspectral camera Specim IQ (Specim, Spectral Imaging Ltd., Oulu,
Finland) to measure leaf reflectance. Specim IQ is a portable sensor capable of acquiring
the reflected electromagnetic radiation from an object in 204 narrow bands with a spectral
range from 397 nm to 1003 nm, a spectral resolution of 7 nm, and a spectral sampling of
3.5 nm. It performs the measurements by lines scanning 512 pixels and records the image
in a square with a resolution of 512 × 512 px.

The sensor was placed on its tripod ground base at 74 cm from the ground, and nadir
images were collected. The measurements were conducted in a dark room, where light
was provided by two Helder Systemlicht C12 halogen lamps (Helder Systemlicht GmbH,
Runkel/Lahn, Germany) placed toward the leaves at 120 cm height. The camera shutter
speed was set at 13 milliseconds per pixel, corresponding to 36 s per photo. We performed
spectral data acquisition including three leaves in each image. The leaves were placed on
the ground with the upper surface oriented upwards, as shown in Figure 4, and arranged
with the Spectralon panel nearby used for white calibration. The use of the white reference
target ensures the calibration of the radiance images though the SPECIM camera software,
which provides calibrated reflectance imagery as an output. We cut petioles to properly
expand the leaves on the ground before spectral analyses.
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Figure 4. Panel (a) shows a sample of an RGB photo of three leaves made with the Specim IQ camera.
Panel (b) shows a sample of the hyperspectral image made with Specim IQ of the same leaves.

We analyzed the images using ENVI software (L3Harris Geospatial Solutions Inc.,
Broomfield, CO, USA). First, we extracted the leaves as the region of interest (ROI) and
excluded background pixels. Then, we calculated the mean reflectance of the leaves, by
averaging all pixel values included in the ROI. Noisy bands at the tails from 397 nm to
423 nm and bands from 954 nm to 1003 nm were eliminated, minimizing the background
noise [38].

In this study, we calculated a set of 18 VIs potentially capable of discriminating
against infected and uninfected vines. Table 1 includes the equations and the references
for every selected VI. Some VIs are used in the literature to detect leaf chlorophyll content
(NDchl, REIP3, LCI, Chlred-edge, Vog2, SR750/710), while others are correlated with
anthocyanin content (mARI, ARI) and carotenoid content (mCRIRE). Further computed
VIs are normally used to retrieve other key vegetation parameters, e.g., plant status or
biomass (NDVI, GNDVI, AVI, MGVI, DVI, GDVI, OSAVI). Lastly, the index Ctr4 linked to
plant-related stresses [41] and the water band index (WBI) linked to the water content [42]
were computed.

Table 1. Vegetation indices used for measuring reflectance changes between leaves from asymptomatic, diseased, and
healthy plants of armillaria-diseased grapevines.

Number Vegetation Index Abbreviation Equation Related to Reference

1 Anthocyanin
Reflectance Index ARI (R551)

−1 − (R705)
−1 anthocyanins [43]

2 Modified Anthocyanin
Reflectance Index mARI

(
(R551)

−1 − (R710)
−1
)
× R951 anthocyanins [44]

3 Carotenoid Reflectance
Index Red Edge mCRIRE

(
(R520)

−1 − (R700)
−1
)
× R951 carotenoid [44]

4 Normalized Difference
Chlorophyll NDchl (R925 − R710)/(R925 + R710) chlorophyll [45]

5 Red Edge Inflection Point 3 REIP3 (((R665 + R783)/2)− R705)/(R740 + R705) chlorophyll [46]
6 Leaf Chlorophyll Index LCI (R850 − R710)/(R850 + R680) chlorophyll [47]
7 Vogelmann Indices 2 Vog2 (R734 − R747)/(R715 + R726) chlorophyll [24]
8 Zarco-Tejada and Miller SR750/710 R750/R710 chlorophyll [48]
9 Chlorophyll Red Edge Chlred-edge (R771/R711)

−1 chlorophyll [44]
10 Difference Vegetation Index DVI R951/R640 vegetation [49]

11 Normalized Difference
Vegetation Index NDVI (R932 − R604)/(R604 + R932) vegetation [49]

12 Misra Green
Vegetation Index MGVI −0.386(R500)− 0.530(R600) +

0.535(R800) + 0.532(R951)
vegetation [49]
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Table 1. Cont.

Number Vegetation Index Abbreviation Equation Related to Reference

13 Green Normalized
Difference Vegetation Index GNDVI (R570 − R800)/(R570 + R800) vegetation [50]

14 Ashburn Vegetation Index AVI 2.0× (R951)− (R600) vegetation [49]

15 Green Difference
Vegetation Index GDVI R566 − R902 vegetation [51]

16 Optimized Soil-Adjusted
Vegetation Index OSAVI (1 + 0.16)/((R902 − R672)/

(R902 + R672 + 0.16))
vegetation [48]

17 Simple Ratio Carter4 Ctr4 R710/R760 stress [52]

18 Water Band Index WBI R970/R902
water

content [42]

2.6. Statistical Analyses

In a preliminary analysis, we calculated the standard deviation within each group of
plants with the following Equation (1):

σ =

√
∑
(
X− X

)2

n
(1)

where X represents the single plant reflectance, X represents the group-averaged reflectance,
and n represents the number of plants within the group.

Afterward, we performed an inferential statistical analysis in three different steps as
shown in Figure 5. In step 1, we identified the most relevant wavelengths to discriminate
diseased, healthy, and asymptomatic groups. For this purpose, we used the same statistical
approach used in Manevski et al. [53] to discriminate different types of vegetation. In this
approach, we performed both parametric and non-parametric ANOVA (Kruskal–Wallis)
tests for every single wavelength. Afterward, we performed the respective parametric and
non-parametric cross-validations using Tukey HSD and the Wilcox test.

In step 2, we computed and selected the most relevant VIs to separate the groups of
plants. In order to do so, we relied on Naidu et al. [28], and Avola et al. [54]; however, since
not all of the data were normally distributed, we performed a non-parametric ANOVA
test in addition to the parametric ANOVA suggested by the authors. Before performing
the statistical tests, we verified assumptions of the ANOVA using Shapiro and Bartlett
tests [55,56]. Afterward, we performed the respective parametric and non-parametric
cross-validations using Tukey HSD and the Wilcox test.

In step 3, we tested and validated several machine learning classification paradigms
based on a combination of the first five most discriminant variables among spectral bands
and VIs. The variables’ discrimination power was evaluated according to the ANOVA
test and cross-validation results (see Tables A1 and A2 for p-values of VIs and Table S1
for p-values of wavelengths). We verified data assumptions using the Shapiro test and
Box’s M test, and statistical transformations were made (Table S2). In this work, we used
six multi-class classification methods, both linear and non-linear, in order to identify the
most powerful method for detecting Armillaria disease. The classifiers used were the
following: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),
regularized discriminant analysis (RDA), simple k-nearest neighbor (SkNN), Naïve Bayes
(NB), and recursive partitioning regression tree (RPART). The LDA classifier develops a
linear boundary by fitting a multivariate normal density with pooled covariance estimates
for each class [54,57–62], whereas the QDA is a non-linear model that constructs a non-linear
boundary by fitting multivariate normal densities with covariance estimates separated
by groups [58,61]. The LDA is a simple model that works better while classifying small
sample sizes and requires a shorter computation time, whereas the QDA is better suited
for a complex dataset. Afterward, we operated the regularized discriminant analysis
(RDA) with the intent to optimize the model. The RDA function builds a classification
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rule using regularized group covariance matrices that are supposed to be more robust
against multicollinearity in the data [63,64]. The SkNN is a broadly used machine learning
algorithm that works well on simple recognition problems in supervised learning [59].
It is one of the most straightforward classification algorithms, and it can be used for
classification and regression problems, providing highly competitive results. In SkNN, each
neighbor is assigned with a contribution weight so that the nearer neighbors contribute
more than the distant ones to the average [65,66]. The NB classifier is a probabilistic
statistical classification method, which is based on the application of the Bayes theorem
(Bayesian statistics) [58,67]. The RPART is a potent and simple algorithm similar to the
regression trees used by Breiman et al. (1984) [68], which differs mainly from its handling
of surrogate variables. In this study, the dataset was randomly split into two parts, where
65% was used as a training set while the remaining 35% as a validation set.

Figure 5. Analytical framework of the implemented statistical analyses.

2.7. Accuracy Assessment

Accuracy assessment is an indispensable procedure to evaluate classification perfor-
mance [25]. To assess the accuracy of classifications, the confusion matrix was generated
including the overall accuracy (OA) in Equation (2), error of omission (EO) in Equation (3),
error of commission (EC) in Equation (4), and the kappa coefficient. Errors of omission
refer to plants that belong to a class but are not classified into that class. For example, a
high omission error of the diseased group means that a large number of Armillaria-infested
plants are classified healthy. This error is termed producer’s accuracy. Errors of commission
refer to plants that belong to one class but are classified into another class. For example,
a high commission error of the diseased group means that many healthy plants are mis-
classified as Armillaria-infected plants. For an accurate classification, both omission and
commission errors should be at a low level. The accuracy metrics were calculated using
the following formulas:

Overall Accuracy (%) =

[
(TP + TN)

(TP + TN + FP + FN)

]
× 100 (2)
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Omission Error (%) =

[
FN

FN + TP

]
× 100 (3)

Commision Error (%) =

[
FP

FP + TP

]
× 100 (4)

where TP and TN are true positive (diseased correctly detected) and true negative (healthy
plants correctly detected), respectively. FP and FN are mean false positive (healthy plants
detected as diseased) and false negative (diseased plants detected as healthy), respectively.
All the statistical analyses were carried out using R studio.

3. Results

After the incubation period, we found the Armillaria spp. mycelium in roots of both
diseased and asymptomatic grapevines. Figure 6a shows the white Armillaria mycelium
with its typical fan shape growing outside the root bark. Figure 6b,c illustrate the mycelium
growing under the root bark that, in turn, is cracked by the radial expansion of the pathogen.

Figure 6. Panel (a) shows an example of the typical mycelial fan of Armillaria spp. found on
incubated roots; panel (b) shows an example of the Armillaria subcortical mycelium; panel (c) shows
the longitudinal bark breaking caused by the mycelium expansion. From the author, Edmund
Mach Foundation.

Once we grouped the plants into healthy, diseased, and asymptomatic groups ac-
cording to their root and foliar symptoms, we measured their leaf reflectance and then
calculated the spectral averages for each group. The resulting mean hyperspectral signa-
tures are reported in Figure 7. Among the mean signatures, noticeable differences occur in
the following spectral domains: green, red edge, and NIR. The most prominent differences
appear across the NIR spectral region, ranging from 750 nm to 951 nm (Figure 7c). Slight
differences are also observed in Figure 7a in the green spectrum (from 515 to 643 nm) and
in Figure 7b in the red edge spectrum (from 693 to 720 nm). The ribbons behind each group
represent their standard deviations.

In order to highlight the spectral divergences between the groups, we calculated the
mean reflectance differences of asymptomatic vs. diseased and healthy vs. diseased plants.
The results are illustrated in Figure 8a. The difference between healthy and diseased groups
in the NIR domain represent from 5% to 6% of the total reflectance, and it increases together
with the wavebands, reaching the maximum difference at 951 nm. Asymptomatic plants
are characterized by slightly smaller peaks of reflectance near 566 nm–705 nm compared to
those of the other groups. Figure 8b shows the standard deviation within each group of
plants and therefore the dispersion of data.
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Figure 7. Mean hyperspectral signatures of the three plant groups plus their standard deviations in the ribbons. Panel (a)
highlights the signatures in the green spectrum, panel (b) in red edge, and panel (c) in the NIR spectrum.

Figure 8. Panel (a) shows mean reflectance of healthy minus diseased plants and asymptomatic minus diseased plants;
panel (b) shows the standard deviations within each group of plants.

As a result of the parametric and non-parametric statistical tests performed on the dataset,
Figure 9 reports the relative level of significance associated with every single spectral band.
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Each color in the band matrix is linked with a different p-value. The spectral bands in green are
characterized by a very high discrimination power (p-value < 0.01), the spectral bands in light
green are characterized by a high discrimination power (p-value < 0.025), while the spectral
bands in gray are characterized by a low or absent discrimination power. Please find the
results of the parametric ANOVA, non-parametric ANOVA, and their relative cross-validation
tests for every single spectral band in Table S1. Overall, the parametric ANOVA was more
sensitive than the non-parametric ANOVA test, as it detected a higher number of significant
and highly significant spectral bands, which is consistent with the results of [53]. Nevertheless,
both tests confirmed the significant differences between reflectance in several narrow bands
in all three two-by-two comparisons (Table S1). Diseased vs. healthy plants showed highly
significant differences in the NIR spectrum (from 750 nm to 951 nm). The most relevant
wavelengths were observed at 889 nm, 920 nm, and 902 nm, (p-value < 0.00019). Moreover,
significant differences in the NIR region were found between asymptomatic and diseased
plants with the peak at 868 nm (p-value = 0.0181) according to the parametric ANOVA test.
Asymptomatic plants resulted in a significantly different red edge spectrum (693 nm–714 nm)
from that of the other two groups with the lowest p-value at 705 nm (p-value = 0.0015).
Moreover, asymptomatic plants compared to diseased ones showed significant differences in
the green spectrum (516 nm–643 nm) with the lowest p-value at 566 nm (p-value = 0.0023).

Figure 9. Sensitivity matrix of vegetation spectral discrimination based on the type of statistical test. Parametric versus
non-parametric analysis of variance (ANOVA) for the three spectral libraries. p-value < 0.025 (**), p-value < 0.01 (***).

The 18 investigated VIs produced relevant results in terms of healthy, asymptomatic,
and diseased grapevine discrimination. Indeed, all VIs, except for WBI, produced p-values
lower than 0.01 in the ANOVA tests. However, any of the VIs could discriminate the whole
three groups of plants singularly, suggesting that a plant classification may only be possible
with a combination of VIs. Results of non-parametric and parametric statistical analyses on
VIs are reported, in Tables A1 and A2, respectively.

Figure 10 illustrates the VIs values in box plots. Within each index, the three plant
groups are identified with different colors and classified with different letters according
to the cross-validation test results. As we expected, healthy plants exhibit higher values
in those VIs related to vegetation vigor/biomass, such as GNDVI, GDVI, MGVI, OSAVI,
NDVI, AVI, and DVI. Moreover, VIs related to anthocyanin content, such as mCRIRE and
mARI, exhibit higher values in healthy plants than diseased plants. At the same time,
healthy and asymptomatic plants show significant divergences in the following VIs: Ctr4,
REIP3, Chlred-edge, SR750.710 and Vog2. Finally, all the VIs, except for the mCRIRE and
WBI, showed significant differences between asymptomatic and diseased plants.
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Figure 10. Vegetation indices values in sort of box plots with their quantiles, mean, and maximum. Within each single
vegetation index, plant groups are identified by different colors and classified with letters as a result of the Tukey (HSD)
cross-validation test (p-value < 0.05).

For the classification purpose, we defined three different classification models that
are illustrated in Table 2. The first model compares healthy vs. diseased plants, the
second model healthy vs. asymptomatic, while the third model compares healthy vs.
asymptomatic vs. healthy plants. In accordance with the results of the implemented
statistical investigation, we selected, for each classification model, a combination of the five
most discriminant variables among VIs and spectral narrow bands.
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Table 2. Three classification model builds based on different combinations of relevant variables.

Model Groups Variables Used

1 Healthy vs. Diseased GDVI, MGVI, AVI, OSAVI, R920

2 Healthy vs. Asymptomatic R705, R711, R708, R714, R717

3 Healthy vs. Asymptomatic vs. Diseased GDVI, NDchl, MGVI, OSAVI, GNDVI

Aiming to evaluate the performances of different classification algorithms (SkNN,
LDA, QDA, RDA, NB, and RPART), we reported in Table 3 the relative classification
metrics. The RPART resulted to be the most powerful algorithm in classifying healthy
vs. diseased plants (model 1) with an OA of 95% and a kappa coefficient equal to 0.89.
Moreover, the RPART showed the lowest EO of 7% meaning that Armillaria-infested plants
were not classified as diseased, and the lowest EC of 0% meaning that none of the healthy
plants were misclassified as diseased. On the other hand, QDA resulted to be the most
powerful algorithm in classifying healthy vs. asymptomatic plants (model 2) with an OA
of 80% and a kappa coefficient equal to 0.49. In the case of QDA, the EO and EC resulted
equal to 6% and 50%, respectively. However, the classification algorithm that showed
the best performance on average for the Armillaria root rot disease detection was the NB.
The NB stood out from the other models due to its performance in classifying healthy
vs. asymptomatic vs. diseased plants (model 3) with an OA of 76%, kappa coefficient
of 0.56, and 17% and 31% for the EO and EC, respectively. Moreover, the NB algorithm
reached a remarkable level of accuracy in all three models, with an OA of 90%, 76%, and
76%, respectively, in the first, second, and third classification models. If we consider the
averaged results among the three classification models, the NB shows the highest values
of kappa coefficient equal to 0.56, as well as the lowest values of EO and EC equal to 17%
and 31%, respectively. The NB is followed by the RPART algorithm in the classification
accuracy rating, which reached, on average, an OA of 78% and a kappa coefficient of 0.55,
as well as 17% and 31% of EO and EC, respectively.
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Table 3. Classification metrics corresponding to SkNN, LDA, QDA, RDA, NB, and RPART classifiers.

Overall Accuracy Kappa Coefficient

Model SkNN LDA QDA RDA NB RPART Mean Std.Dev. Model SkNN LDA QDA RDA NB RPART Mean Std.Dev.

1 80% 90% 80% 90% 90% 95% 88% 0.061 1 0.6 0.78 0.57 0.78 0.76 0.89 0.73 0.122

2 72% 72% 80% 76% 76% 72% 75% 0.033 2 0.29 0.23 0.49 0.31 0.31 0.34 0.33 0.087

3 60% 57% 54% 54% 76% 68% 62% 0.088 3 0.32 0.3 0.27 0.27 0.6 0.42 0.36 0.128

Mean 71% 73% 71% 73% 81% 78% Mean 0.40 0.44 0.44 0.45 0.56 0.55

Std.Dev. 0.101 0.165 0.150 0.181 0.081 0.146 Std.Dev. 0.171 0.299 0.155 0.284 0.228 0.297

Error of Omission Error of Commission

Model SkNN LDA QDA RDA NB RPART Mean Std.Dev. Model SkNN LDA QDA RDA NB RPART Mean Std.Dev.

1 d 29% 14% 21% 14% 7% 7% 15% 0.085 1 d 0% 0% 17% 0% 6% 0% 4% 0.069

2 a 12% 6% 6% 0% 0% 17% 7% 0.067 2 a 63% 75% 50% 75% 75% 50% 65% 0.123

3 a 32% 42% 42% 47% 21% 5% 32% 0.160 3 a 50% 39% 33% 39% 22% 50% 39% 0.106

3 d 30% 20% 30% 20% 20% 30% 25% 0.055 3 d 18% 26% 26% 30% 15% 11% 21% 0.074

3 h 75% 75% 75% 75% 37% 100% 73% 0.202 3 h 3% 7% 14% 7% 37% 0% 11% 0.134

Mean 36% 31% 35% 31% 17% 32% Mean 27% 29% 28% 30% 31% 22%

Std.Dev. 0.234 0.278 0.260 0.298 0.143 0.394 Std.Dev. 0.283 0.298 0.144 0.297 0.271 0.258

Note: letters “a”, “d”, “h” in the first column refer to the Error of Omission and Commission of “asymptomatic”, “diseased”, and “healthy” groups, respectively.
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4. Discussion

The results of this study illustrate the divergences of leaf optical properties that
are associated with the Armillaria root rot in grapevines (Figure 7), which open new
perspectives of investigation for future studies. We identified three different sensitive
spectral domains (green, red edge, and NIR) among the VIS and NIR spectral range
(Figure 9). However, we do not exclude that differences may also occur in the short-wave
infrared domain (SWIR) [69–71], and, therefore, future investigations are encouraged.

The NIR reflectance played a key role in the plant classification. As we can see in
Figure 7, the NIR reflectance has an increasing pattern in all three groups starting from
diseased, asymptomatic, up to the healthy plants. In particular, the high reflectance values
from 750 nm up to 951 nm characterized healthy from diseased leaves, with the most
relevant peaks in 902 nm, 920 nm, and 889 nm. This conclusion is consistent with the
literature, as it is well known that the NIR light is not absorbed by leaf pigments but mostly
reflected and transmitted in healthy leaves [32,62,72–74]. It appears that the values in the
NIR are much more valuable than the VIS spectral range in discriminating diseased from
healthy plants. Similar results were also found in Zhang et al. [75] for the detection of
tomato stress induced by the fungal pathogen Phytophthora infestans. The reflectance in
NIR is related to the internal leaf structure, and its reflective scattering is principally due
to the air in the leaf cell walls and to the differences in leaf cellular constituents [76–78].
Reflectance in the NIR-shoulder domain can also be used for assessing leaf structure, leaf
deterioration, and senescence as shown by other authors [77]. Consequently, the reduced
NIR reflectance observed in the canopy of root rot-affected plants may be attributed to
leaf structural changes induced by wilting processes [79]. Moreover, the NIR response is
often related to the leaf water content [80], despite the fact that, in our results, we did not
observe relevant differences in the WBI index between the plant groups. This indicates that
leaf structure deterioration associated with the Armillaria root was not associated with the
leaf water status modifications.

The use of VIs allowed us not only to boost the plant classification process but also to
retrieve several leaf biophysical parameters, which, in turn, helped us to understand the
plant health conditions and its interaction processes with the pathogen. According to the
calculated VIs reported in Table 1, we can assume that diseased plants are characterized by
lower vegetation vigor and leaf pigment content. Particularly, diseased plants exhibited
slightly different values than healthy plants in GDVI, MGVI, NDVI, AVI, DVI, OSAVI, and
mCRIRE indices (Figure 10). These results are consistent with those of Nogales et al. [81],
who claim that artificially inoculated grapevines with Armillaria mellea show significantly
lower foliar chlorophyll content than healthy plants, presupposing divergences in the leaf
reflectance features. Moreover, since these VIs are strongly correlated with the vegetation
biomass [48–51], and considering the reduced biomass production of diseased plants [15],
the leaf reflectance variations may be also attributed to a change in the leaf biomass, leaf
dry weight, and specific leaf area (SLA) in healthy vs. diseased plants. The OSAVI index
was used in Reynolds et al. [79] and Barreto et al. [38] to discriminate healthy vs. infected
plants of another rot root disease caused by Rhizoctonia solani fungi in sugar beet [38,79]. In
this pathosystem, OSAVI results were negatively correlated with the severity of Rhizoctonia
crown root rot, suggesting the possibility of remotely detecting diseased plants when at
least 26–50% of the root surface has rotted. Similarly, in our results, OSAVI was one of the
most significant VIs to separate healthy and Armillaria-diseased vines (p-value = 0.00017),
remarking the relevant role of the OSAVI index in root rot disease detection.

On the other hand, the asymptomatic group stood out from the diseased one due to its
lower reflectance in the green (near 566 nm) and red edge (near 705 nm), as well as a slightly
higher reflectance in the infrared (near 902 nm) according to the parametric ANOVA test
(Figure 9). Again, asymptomatic vs. diseased groups exhibited higher plant vigor-related
index values (GDVI, MGVI, OSAVI, NDVI, AVI, GNDVI, and DVI) and chlorophyll content
(REIP3, Chlred-edge, NDchl, DPI, LCI, and SR750/710), as well as anthocyanin content
(mARI, ARI), as displayed in Figure 10.
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However, the encouraging results toward an early disease detection was that the
asymptomatic plants, apparently indistinguishable from healthy ones using a visual as-
sessment, showed significant differences in the red edge spectrum from 705 nm to 720 nm
(Figure 9). Consequently, the VIs also computed from narrow bands within the red edge
interval (REIP3, Chlred-edge, SR750.710) resulted in significant asymptomatic vs. healthy
plant discrimination (Figure 10). This observation represents an essential signal, because
asymptomatic plants represent the early stage of the disease, and the detection of them
through hyperspectral data would allow the implementation of a decision support system
in a modern precision agriculture system for the earliest action to contain the disease.

Recent studies have reported that a leaf biochemical change occurs in the host after
the Armillaria infection [81–83], which, in turn, may be involved in the modification of
leaf optical properties [84,85]. For instance, Nogales et al. [81] observed a decrease in
polyamine (PA) concentration in leaves of A. mellea-infected grapevines, with a subsequent
increase in mycorrhized plants, while Heritage et al. [86] advocate that PA can induce leaf
reflectance changes either in the VIS and NIR regions. The red edge domain is correlated
with chlorophyll and nitrogen leaf content [87–89]; however, Vergara-Diaz et al. [85] argue
that the red edge (around 680–780 nm) is one of the most relevant domains to retrieve
metabolite content in Triticum durum leaves together with the NIR and SWIR regions.
Furthermore, specific metabolites have been associated with particular spectral bands in
leaves affected by Erwinia amylovora [90]. As a result, we cannot exclude that the spectral
variations, in asymptomatic and Armillaria-diseased plants, are triggered by different
concentrations of metabolites directly involved in plant defense strategies.

Aside from the hypotheses moved forward to address the cause of spectral diver-
gences, the implementation of machine learning paradigms achieved a remarkable accuracy
in plant classification. On average, the validated classifiers produced a reliable level of OA
of 88% in classifying healthy vs. Armillaria-diseased plants. As we expected, the accuracy
decreased to 62% when we introduced a third classification group made by asymptomatic
vines. However, it is a great encouragement that 75% of reliable accuracy was also obtained
in the healthy vs. asymptomatic plants, as this comparison is more linked to an applicative
approach of this technique. The NB algorithm results were the most performant in Armil-
laria disease infection recognition through hyperspectral data. In fact, the NB achieved an
OA of 95%, 76%, and 76% for healthy vs. diseased (model 1), healthy vs. asymptomatic
(model 2), and healthy vs. diseased vs. asymptomatic (model 3), respectively.

The novelty of this approach lies in the use of hyperspectral sensors and machine
learning classification algorithms to detect root rot disease in grapevines. We believe that
future implementation of this approach on remote sensing platforms, such as UAVs, may
sensibly boost the method efficiency in field conditions, providing significant advantages
to modern precision viticulture. In this regard, it would be interesting for future studies to
investigate the latest paradigms of hyperspectral image processing and analysis [91–93],
including the hyperspectral unmixing procedure that takes into consideration various spec-
tral variabilities [94]. On the other hand, the applicability of the method using reflectance
observations in-field needs to be verified, as leaf angle distribution-related directional
effects may play a relevant role in reflectance observations. Moreover, the spectral dif-
ferences need to be validated for the whole canopy for future practical applications of
the methodology. Nevertheless, encouraging notice is provided by Candiago et al. [95],
in which the authors, using a multispectral sensor from a UAV, stated that an Armillaria-
infected vineyard shows lower VIs (GNDVI, NDVI, and SAVI) compared to a healthy one.
Moreover, a homologous conclusion was drawn by Pérez-Bueno et al. [96] for the white
root rot of the avocado tree.

5. Conclusions

In this study, we showed the effects of Armillaria root rot disease on the leaf optical
properties of grapevines (Figure 7). We identified three different spectral regions (green,
red edge, and NIR) that are sensitive to the disease infection (Figure 9), and we reported
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the most significant single narrow bands within each spectral domain in Table S1. Based
on these results, simple and cheap sensors may be implemented in the future for quicker in
situ spectral observations using wavelengths in the green (566 nm), red edge (705 nm), and
NIR regions (902 nm). On the other hand, multispectral sensors installed on UAVs could
be used to map the Armillaria infection, providing precious information on the disease
distribution and its spreading, although the applicability of airborne imagery requires
future investigations.

We also established a high discrimination potential for several VIs to separate infected
and non-infected plants with Armillaria root rot disease in Figure 10. The VIs that better
ascribed the infection are the following: GDVI, MGVI, OSAVI, GNDVI, NDchl, and AVI.
Besides this, the VIs allowed us to retrieve various vegetation parameters and speculate
over the possible cause of the leaf optical changes in infected plants. We concluded that
the spectral changes may be associated with physiological and biochemical leaf changes
triggered by the plant–pathogen interaction processes.

Finally, we demonstrated the possibility to detect Armillaria root rot in grapevines
early by using hyperspectral reflectance, and further classified diseased, healthy, and
asymptomatic plants by combining spectral narrow bands with VIs into a machine learning
classification approach. Within this context, we investigated different types of classifiers,
including LDA, QDA, RDA, SkNN, NB, and RPART. Finally, we identified the NB to be the
most powerful algorithm for the Armillaria disease detection in this type of approach.

In light of the fact that no effective plant protection products are currently available on
the market, and the only strategy to fight the disease consists in the elimination of infected
plants, the early disease detection constitutes an essential tool for pest management in the
vineyard from which modern viticulture may sensibly benefit. This study represents the
first report on the possibility of using hyperspectral data for root rot disease diagnosis
in woody plants and can be understood as an exploratory work to access the feasibility
of the approach. Despite the encouraging results obtained in plant classification, there
is supplementary work to be carried out for future research. For instance, further grape
varieties of both red and white need to be investigated in order to validate a general
prediction model for the Armillaria disease detection. Thus, further research is planned
to be carried out on artificially Armillaria-infected seedlings of different grape varieties
growing under controlled environmental conditions in a greenhouse.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13132436/s1, Table S1: Parametric ANOVA, non-parametric ANOVA, and their relative
cross-validation test results for single wavelengths. Table S2: Data assumption results for linear
discriminant analysis. Video S1: High distribution of early red canopy in grapevines due to Armillaria
root rot in Piana Rotaliana (11 October 2019). Early red canopy symptoms often appear in post-
harvesting of the red grape variety that has already been highly compromised by the pathogen.
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Appendix A

Table A1. Non-parametric ANOVA and its relative cross-validation results for the VIs.

No. Index p-Value Diseased vs.
Asymptomatic

Healthy vs.
Asymptomatic Healthy vs. Diseased

Cross-Validation P-adj

1 GDVI 0.000004 0.00005 0.52294 0.00002
2 MGVI 0.00004 0.00130 0.27417 0.00009
3 OSAVI 0.00009 0.00016 1 0.00259
4 NDchl 0.00011 0.00009 0.05128 0.35577
5 mARI 0.00012 0.00004 0.87102 0.05249
6 Ctr4 0.00016 0.00019 0.02559 0.60489
7 Chlred-edge 0.00016 0.00018 0.03003 0.58745
8 REIP3 0.00019 0.00045 0.00916 0.95927
9 SR750/710 0.00020 0.00026 0.02886 0.58745

10 GNDVI 0.00021 0.00014 0.19992 0.15410
11 NDVI 0.00021 0.00008 0.49839 0.13671
12 LCI 0.00023 0.00023 0.05320 0.43261
13 AVI 0.00025 0.03044 0.09668 0.00014
14 DVI 0.00039 0.00014 0.88900 0.11608
15 Vog2 0.00122 0.00155 0.04942 1.00000
16 mCRIRE 0.00219 0.05001 0.25925 0.00276
17 ARI 0.00908 0.00451 0.98258 0.62269
18 WBI 0.15533 0.22688 0.70442 1

Table A2. Parametric ANOVA and its relative cross-validation results for the VIs.

No. Index p-Value F-Value Diseased vs.
Asymptomatic

Healthy vs.
Asymptomatic

Healthy vs.
Diseased

Cross-Validation P-adj

1 GDVI 6.6 × 10−7 16.42 1.4 × 10−5 5.0 × 10−1 8.7 × 10−6

2 NDchl 1.2 × 10−5 12.69 6.7 × 10−6 6.3 × 10−2 1.6 × 10−1

3 MGVI 1.3 × 10−5 12.63 4.3 × 10−4 3.0 × 10−1 3.9 × 10−5

4 OSAVI 1.4 × 10−5 12.50 9.6 × 10−5 7.4 × 10−1 1.7 × 10−4

5 GNDVI 1.5 × 10−5 12.42 7.6 × 10−6 1.7 × 10−1 6.6 × 10−2

6 NDVI 1.7 × 10−5 12.24 9.00 × 10−6 2.50 × 10−1 4.26 × 10−2

7 LCI 1.8 × 10−5 12.17 1.0 × 10−5 7.2 × 10−2 1.7 × 10−1

8 Ctr4 2.0 × 10−5 12.07 1.3 × 10−5 3.8 × 10−2 2.8 × 10−1

9 REIP3 2.2 × 10−5 11.94 1.5 × 10−5 3.5 × 10−2 3.1 × 10−1

10 Chlred.edge 2.6 × 10−5 11.71 2.0 × 10−5 3.1 × 10−2 3.6 × 10−1

11 mARI 2.8 × 10−5 11.62 1.7 × 10−5 4.3 × 10−1 2.4 × 10−2

12 SR750.710 3.7 × 10−5 11.30 2.8 × 10−5 3.2 × 10−2 4.0 × 10−1

13 AVI 7.3 × 10−5 10.47 7.6 × 10−3 1.0 × 10−1 7.2 × 10−5

14 DVI 9.1 × 10−5 10.21 5.4 × 10−5 4.4 × 10−1 4.3 × 10−2

15 Vog2 2.7 × 10−4 8.90 2.6 × 10−4 3.9 × 10−2 6.3 × 10−1

16 mCRIRE 2.5 × 10−3 6.35 6.5 × 10−2 1.9 × 10−1 2.1 × 10−3

17 ARI 5.5 × 10−3 5.47 3.7 × 10−3 4.7 × 10−1 2.8 × 10−1

18 WBI 2.8 × 10−1 1.28 3.0 × 10−1 5.0 × 10−1 9.9 × 10−1
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