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Abstract: The inability of a farmer to plant an insured crop by the policy’s final planting date
can pose financial challenges for the grower and cause reduced production for a widely impacted
region. Prevented planting is primarily caused by excess moisture or rainfall such as the catastrophic
flooding and widespread conditions that prevented active field work in the midwestern region of
United States in 2019. While the Farm Service Agency reports the number of such “prevent plant”
acres each year at the county scale, field-scale maps of prevent plant fields—which would enable
analyses related to assessing and mitigating the impact of climate on agriculture—are not currently
available. The aim of this study is to demonstrate a method for mapping likely prevent plant fields
based on flood mapping and historical cropland maps. We focused on a study region in eastern South
Dakota and created flood maps using Landsat 8 and Sentinel 1 images from 2018 and 2019. We used
automatic threshold-based change detection using NDVI and NDWI to accentuate changes likely
caused by flooding. The NDVI change detection map showed vegetation loss in the eastern parts of
the study area while NDWI values showed increased water content, both indicating possible flooding
events. The VH polarization of Sentinel 1 was also particularly useful in identifying potential flooded
areas as the VH values for 2019 were substantially lower than those of 2018, especially in the northern
part of the study area, likely indicating standing water or reduced biomass. We combined the flood
maps from Landsat 8 and Sentinel 1 to form a complete flood likelihood map over the entire study
area. We intersected this flood map with a map of fallow pixels extracted from the Cropland Data
Layer to produce a map of predicted prevent plant acres across several counties in South Dakota.
The predicted figures were within 10% error of Farm Service Agency reports, with low errors in the
most affected counties in the state such as Beadle, Hanson, and Hand.

Keywords: Landsat 8; flood; Sentinel 1; prevent plant acres

1. Introduction
1.1. Problem Statement

Prevented planting is defined as the inability of a farmer to plant an insured crop
by the final planting date outlined in the insurance policy [1]. This is typically due to
extreme weather conditions such as excessive rainfall, hurricanes, or drought. Reports
from agricultural producers state that more than 19 million acres went unplanted in 2019,
marking the most prevent planting acres reported by the U.S. Department of Agriculture
Farm Service Agency (USDA-FSA) since 2007 [2]. The prevent planting acres in the
midwestern states were primarily due to a combination of extreme levels of rainfall coupled
with an explosive cyclogenesis (popularly termed “bomb cyclone”) that caused large
volumes of rain and snow to fall, leading to more than 4 billion USD in crop insurance
claims [3]. South Dakota had the most severe impact, with almost 4 million unplanted
acres, followed by five other midwestern states—Illinois, Ohio, Missouri, Arkansas, and
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Minnesota—each of which had more than one million unplanted acres [4]. Lower crop
yields for corn and soybeans were predicted as far back as May 2019 when only “23% of
the acres were planted in the 18 largest corn-producing states, compared to a 46% average
for the last five years” [5].

While the Farm Service Agency reports the total number of prevent plant acres at
the county scale each year [6], maps that provide information on how prevent plant acres
are spatially distributed at the field scale are not currently available. Maps of estimated
prevent plant acres could unlock studies that aim to measure and address the impact of
extreme weather events and climate on agriculture by identifying fields that were most
severely impacted by extreme events as well as enable the impact on subsequent seasons
to be tracked. Remote sensing map products for predicting prevent plant acres could
also be used to facilitate processing of timely insurance claims for affected farmers. In
addition, such maps could help to quantify the damage from flooding on crops and to
improve the accuracy of crop type maps by filtering out unplanted fields that might be
incorrectly classified. In this study, we present a method for detecting fields that were
prevented from planting due to flooding or standing water based on satellite observations.
We evaluated our remote sensing-based estimates of prevent plant acreage by comparing
to official estimates from the Farm Service Agency. We provide the Google Earth Engine
code to enable this analysis to be reproduced and used by researchers and decision-makers
for other regions of interest and future growing seasons.

1.2. Related Work

Since flooding and excess moisture are the dominant causes of prevented planting,
particularly in the Midwestern US in 2019, we used flood mapping techniques to identify
fields that might have gone unplanted due to water inundation. Floods are a common
form of natural disaster that occurs when water covers naturally dry land due to the
overtopping of riverbanks or lakes [7,8]. They are widespread natural disasters that
affect lives, infrastructure, and economies of impacted areas [9]. The 2019 flooding in the
Midwestern US began in March caused by a combination of heavy rains, bomb cyclone and
frozen winter snow affecting about 11 states and 400 counties [10]. Remote sensing plays a
crucial role in providing useful information about the extent, depth, dynamics, and impact
of flooding events due to its large area of coverage and high temporal resolution. Generally,
synthetic aperture radar (SAR) satellites are more widely used for flood mapping than
optical satellites due to the ability of SAR to capture clear images irrespective of weather
conditions or time of day [9]. Furthermore, the unique spectral signature of water under
both optical and radar imagery makes flood mapping a feasible venture. Water bodies
generally appear black or very dark in radar imagery as a result of specular scattering where
the impinging radar signal is reflected away from the sensor, making it distinguishable from
dry land [7–9,11]. Orthorectified Terrain Observation Progressive Scans (TOPSAR) images
have been stacked together before subjective thresholding methods are used to categorize
flooded and non-flooded regions [7,11]. In the case of optical images, the normalized
differential water index (NDWI) is used to detect flooded areas after converting from DN
to radiance [6]. However, modified normalized differential water index (MNDWI) was
found to be better at identifying flooded areas because open water absorbs more intense
mid infrared light than near infrared [7,11,12].

Urban flood mapping using SAR images has usually been more challenging than in
rural areas due to complicated backscattering mechanisms caused by varying building
types and heights as well as different road topologies. Li et al. [9] presented an unsuper-
vised approach using a combination of backscatter intensity and interferometric coherence
time series to differentiate different types of flooded areas under the Bayesian network
fusion framework. This synergistic approach provides more reliable information especially
in urban areas with changing landscape than either method alone [9]. Furthermore, a
plethora of normalized differential spectral indices (NDSIs) have been proposed to aid
agronomic flood detection in different scenarios using a combination of short-wave (SWIR),
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near infrared (NIR) and visible light (VIS) from MODIS. The normalized differential index
of SWIR and NIR has been proven useful to detect water presence but unfortunately it
cannot distinguish between flooded soil and plant water content [13]. It was however
concluded that the VIS/SWIR index is best for water detection in low-resolution images
where the mixed pixels problem can strongly affect results [13]. In addition, NDSIs that use
band 7 (SWIR 2) of Landsat 8 are more sensitive to water presence compared to those that
use band 6 (SWIR 1). The choice of band used will depend on the aim of water mapping.
For example, if underestimating the water presence is preferable to overestimation, band 6
will be a better option [13].

Normalized differential indices are also used for radar images. One proposed index
is the normalized differential flood index (NDFI) [8,14]. This index is based on multi-
temporal statistical analysis of two SAR images before and after an event. The NDFI is the
normalized difference of the mean of the reference (before) image and the minimum of the
stacked reference and crisis (after) image. A constant threshold of 0.7 can then be applied to
distinguish flooded areas from non-flooded areas [8]. Another SAR index is the modified
Sentinel 1A Water Index (MSWI). This index was generated by the regression analysis of
NDWI as the response/dependent variable and various SAR band math operations (VH,
VH − VV, VV × VH, etc.) as the independent variables, where VV and VH represent
the backscattering coefficients in their respective polarization [15]. The Otsu thresholding
method was then used to distinguish between the water and non-water areas [15].

Image fusion techniques using the enhanced Spatial and Temporal Adaptive Re-
flectance Fusion Model (ESTARFM) have been employed on Landsat and MODIS data to
produce synthetic flood images [12]. This fusion method has shown the ability to capture
phenological variations and detect sudden changes in areas of flooding events. The images
were then classified using an SVM classifier with a radial basis kernel function for best
results. The predicted/fused image pair of Landsat/MODIS has shown to be in strong
agreement with actual Landsat images, especially in stable areas, but less so in inundated
regions [12].

1.3. Study Objectives

The objectives of this study are to:
I. Derive a flood extent map of the study area showing the inundated regions by

applying change detection techniques on Landsat 8 and Sentinel 1 images.
II. Use the flood extent and fallow cropland maps to create a map of predicted prevent

plant acres and compare derived county-level estimates with reported figures.

2. Materials and Methods
2.1. Study Area

The study area for this project was the eastern region of South Dakota as shown
in Figure 1. This state was selected for this research because it had the highest number
of prevent plant acres with approximately four million prevent plant acres in 2019 [4].
The study area includes several counties such as Spink, Kingsbury, McCook, Beadle,
Hutchinson, and others that had over 100,000 prevent plant acres each in 2019 [6].

2.2. Data Processing

Table 1 summarizes the data products used in this study. Most of the preprocessing for
the images was already carried out by Google Earth Engine (GEE) developers, hence they
were ready for analysis. However, the Sentinel 1 images needed a further processing step
to reduce speckle noise. This processing step is called speckle filtering and helps to reduce
the salt-and-pepper noise usually associated with radar imagery [16]. This noise appears
as random small white spots in the image that reduce quality. For this project, we applied a
simple mean filter with a fixed window to the Sentinel 1 images. For the Landsat 8 images,
we created a cloud mask using the “pixel qa” band to remove the cloud-covered pixels
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from the images. The other datasets described above did not require further preprocessing.
We filtered these datasets to only use images intersecting the study area.
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Table 1. Summary of the data used.

Data Source Data Type Data Quality Data Usage

European Space
Agency (ESA) Sentinel

1 via Google
Earth Engine

GeoTIFF

High data quality as all the necessary
preprocessing has already been done. This

includes applying orbit files, radiometric and
terrain correction. The images were acquired in

2018 and 2019.
Resolution: 10 m/pixel

This dataset was used for change
detection analysis and to generate

flood extent map over the
study area.

United State
Geological Survey

(USGS) Landsat 8 OLI
via Google

Earth Engine

GeoTIFF

High data quality as all the necessary
preprocessing has already been done. This
includes radiometric and terrain correction,

atmospheric correction as well as DN to
reflectance values. The images were acquired in

2018 and 2019.
Resolution: 30 m/pixel

These images were also used for
change detection and for

computing relevant indices to aid
flood identification and impact.

Cropland data for 2019
from United States

Department
of Agriculture

GeoTIFF

Geo-referenced crop type maps derived from a
variety of satellite platforms. Crop classification

of the raster is 85–95% accurate for the most
common crop types such as corn and soybeans.

This data was released February 2020.
Resolution: 30 m/pixel

This raster image was used to
estimate the total area of

affected fields.

Crop Acreage data for
2019 [2] Excel

The information/figures presented in this table
can be deemed of average quality. According to
the source, some producers may report the same
acres twice depending on the use: either grazing

or grain.
This data was compiled in November 2019.

This table was used for
comparison with estimated

figures from the flood extent map.

Administrative
boundaries of counties
in South Dakota from
the Esri Living Atlas

Shapefile This data is of high quality and authoritative
based on the author/source.

This feature layer aided county
level estimation of prevent

plant fields.
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2.3. Potential Issues

One of the biggest issues was the amount of cloud cover in the Landsat 8 images,
likely due to the weather conditions causing the flood. Removing the cloud cover—which
was necessary for the analysis—caused holes and gaps in the images which in turn reduced
the area covered and made continuity/trends of features difficult to follow. As a result,
approximately 14% of the study area was removed. This was one of the reasons behind
selecting a larger area of study rather than a few counties. Another potential pitfall was the
type of speckle filtering applied to the Sentinel 1 images; several types of speckle filters exist
in specialized imagery applications, but none are available on GEE. Although attempts
have been made by developers in GEE community to translate some of these filters to the
GEE platform, their efficacy cannot be guaranteed. This is particularly true since speckle
filtering is typically done before terrain correction, but in GEE terrain correction has already
been done without speckle filtering. Hence, any speckle filtering done afterwards may not
necessarily result in similar image accuracy.

2.4. Workflow

As discussed earlier in the data section, we used GEE for data retrieval and analysis.
One of the key reasons for using this platform—besides providing a compact, browser-
based code development environment for data access and analysis—is to leverage its
preprocessed archives of images thereby significantly reducing the number of steps needed
to achieve results. We used ArcMap (ESRI Redlands, CA, USA) for map reporting and
publishing as GEE is limited in this regard. Steps for processing Landsat 8 images included
cloud removal, vegetation indices generation, Otsu thresholding and multi-date image
compositing. For Sentinel 1 we performed speckle filtering, Otsu thresholding, band
math and multi-date image stacking (Figure 2). We discuss these steps in detail in the
following sections.
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2.5. Landsat-8 Processing

A critical aspect of selecting Landsat 8 images is choosing the images that have the
least cloud cover yet overlap as much of the study area as possible. This issue can be
exacerbated when the event being captured or monitored is time-sensitive, further limiting
available options. Since the 2019 flood events lasted from mid-March to September [4], we
limited our search to Landsat 8 images during that time frame. We sorted the available
images based on cloud cover and only retained images with less than 30% cloud cover. We
then selected images in such a way that as much of the study area as possible was covered,
and the time difference between the reference (2018) and flood (2019) image was at most
15 months apart (see Table 2). We used the “pixel_qa” band of Landsat 8 to identify and
remove cloud pixels and other artifacts from the image, then mosaicked to join adjacent
images. The mosaicked image consisted of 3 images for each year. The source code for this
cloud mask is provided by GEE [17].
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Table 2. Landsat Surface Reflectance and Ground Range Detected Sentinel Images used for this analysis.

Image ID Platform Event Date

LANDSAT/LC08/C01/T1_SR/LC08_030028_20180428

Landsat 8

Before Flood 04/28/2018LANDSAT/LC08/C01/T1_SR/LC08_030029_20180428

LANDSAT/LC08/C01/T1_SR/LC08_030030_20180428

LANDSAT/LC08/C01/T1_SR/LC08_030028_20190602

After Flood 06/02/2019LANDSAT/LC08/C01/T1_SR/LC08_030029_20190602

LANDSAT/LC08/C01/T1_SR/LC08_030030_20190602

COPERNICUS/S1_GRD/S1B_IW_GRDH_1SDV_20180408T002936
_20180408T003005_010385_012E91_D6C5

Sentinel 1

Before Flood 04/08/2018COPERNICUS/S1_GRD/S1B_IW_GRDH_1SDV_20180408T003005
_20180408T003030_010385_012E91_D76D

COPERNICUS/S1_GRD/S1B_IW_GRDH_1SDV_20180408T003030
_20180408T003055_010385_012E91_030F

COPERNICUS/S1_GRD/S1B_IW_GRDH_1SDV_20190602T002945
_20190602T003014_016510_01F13C_4D1E

After Flood 06/02/2019COPERNICUS/S1_GRD/S1B_IW_GRDH_1SDV_20190602T003014
_20190602T003039_016510_01F13C_B19C

COPERNICUS/S1_GRD/S1B_IW_GRDH_1SDV_20190602T003039
_20190602T003104_016510_01F13C_5AA0

After mosaicking and cloud cover removal, we created a series of normalized differen-
tial indices for 2018 and 2019 Landsat 8 images. The indices that we used are defined below:

NDVI =
NIR − Red
NIR + Red

(1)

NDWI =
Green − NIR
Green + NIR

(2)

NIR represents the near infrared (Band 5) while Green and Red represents Bands 3 and 4,
respectively. We used these indices for multi-date composite image analysis in which we
assigned the reference (2018) image to the red and blue bands while we assigned the flood
image (2019) to the green band. We also created difference images for change detection by
subtracting the 2019 NDVI and NDWI images from the corresponding 2018 images. This
highlighted possible flooded areas by identifying areas of substantial NDVI and NDWI
change between the two periods.

2.6. Sentinel-1 Processing

Unlike Landsat, cloud cover has no adverse effect on Sentinel 1 image quality due
to its use of radar rather than optical wavelengths, so the major criteria used for image
selection was coverage of the study area within the same time window as the Landsat 8
images. Although there was no complete overlap between the Sentinel 1 and Landsat 8
images, the Sentinel 1 images selected covered as much of the Landsat 8 image as possible
within the study area. Two counties in South Dakota—Beadle and Hutchinson—were of
particular interest due to the high number of prevent plant acres and were covered by all
selected images.

Other criteria used to select images were to ensure the orbit pass was “ascending”
and the instrument mode was Interferometric Wide Swath (IW). An ascending orbit pass
indicates the satellite is moving from South to North along its orbit. A descending pass
could also be used as long as the same orbit pass is maintained across all the images
used. The instrument mode determines how images are acquired along the track of the
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satellite. Interferometric Wide Swath (IW) is the most common acquisition mode over
land. Sentinel 1 images in the GEE catalog come in four possible combinations of Vertically
Propagated/Vertically Received radar waves (VV), Horizontally Propagated/Horizontally
Received (HH), Vertically Propagated/Horizontally Received (VH) and Horizontally Propa-
gated/Vertically Received (HV). We used only the VH polarization since it is more sensitive
to open water and thus more pertinent to flood mapping in this study [18,19]. We did not
use local incidence angles because these values are usually the same for a fixed location
and data acquisition properties. Also, the incidence angle usually varies with distance of
the target features from the sensor rather than any inherent property of the target itself.
After filtering the available images with these criteria, we mosaicked the selected images.

Radiometric and terrain correction have already been applied to the Sentinel 1 images
in the GEE catalog but needed further processing to remove salt-and-pepper noise from
the image in a process called speckle filtering. There are no specialized image filters in
GEE, so we applied a simple mean filter using the ee.Image.focal_mean() function with a
fixed radius of 50 m and a circle kernel type. Similar to the Landsat 8 multi-date composite
image analysis, we created a multi-date composite of the Sentinel 1 images by assigning
the 2018 image to the red and blue bands and the 2019 flood image to the green band. We
also created a VH difference image for change detection by dividing the 2019 image by the
corresponding 2018 image. We used the division operation for the Sentinel 1 image instead
of subtraction like the Landsat 8 images due to the logarithmic nature of the image values.

2.7. Thresholding

We used Otsu thresholding to distinguish flooded pixels from non-flooded pixels.
Otsu thresholding provides an automatic and data-driven way of separating the two pixel
groups by minimizing the differences within each group while maximizing the difference
across the groups, similar to clustering techniques [20]. Otsu thresholding provides a way
to automatically separate target and background values in a group of pixels and eliminate
subjective thresholding which can be prone to error. We applied Otsu thresholding to both
the Landsat 8 and Sentinel 1 difference images.

2.8. Fallow Cropland Masking and Prevent Plant Area Estimation

We exported the flood extent maps generated from the Landsat 8 and Sentinel 1 images
to ArcGIS and combined them with a union operation. We used the Cropland Data Layer
for 2019 [21] to extract only the pixels categorized as “fallow/idle cropland” from the flood
map. This an essential step aimed at filtering out fields that may have been flooded but
were eventually planted. We further restricted the map to only include pixels that were
fallow in CDL 2019 but not CDL 2018 in an effort to filter out fields that have been fallow for
other reasons such as previous prevented planting or abandonment. Since the CDL is made
available by the USDA after the growing season (usually February the following year),
this step could not be used for within-season assessments. Finally, we estimated the total
prevent plant area for each county by summing the pixels using the Zonal Statistics as a
Table tool in ArcGIS. We then multiplied by cell area (30 m cell size) and converted to acres
before comparing to the reported figures from the Farm Service Agency to assess accuracy.

3. Results
3.1. Landsat 8

Figure 3 shows the NDVI values for the two years under consideration: 2018, which
represents the before or reference image, and 2019, which represents the crisis/flood image.
The lower values of NDVI observed in the eastern and central parts of the 2019 image
indicate possible flooded areas. As a result of excess cloud cover, using images from
the same observation month was not feasible. It is important to note that due to the
difference in observation months, some differences in NDVI values could also be attributed
to differences in crop growth caused by late planting in 2019 which would also coincide
with flooded areas. According to reports, planting in South Dakota was delayed by several
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weeks because of the flooding and excess moisture [22,23]. Some pixels with cloud cover,
which were removed in the processing stage, appear as white pixels in all images.
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Figure 3. The 2019 image shows lower NDVI values compared to the previous year which could be an indication of flooding.
Gaps (white pixels) in the images are due to masked clouds.

Figure 4 shows the NDWI images from each year with substantial changes observed
between 2018 and 2019. The 2019 image in Figure 4 shows an increase in NDWI for most
of the area compared to the 2018 image, which may be due to the effects of flooding.
Figure 5 shows a RapidEye image of a section of the study area showing flooded fields as
an example of the patterns likely responsible for the increase in NDWI shown in Figure 4
and the decrease in NDVI shown in Figure 3. Overall, the areas of increase in NDWI values
overlap with the areas of reduced NDVI, lending further support to the hypothesis that
these pixels were flooded or not farmable due to waterlogged soil.
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Figure 5. A June 2019 RapidEye image showing flooded fields in Letcher town of Sanborn County, South Dakota [24].

Figure 6 shows the NDVI and NDWI difference images. The red color in Figure 6 (left)
indicates areas where the NDVI value from 2018 was greater than that of 2019 (interpreted as
vegetation loss) while the green color indicates areas where 2019 NDVI values were greater
compared to 2018 (vegetation gain). This vegetation loss is likely due to the direct effects of
flooding indicating the presence of water, soggy soil, or indirect effects of flooding leading
to late crop planting or fallow fields. Conversely, the NDWI difference map (Figure 6, right)
shows areas where the NDWI values were higher in 2018 than in 2019 indicated in red
whereas parts where NDWI values were higher in 2019 are indicated in blue. Higher NDWI
values are expected in 2019 compared to 2018 in flooded areas, hence negative values can
be interpreted as possible flooded areas on this map.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 6. NDVI change detection map (left) and NDWI change detection map (right). 

We used Otsu thresholding to separate flooded and non-flooded pixels in the NDVI 
difference map. We used NDVI instead of NDWI or both indices because of the substantial 
overlap between the two difference images. The histogram of NDVI values shows a bi-
modal distribution (Figure 7) which we interpret as the boundary between two different 
groups of pixels (flooded and not flooded, which we interpret as candidates for unplanted 
and planted pixels). The Otsu method provides an automatic, data-driven way of separat-
ing the pixels by finding an ideal threshold value, hence limiting the need for subjective 
thresholding techniques. This method is particularly useful in cases where there are two 
distinct groups of pixels as in this bimodal distribution. The optimal NDVI change/differ-
ence threshold value derived by this technique was −0.243: we assumed values greater 
than this threshold to be flooded pixels and values below it to be non-flooded (Figure 8). 

 
Figure 7. Bimodal distribution of NDVI change image showing two distinct pixel groups: flooded 
and non-flooded pixels. 

Figure 6. NDVI change detection map (left) and NDWI change detection map (right).



Remote Sens. 2021, 13, 2430 10 of 18

We used Otsu thresholding to separate flooded and non-flooded pixels in the NDVI
difference map. We used NDVI instead of NDWI or both indices because of the substan-
tial overlap between the two difference images. The histogram of NDVI values shows
a bimodal distribution (Figure 7) which we interpret as the boundary between two dif-
ferent groups of pixels (flooded and not flooded, which we interpret as candidates for
unplanted and planted pixels). The Otsu method provides an automatic, data-driven
way of separating the pixels by finding an ideal threshold value, hence limiting the need
for subjective thresholding techniques. This method is particularly useful in cases where
there are two distinct groups of pixels as in this bimodal distribution. The optimal NDVI
change/difference threshold value derived by this technique was −0.243: we assumed
values greater than this threshold to be flooded pixels and values below it to be non-flooded
(Figure 8).
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3.2. Sentinel 1

Figure 9 shows the Sentinel 1 difference and multi-date composite images. As dis-
cussed in the related work section, areas with open water exhibit lower VH/VV intensities
due to specular reflection typical of smooth surfaces, causing impinging waves to be re-
flected away from the sensor. This leads to a low backscatter coefficient or dark pixel on
the radar image. This contrasts with areas of vegetation where double-bouncing or volume
scattering is prevalent with some signal reflected to the sensor, causing a bright pixel or
higher backscatter coefficient. As a result, lower backscatter values or VH intensities are
expected in the 2019 images compared to the 2018 image due to the presence of flooding.
The before-after-before (BAB) composite image (Figure 9, left) clearly shows areas in purple
where 2018 VH intensity was higher than in 2019, suggesting possible areas of flooding.
The VH difference map (Figure 9, right) also illustrates this point with higher differences
shown in red in the same locations.
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Figure 9. Before-After-Before Image (left) and VH difference map (right) highlighting similar changes across the two
time intervals.

Figure 10 shows the histogram of values in the VH difference image. Unlike that
of the NDVI difference image, this histogram shows only one major peak rather than a
bimodal distribution. Although the optimal choice of threshold in this case is less clear,
we used Otsu thresholding to automatically select a threshold separating possible flooded
and non-flooded pixels. This resulted in a threshold value of 1.037, with pixels above this
threshold assumed to have been flooded and those below it non-flooded (Figure 11).
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3.3. Prevent Plant Estimates

We combined the flood maps derived from Sentinel 1 and Landsat 8 with a union
operation, resulting in the map shown in Figure 12, indicating cropland locations where
growers were likely to have been prevented from planting due to flooding in 2019. Since
field-scale ground-truth data on flooding was not available for 2019, our evaluation of
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the flood maps was qualitative. While the flood map is an intermediate product in our
workflow, the objective of this study is to create maps of prevent plant fields, which we
were able to evaluate quantitatively by comparing to the Farm Service Agency’s reports of
county-level prevent plant acres. After aggregating our map-based estimates to the county
scale and converting to acres, we compared the resulting estimates to the prevent plant
acres reported by the Farm Service Agency for each county to assess the accuracy of the
prevent plant map predicted acres (Table 3).
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Table 3. A comparison of FSA-reported and our predicted prevent plant acres, sorted by percent
error. Only the top and bottom 5 counties are shown. See Table A1 in Appendix A for all counties.

County Predicted Prevent
Plant Acres (Fallow)

FSA Prevent
Plant Acres

Absolute
Error (Acres)

Percent Error
(%)

Top 5 Counties

Hanson 103,478 103,675 196 0.19

Jerauld 36,290 35,980 310 0.86

Spink 177,457 175,597 1860 1.06

Hand 163,839 157,550 6289 3.99

Miner 74,512 70,661 3850 5.45

Bottom 5 Counties

Sully 27,434 50,275 22,840 45.43

Campbell 5784 15,398 9613 62.44

Hughes 6702 26,639 19,936 74.84

Lyman 8840 35,906 27,066 75.38

Tripp 6138 44,041 37,902 86.06
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The highest agreement between our map and the FSA prevent plant estimates was in
Hanson, Jerauld, and Spink counties with error values ≤ 1%. Other counties such as Miner,
Douglas Faulk, Beadle and Hutchinson have error values less than 10%.

Counties such as Tripp, Lyman, Hughes, McCook, and others with very high percent
error values are partially outside of the study area, leading to an incomplete flood map
for the county, or are covered by only one of the Sentinel 1 or Landsat 8 images. Regions
covered by either the VH- or NDVI-based flood map but not both could lead to an un-
derestimation of flooding (Figure 13). To improve the estimates for these counties, we
recommend a wider study area with Landsat 8 and Sentinel 1 images that fully cover these
counties or a local and more focused county-level analysis in future work. While flooding
was the dominant reason for prevented planting in 2019, soggy or waterlogged soil due
to excess rainfall could also have prevented planting and may not have been captured by
this analysis.
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4. Discussion and Conclusions

The results from this study demonstrate the use of remote sensing techniques to aid in
the estimation of prevent plant acres. Due to the unavailability of ground truth information
about which individual fields were prevented from planting due to flooding, we relied
on the Cropland Data Layer (CDL) for 2019 to spatially confine our flood pixels to only
those that fall within pixels classified as “fallow/idle cropland” by CDL. This meant that
we removed the pixels that were classified as flooded by our map and as “cultivated” by
the CDL. These could be pixels where the flood map overestimated (false positives) or
where the cultivated land was actually flooded at the time of satellite image capture but
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was eventually planted later in the season. It is important to note that our aim was not to
create a comprehensive and detailed flood map of the study area but rather to highlight
agricultural fields that were likely to have been prevented from planting due to severe
flooding using the flood map as an intermediary product. For this reason, as well as a
lack of ground-truth data on flooding, we did not quantitatively evaluate the accuracy of
the flood maps. Flood pixels that appeared over urban centers, forests, and other land
use types not relevant to agriculture were removed from the combined Landsat 8 and
Sentinel 1 flood map (Figure 13). This was particularly helpful for SAR-based flood maps
as urban and forests provide more complex scattering mechanisms leading to the increased
appearance of false positives [25]. In addition to reducing the number of possible false
positives, this step also constrained our analysis to only the flood pixels directly relevant
to agriculture.

To evaluate the accuracy of our prevent plant map, we compared the county-scale
aggregated area that was classified as prevent plant to the 2019 crop acreage data from
Farm Service Agency (FSA). In future work, the accuracy of both the flood mapping and
prevent plant prediction could be improved by incorporating ground-truth data about
flooding and/or prevent plant fields, e.g., to inform thresholds for classifying flooded areas
or to evaluate the field-scale performance of our classification.

One potential source of error is the use of the Cropland Data Layer (CDL) to identify
pixels that were classified as both flooded by our map and as fallow/idle by the CDL.
While the CDL overall has high accuracy for midwestern states [26], land use and crop type
information generated from CDL has been shown to be problematic at times, especially
when multiyear analysis of land use is necessary [27]. Since the CDL is not available
until after the growing season and similar products are not available for most countries,
our approach could be improved in future work to support in-season mapping and use
in other countries by using in-season crop type mapping methods (e.g., [28]) instead of
the CDL or by directly detecting whether a field was fallow or planted. This would also
ensure real-time analysis when disasters occur during the growing season and help reduce
potential errors associated with late-planted fields.

While there is substantial prior work using satellite observations for crop type map-
ping or crop yield estimation (e.g., [29–34]), to our knowledge this is the first study that
aims to use remote sensing techniques for detecting fields prevented from planting due
to flooding or excess moisture. We hope to stimulate further studies that use remote
sensing techniques to characterize the effects of natural disasters and extreme weather
on agricultural production. As climatic conditions continue to be more unpredictable,
understanding the role and impact of flooding and other disasters on agriculture will be
crucial for devising adaptive measures to ensure sustainability.
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Appendix A

Table A1. A comparison of observed and predicted prevent plant acres sorted by percent error.

County Predicted Prevent
Plant Acres (Fallow)

FSA Prevent
Plant Acres

Absolute
Error

Percent
Error

Hanson 103,478 103,675 196 0.19

Jerauld 36,290 35,980 310 0.86

Spink 177,457 175,597 1860 1.06

Hand 163,839 157,550 6290 3.99

Miner 74,512 70,661 3851 5.45

Douglas 111,633 120,828 9195 7.61

Kingsbury 116,205 107,691 8514 7.91

Brule 51,466 47,596 3870 8.13

Faulk 90,858 98,935 8077 8.16

Sanborn 67,406 73,995 6588 8.90

Beadle 192,731 212,202 19,470 9.18

Aurora 74,076 67,701 6374 9.42

Hutchinson 204,524 226,362 21,838 9.65

Day 37,779 42,795 5017 11.72

Charles Mix 139,409 161,771 22,362 13.82

Davison 76,978 91,791 14,814 16.14

Gregory 29,837 35,989 6153 17.10

Marshall 47,990 61,760 13,770 22.30

Clark 47,648 62,096 14,448 23.27

Potter 44,217 59,605 15,387 25.82

Codington 17,571 24,815 7245 29.19

Hyde 37,485 53,264 15,779 29.62

McPherson 16,289 23,190 6901 29.76

Buffalo 5715 4245 1470 34.63

Bon Homme 71,305 112,381 41,076 36.55

Brown 101,530 160,335 58,805 36.68

Roberts 29,029 48,300 19,270 39.90

McCook 86,103 145,727 59,624 40.91

Walworth 9953 17,073 7119 41.70

Hamlin 23,698 41,872 18,174 43.40

Edmunds 40,275 73,547 33,272 45.24

Sully 27,434 50,275 22,840 45.43

Campbell 5784 15,398 9614 62.43

Hughes 6702 26,639 19,937 74.84

Lyman 8840 35,906 27,066 75.38

Tripp 6138 44,041 37,902 86.06
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