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Abstract: Evapotranspiration (ET) is a vital part of the hydrological cycle and the water–energy
balance. To explore the characteristics of five typical remote sensing evapotranspiration datasets and
provide guidance for algorithm development, we used reconstructed evapotranspiration (Recon) data
based on ground and GRACE satellite observations as a benchmark and evaluated five remote sensing
datasets for 592 watersheds across the continental United States. The Global Land Evaporation
Amsterdam Model (GLEAM) dataset (with bias and RMSE values of 23.18 mm/year and 106.10
mm/year, respectively), process-based land surface evapotranspiration/heat flux (P-LSH) dataset
(bias = 22.94 mm/year and RMSE = 114.44 mm/year) and the Penman–Monteith–Leuning (PML)
algorithm generated ET dataset (bias = −17.73 mm/year and RMSE = 108.97 mm/year) showed the
better performance on a yearly scale, followed by the model tree ensemble (MTE) dataset (bias = 99.45
mm/year and RMSE = 141.32 mm/year) and the moderate-resolution imaging spectroradiometer
(MODIS) dataset (bias = −106.71 mm/year and RMSE = 158.90 mm/year). The P-LSH dataset
outperformed the other four ET datasets on a seasonal scale, especially from March to August. Both
PML and MTE showed better overall accuracy and could accurately capture the spatial variability of
evapotranspiration in arid regions. The P-LSH and GLEAM products were consistent with the Recon
data in middle-value section. MODIS and MTE had larger bias and RMSE values on a yearly scale,
whereby the MODIS and MTE datasets tended to underestimate and overestimate ET values in all
the sections, respectively. In the future, the aim should be to reduce bias in the MODIS and MTE
algorithms and further improve seasonality of the ET estimation in the GLEAM algorithm, while
the estimation accuracy of the P-LSH and MODIS algorithms should be improved in arid regions.
Our analysis suggests that combining artificial intelligence algorithms or data-driven algorithms and
physical process algorithms will further improve the accuracy of ET estimation algorithms and the
quality of ET datasets, as well as enhancing their capacity to be applied in different climate regions.

Keywords: actual evapotranspiration reconstruction; water balance; remote sensing; evapotranspira-
tion evaluation

1. Introduction

Evapotranspiration (ET) usually consumes 60–70% of land precipitation [1,2] and
nearly 50% of solar radiation on a global scale [3,4]. Therefore, ET is the dominant com-
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ponent of the global water and energy cycle [5–7]. Accurate estimation of ET is crucial
for understanding hydrological and ecological processes [8,9], agricultural drought detec-
tion and mitigation, and planning of water resources [10]. ET data are also essential for
predicting extreme weather events and exploring the relationships between atmosphere,
hydrosphere, and biosphere systems [11].

In situ monitoring of ET has been conducted for centuries using a variety of meth-
ods [12], including the Bowen ratio, lysimeters, laser isotopes, and eddy covariance [12].
Although these methods can provide long-term point- or local-scale observations, they
cannot provide ET data at regional and global scales [13,14]. ET data derived from satellite
remote sensing observations at regional or global scales has become essential in the study
of hydrology and ecology because of its advantages in respect of spatial coverage [15–17].

The development of remote sensing technology since the 1970s has greatly promoted
ET models at the point scale or single vegetation types at the regional scale [18]. There
are four main methods for satellite remote sensing of ET: the statistical model, the energy
balance model, data assimilation, and the Penman–Monteith model based on surface energy
balance [19]. The statistical model played an important role in early studies of the satellite
remote sensing of ET; however, the regression relationships between ET and remote sensing
parameters are not formulated on the basis of underlying physical mechanisms [20].

The energy balance model is a remote sensing method widely used for ET estimation,
which uses latent heat flux to estimate ET as the remaining part of the energy balance
equation [21,22]. The underlying surface can be considered as a whole, or it can be divided
into single-layer or double-layer models [23]. The single-layer model ignores the internal
structure and characteristics of the underlying surface and considers the soil and vegetation
as a whole to study the surface water and energy balance and is also known as the big-leaf
model [24]. The most representative models are the surface energy balance algorithm for
land (SEBAL) [25] and the surface energy balance system (SEBS) [26]. Considering the
different surface temperatures of soil and vegetation, the sensible heat fluxes of the two are
calculated separately. Shuttleworth and Wallace [23] proposed a two-layer energy model
in 1985. The theoretical mechanism of the double-layer model is more applicable than
the single-layer model, and it can adapt to the complex underlying surface conditions.
However, the estimation of sensible heat flux has one limitation which is the energy cannot
be closed, leading to insufficient accuracy in simulation and calculation [27].

Although remote sensing data can provide land surface parameters on a large scale,
the underlying surface parameters are not obtained in the presence of clouds [28]. To obtain
a continuous spatiotemporal ET dataset, the spatial and temporal resolutions of remote
sensing data are usually disaggregated. Building the land data assimilation system with
the physical mechanism allows continuously introducing satellite remote sensing data into
the land surface model (LSM), thereby providing a new method for ET estimation [29,30].

Among the many methods of estimating ET, the Penman–Monteith formula combines
the principle of energy balance and aerodynamics on the basis of ignoring the horizontal
transmission of water vapor [31]. It has a strong physical foundation and can better
simulate ET, and it is recommended by the Food and Agriculture Organization (FAO) [32].
Penman [33] first proposed the Penman formula in 1948, while in 1965 Monteith [34]
introduced canopy resistance to characterize the influence of soil moisture and vegetation
growth on latent heat flux, as well as estimate ET of an unsaturated surface. The core of
the Penman–Monteith formula is the estimation of surface water vapor diffusion (canopy)
resistance [35].

The application of remote sensing technology realizes the estimation of surface re-
sistance on a large scale [36]. Cleugh, et al. [37] believe that the normalized difference
vegetation index (NDVI), leaf area index (LAI), and vegetation fraction (FC) represent
vegetation characteristics of the underlying surface without water stress. They imple-
mented the calculation of surface resistance based on the remote sensing of three vegetation
characteristics. To improve the canopy conductance equation, Mu, et al. [38,39] constructed
the Penman–Monteith–Mu model and used MODIS remote sensing and meteorological
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datasets to estimate global ET by considering temperature and saturated vapor pressure.
Using the process-based land surface evapotranspiration/heat flux algorithm (P-LSH),
a global long-term (1982–2013) ET dataset was generated [7,40]. Leuning, et al. [41] de-
veloped the Penman–Monteith–Leuning (PML) model by introducing a soil evaporation
model and improving the Gash modification of the Penman–Monteith model (PM-Gs).
Zhang, et al. [42] developed a coupled diagnostic biophysical model named PML-V2 and
generated 500 m and 8-day resolution global ET data from July 2002 to August 2017. Mi-
ralles, et al. [43] and Martens, et al. [44] compiled a set of algorithms to build the Global
Land Evaporation Amsterdam Model (GLEAM) dedicated to the estimation of terrestrial
evaporation and root-zone soil moisture from satellite data.

In addition, some intelligent algorithms have been used to estimate global ET [45],
including artificial intelligence algorithms and machine learning algorithms [46–49]. A
machine learning algorithm (the model tree ensemble, MTE) was used to estimate the ET
dataset on a global scale from 1982 to 2008 by compiling a global monitoring network,
along with meteorological and remote sensing observations [48].

Since there are many existing satellite ET retrieval algorithms and associated global
ET datasets, it is important to understand the accuracy and limitation of these datasets and
provide insights for the ET retrieval algorithm development. Most of the past studies are fo-
cused on evaluating the different ET algorithms/datasets by comparing them with ground
observations [50] and intercomparison [19,51]. A recent study developed a method [52]
to reconstruct high-quality basin-scale actual evapotranspiration values from the ground
and Gravity Recovery and Climate Experiment (GRACE) observations based on water
balance, providing new benchmark data to evaluate the global ET datasets on basin scale
across the continental United States (CONUS). Therefore, the objectives of this study are
twofold: (1) to evaluate five widely used global ET products on multiple time scales by
comparing them with the reconstructed ET data from 2003 to 2008 for 592 watersheds
across the CONUS based on the ground and GRACE observations, and (2) to identify the
relative advantages/disadvantages of the five ET algorithms and their future improvement
directions. To this end, the following sections are organized as follows: Section 2 explains
the data and methodology; Section 3 summarizes results; Section 4 is the discussion, and
Section 5 presents the conclusions.

2. Data and Methodology
2.1. Study Area and Data

We chose the CONUS as the case study area, targeting 592 watersheds (Figure 1)
distributed in 12 regions, comprising the Arkansas–Red Basin, California–Nevada, Col-
orado Basin, Lower Mississippi, Middle Atlantic, Missouri Basin, North Central, Northeast,
Northwest, Ohio, Southeast, and West Gulf. The spatial resolution of the study area was
set to 0.125◦.

It has a continental climate in most of the CONUS and a subtropical climate in its
south. The climate of the CONUS becomes warmer as one travels further south, and drier
the further west until one reaches the West Coast. The topography of the CONUS is high
in the west and low in the east. There are many rivers and lakes in the CONUS, and the
water systems are complex. In general, they can be divided into three major water systems,
including the Atlantic water system, the Pacific water system, and the Great Lakes of North
America. The Atlantic water system located in the east of the Rocky Mountains includes
the Mississippi River, the Connecticut River, and the Hudson River. The Pacific water
system includes the Colorado River, the Columbia River, and the Yukon River. Based
on the National Land Cover Database 2011 (NLCD2011), the eastern part of the CONUS
is dominated by deciduous forests, while the west is dominated by evergreen forests.
Shrubs are distributed in the western and southwestern regions of the CONUS, and woody
wetlands are distributed near the Great Lakes and the eastern coastline. Farmland and
grassland account for most of the land cover of the Great Plains [53].
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Figure 1. Map of the study area and location of 592 watersheds.

Five ET datasets, including the reconstructed ET (Recon) as the benchmark, were used
in this study (Table 1). The water balance equation was used to calculate reconstructed
ET on the basis of ground and GRACE satellite observations as the residual of the water
balance equation 52]. The precipitation data were obtained from the Parameter Elevation
Regressions on Independent Slopes Model (PRISM). The monthly mean streamflow data
were all from United States Geological Survey (USGS) stream gauging stations. The
monthly water storage data were obtained from the GRACE satellite. The Recon data
were obtained from April 2002 to September 2013 with a spatial resolution of 0.125◦ and a
monthly temporal resolution.

The global ET data [7,40] were generated using the process-based land surface evapotran-
spiration/heat fluxes algorithm (P-LSH), including the modified Penman–Monteith model
for canopy transpiration and soil evaporation and the Priestley–Taylor model for open-water
evaporation, referred to as P-LSH, from January 1982 to December 2013 (Table 1). Using
the Jarvis–Stewart-type canopy conductance model, biome-specific canopy conductance was
determined from the NDVI. The spatiotemporal resolution of P-LSH was 0.5◦ and monthly.

Zhang, et al. [54] used the Leuning surface conductance model together with the
Penman–Monteith model to estimate transpiration from the plant canopy and obtained
a global ET dataset named PML-V1 from 1981 to 2012. A water–carbon coupled canopy
conductance model was used to estimate transpiration, and a global ET dataset named
PML-V2 was generated from July 2002 to August 2019 with a spatial resolution of 500 m
and 8-day temporal resolution [42] (hereafter referred to as PML) (Table 1).

Mu et al. developed an ET algorithm using MODIS and global meteorology data
to obtain MODIS global ET datasets [38,39]. The MODIS global ET data with a spatial
resolution of 500 m and temporal resolution of 8 days are hereafter referred to as MODIS
(Table 1).
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Table 1. Descriptions of the ET datasets used in this study, including their temporal coverages, temporal resolutions, spatial resolutions, algorithms, key equations, limitations,
and references.

Name Acronyms Temporal Coverage Resolution Algorithm Key Equations Limitations References

Actual
evapotranspiration
reconstruction

Recon April 2002 to
September 2013

Monthly,
0.125◦ Simple water balance

ET = P− R− ∆S + ε

Ri =
(Qi−∑N

n=1 QT)×T
Ai

× 1000

∆Sm = S′i(dm)− S′i(dm−1) ET = 1
M ∑M

m=1 ETm

The resolution of Grace
satellite is coarse, and the
accuracy of ET in small
watershed is affected.

Wan et al.
(2015)

Process-based land
surface
evapotranspiration/
heat flux

P-LSH January 1982 to
December 2013

Monthly,
0.5◦

Modified
Penman-Monteith

λEsoil = RH(VPD/k) ∆Asoil+ρCpVPDga
∆+γ×ga/gtotc

λEwater = α ∆A
∆+γ

No considered canopy
interception

K. Zhang
et al.
(2015)

Penman–Monteith–
Leuning PML July 2002 to August

2019
8 day,
500 m

Modified Penman-
Monteith-Leuning Et =

εAc+(ρcp/γ)DaGa

ε+1+Ga/Gc
Es =

f εAs
ε+1

Soil evaporation
simplifies the physical
process.

Y Q.
Zhang
et al.
(2019)

Moderate-resolution
imaging
spectroradiometer

MODIS January 2000 to
Present

8 day,
500 m

Penman-Monteith-
Leuning

λEwet_c =
(s×AC×FC+ρ×Cp×(esat−e)×FC/rhrc)×Fwet

s+ Pa×Cp×rvc
λ×ε×rhrc

λEtrans =
(s×AC×FC+ρ×Cp×(esat−e)×FC/ra)×(1−Fwet)

s+γ×(1+rs/ra)

λESOIL = λEwet_SOIL + λESOILpor ×
(

RH
100

)VPD/β

Biome Properties
Look-Up Table is an
empirical value. Unused
flux tower data
calibration parameters.

Mu et al.
(2011)

Model tree ensemble MTE January 1982 to
December 2008

Monthly,
0.5◦ TRIAL + ERROR No specific equation No physical process Jung et al.

(2011)
Global land
evaporation
amsterdam model

GLEAM 1980 to 2020 Monthly,
0.25◦

Modified
Priestley-Taylor λEP = α ∆

∆+ψ (Rn − G) Simplified impedance
Martens
et al.
(2017)
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The model tree ensemble (MTE) approach featured the model tree induction algorithm
(TRIAL) and evolving trees with random growth algorithm (ERROR) [48]. The MTE
approach used a global monitoring network of continuous in situ measurements, along
with meteorological data and remote sensing observations, to obtain a global ET dataset
with a spatial resolution of 0.5◦ and monthly temporal resolution from 1982 to 2008 [45,55]
(hereafter referred to as MTE) (Table 1).

Miralles et al. used the Priestley and Taylor (PT) evaporation model to estimate global
scale ET with a spatial resolution of 0.25◦ and a temporal resolution of daily, monthly, and
yearly [43]. This model aims to make the best use of satellite observations to estimate the
evaporation flux on land continuously in space. The temporal cover of GLEAM dataset is
from 1980 to 2020 (Table 1).

The five ET datasets and Recon have different spatial and temporal resolutions. For
the convenience of comparison, the spatial resolution of all comparisons is 0.125◦, and the
temporal resolution is month, season, and year. On the time scale, the PML and MODIS
were accumulated from 8 days to month. All the data with a resolution different from 0.125◦

were resampled to a 0.125◦ resolution. For these datasets with a coarser resolution, linear
interpolation is applied to produce their corresponding 0.125◦ data. For these datasets with
a finer resolution, area-weighted aggregation is applied. The ET value of each watershed is
the mean value of all grid cells falling within the watershed.

2.2. Methodology

Each remote sensing ET dataset for each watershed was equal to the average value of
all grid cells falling within the watershed, and all comparisons were on the watershed scale.
The comparison of temporal scales included the yearly, seasonal, and monthly scales. To
investigate whether the performance of the five remote sensing ET datasets varied in space,
we further compared the spatial distribution of multiyear average annual ET, multiyear
mean seasonal ET, and correlation coefficients between Recon and the five remote sensing
ET datasets on a monthly scale. On the monthly scale, we compared not only the spatial
correlation and significance level but also the accuracies of the five ET datasets using the
Taylor diagram. The spatial distributions of four seasons and areal average ET values are
used to evaluate five ET datasets on a seasonal scale. On the yearly scale, we use scatter
density maps and spatial distributions to evaluate the five ET datasets comparing the
Recon data. To evaluate the accuracies of the five remote sensing ET datasets (P-LSH, PML,
MODIS, MTE, and GLEAM), three statistical metrics were used to compare their quality to
the Recon data: bias, root-mean-square error (RMSE), and correlation coefficient (R). Bias
and RMSE allowed evaluating the error and accuracy of the five remote sensing ET datasets,
while R characterized the degree of fit between the five remote sensing ET datasets and
Recon data. When the bias and RMSE are smaller, the result is better. Conversely, a smaller
R indicates a bad result.

3. Results
3.1. Evaluation of Yearly Scale ET Data

We first compared yearly P-LSH, PML, MODIS, MTE, and GLEAM data with yearly
Recon data. All the R-values were equal to or higher than 0.85 (Figure 2). MTE had the largest
R-value (0.91), followed by PML (0.88), GLEAM (0.88), P-LSH (0.86), and MODIS (0.85). Fur-
thermore, the RMSE values of the five remote sensing ET datasets fell between 106 mm/year
and 159 mm/year (Figure 2). MODIS had the largest RMSE value of 158.90 mm/year,
while GLEAM had the lowest RMSE value of 106.10 mm/year (Figure 2c,e). PML (108.97
mm/year), P-LSH (114.44 mm/year) and MTE (141.32 mm/year) demonstrated an interme-
diate performance in terms of RMSE (Figure 2a,b,d). Furthermore, the RMSE values of PML,
GLEAM and P-LSH were close (Figure 2 a,b,e), whereas the RMSE value of MODIS was more
than 44 mm/year higher than that of GLEAM, PML and P-LSH (Figure 2a–c,e). In addition,
the bias values of the five remote sensing ET datasets ranged between 99.45 mm/year and
−106.71 mm/year (Figure 2). MODIS presented the largest bias value of −106.71 mm/year,
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while PML had the smallest bias value of −17.73 mm/year (Figure 2b,c). The bias value for
P-LSH was 22.94 mm/year, which was close to that of PML (Figure 2a,b). Future studies
should aim to reduce the bias of the MODIS and MTE algorithms.Remote Sens. 2021, 05, x FOR PEER REVIEW  2 of 20 
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to Recon data.

These results confirm the above findings showing that MTE had a superior R-value,
whereas GLEAM, PML and P-LSH had the advantage in terms of RMSE and bias values
(Figure 2). The MTE algorithm, based on machine leaning, achieved the highest R-value,
while the GLEAM, P-LSH and PML algorithms, based on physical processes, had smaller
bias and RMSE values, demonstrating that the combination of intelligent algorithms (e.g.,
machine learning algorithms) and physical process algorithms can be applied to improve
the accuracy of ET datasets and develop new ET estimation algorithms. Despite being
based on physical processes, the MODIS algorithm does not use flux tower data to calibrate
the model.

Figure 3 shows the spatial pattern of multiyear average annual ET across CONUS. A
spatial gradient is clearly visible in the maps from west to east, and the five ET datasets
across the 592 watersheds showed similar spatial gradients (Figure 3). The average annual
ET gradually increased from the southwest region to the southeast and northeast regions
(Figure 3). The spatial distributions of P-LSH, PML, and GLEAM were remarkably similar
to that of Recon (Figure 3a–c,f). Compared with Recon, the spatial distribution of MODIS
was relatively smaller in all of the western watersheds from 105◦ W to 120◦ W (Figure
3a,d), indicating why the averaged value of MODIS was smallest (Figure 4). MTE exhibited
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greater spatial distribution than Recon in the southeast watersheds (Figure 3a,e). The
average annual ET reached its highest value in the southeast region (Figure 3).Remote Sens. 2021, 05, x FOR PEER REVIEW  3 of 20 
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The largest average annual ET values obtained using Recon, P-LSH, PML, MODIS,
MTE, and GLEAM were 1164.86, 1131.57, 952.76, 1032.80, 1273.35, and 1065.00 mm/year,
respectively (Figure 4). The southwest region showed extremely low ET (Figure 3), with
values of 149.46, 269.69, 216.83, 70.05, 146.79, and 131.04 mm/year, respectively (Figure 4).
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The averaged value of P-LSH was closest to that of Recon, followed by PML, GLEAM, MTE,
and MODIS (Figure 4), illustrating the superior accuracy of P-LSH across the whole range.

Table 2 shows the statistical metrics (bias, RMSE, and R) of the average annual ET. The
results are similar to those on the yearly scale (Figure 2), whereby the R-value of MTE was
the largest. The results for P-LSH were close to those for PML and GLEAM, with smaller
RMSE and bias values than MODIS and MTE.

Table 2. Statistical metrics (Bias, RMSE, and R) of average annual ET in this study.

Five ET datasets vs.
Recon Bias (mm/year) RMSE (mm/year) R

P-LSH vs. Recon −22.94 92.62 0.92
PML vs. Recon 17.73 83.44 0.93

MODIS vs. Recon -106.71 145.90 0.89
MTE vs. Recon 99.45 126.39 0.95

GLEAM vs Recon 23.18 87.78 0.92

3.2. Evaluation of Seasonal-Scale ET Data

Figure 5 shows the spatial distributions of seasonal average ET data from Recon,
P-LSH, PML, MODIS, MTE, and GLEAM. The seasonal variability of the five remote
sensing ET datasets was consistent with that of Recon. Summer (JJA) demonstrated the
largest value, followed by spring (MAM), autumn (SON), and winter (DJF) (Figure 5a–x).
It is clear that the ET in spring, summer, and autumn presented a spatial gradient from
west to east, especially in summer. The spatial distributions of P-LSH, PML, and GLEAM
in spring, summer, and autumn were close to that of Recon. The spatial distribution
of MTE in summer in the eastern region, including the North Central, Ohio, Northeast,
Middle Atlantic, Lower Mississippi, and Southeast regions, was higher than that of Recon,
especially in the Southeast region. In contrast, the spatial distribution of MODIS was lower
in the western region, especially in Colorado Basin. It is worth noting that the winter ET
of Recon, P-LSH, PML, MODIS, MTE, and GLEAM presented low values with almost no
spatial variability across CONUS (Figure 5d,h,l,p,t,x). All winter average ET values were
less than 200 mm. ET showed obvious seasonal changes in most watersheds of CONUS.
High values generally appeared in summer and low values generally appeared in winter.
However, the seasonal variation characteristics of the different regions varied.

All ET datasets were gridded to directly compute the average areal ET. Figure 6 shows
the areal ET of Recon and five remote sensing ET datasets in the four seasons. According
to the areal average ET from Recon, about 47% of ET in CONUS occurred in the summer,
while only 7% occurred in winter (Figure 6). Spring and autumn accounted for 25% and
21%, respectively. The areal average ET values from Recon and P-LSH (gray and blue bars
in Figure 6) were similar in terms of seasonal variability and magnitude, except for winter.
Similarly, about 25, 47, 23, and 5% of P-LSH ET occurred in spring, summer, autumn,
and winter. All areal average ET values from P-LSH, PML, MODIS, and MTE were lower
than those from Recon in winter, but the areal average ET of GLEAM is larger than Recon
in winter. This may be due to the lower temperature and withered vegetation in winter,
leading to poor results for remote sensing retrieval. The areal ET values from MTE were
slightly higher than those from Recon in spring, summer, and autumn. A substantially
large bias was identified in the MTE areal ET in the four seasons. The largest bias values for
MTE occurred in spring, summer, and autumn (35.57, 63.09, and 15.87 mm, respectively).
The largest bias value (24.06 mm) for PML occurred in winter. Clearly, the P-LSH data were
consistent with Recon.
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3.3. Evaluation of Monthly-Scale ET Data

To further evaluate the five existing remote sensing ET datasets, we used a Taylor
diagram at the monthly scale to compare their performance. The Taylor diagram measured
the degree of correspondence between Recon and the five remote sensing ET datasets
on the basis of three statistics: the correlation coefficient, the centered root-mean-square
difference (RMSD), and the standard deviation, as shown in Figure 7. The monthly Recon
data from the 592 watersheds from 2003 to 2008 (42,624 data points in total) were used
as the reference. In terms of the correlation coefficient and RMSD, PML (pink point in
Figure 7) and GLEAM (yellow point in Figure 7) were better than P-LSH (blue point in
Figure 7), MTE (red point in Figure 7), and MODIS (green point in Figure 7). In terms of
standard deviation, MODIS was closest to Recon, followed by GLEAM, PML, P-LSH, and
MTE (Figure 7). However, MODIS had the lowest correlation coefficient (0.78) with Recon,
whereas GLEAM was the closest (Figure 7).
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The quality of ET datasets can be characterized by spatial and temporal accuracy. We
further compared the spatial distribution of correlation coefficients and significance levels
between monthly Recon data and the five remote sensing ET datasets, as shown in Figure 8.
Correlation coefficients were divided into three categories: significantly positive correlation
(R ≥ 0.5), positive correlation (0 ≤ R < 0.5), and negative correlation (R < 0). In terms
of p-value, the significance level was divided into three categories: highly significant
(p < 0.01), significant (0.01 ≤ p ≤ 0.05), and insignificant (p > 0.05). A total of
562 watersheds for P-LSH and 586 watersheds for GLEAM had a positive correlation.
About 99% of watersheds for GLEAM showed significantly positive correlations, followed
by PML (97%), MTE (97%), P-LSH (95%), and MODIS (93%) (Figure 8a–e). Only six
watersheds for GLEAM showed a negative correlation and located in Northwest regions
(Figure 8e). Thirty watersheds for P-LSH presented a negative correlation, and they were
mainly distributed in the Colorado Basin and Northwest regions (Figure 8a). Twenty PML
watersheds and 18 MTE watersheds presented negative correlation, and they were mainly
distributed in the Northwest region (Figure 8b,d). MODIS displayed the highest number of
watersheds with negative correlation among the five remote sensing ET datasets, and they
were mainly distributed in the Colorado Basin, Missouri Basin, and Northwest regions
(Figure 8c).
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P-LSH and MODIS presented negative correlation in the southern region of the
Colorado Basin, whereas PML and MTE presented positive correlation in this region.
The average annual precipitation in southern Colorado is about 400 mm, with summer
precipitation accounting for 70%. Therefore, this region is relatively drought-prone, and
it can be characterized as a semiarid to arid climate region. ET typically comes from soil
evaporation in arid regions due to the scant precipitation and sparse vegetation under
normal circumstances, leading to lower vegetation transpiration. The PML-V2 algorithm
considers the restriction of precipitation on soil evaporation [42], thus improving the
calculation accuracy of ET in arid regions. The MTE algorithm considers the relationship
between soil moisture and ET. Reduced soil moisture was shown to be responsible for the
declining ET trend since 1998 [48]. Therefore, PML and MTE displayed high correlation
coefficient values in the Colorado Basin. The P-LSH and MODIS algorithms need to
consider precipitation, soil moisture, and other factors affecting soil evaporation, especially
mutual constraints between each element.

There was a negative correlation for five remote sensing ET datasets in the Northwest
region (Figure 8a–e), demonstrating their worse performance. Thus, the benchmark is
probably not reliable in the Northwest region. The unreliability may be due to the coarse
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resolution of GRACE satellites. The spatial resolution of GRACE satellites is 50~100km.
There are 19 watersheds in the northwest, but the areas of the 19 watersheds are all less
than 10,000 km2. The spatial resolution of the Recon dataset is 0.125◦; as a result, it may
not accurately reflect the spatial variability with only 1-3 GRACE grid cell representing
each watershed. In addition, this region is located at high latitudes, where the temperature
is low throughout the year and there is no or little vegetation, resulting in little ET in this
region. If the benchmark is indeed reliable in the Northwest, this would indicate that the
five remote sensing ET algorithms need to be improved in this region.

The numbers of watersheds with a highly significant level for the five remote sensing
ET datasets were 543, 565, 538, 562, and 562 (Figure 8f–j). Thus, about 5, 4, 7, 3, and 3% of
watersheds showed an insignificant level for P-LSH, PML, MODIS, MTE, and GLEAM,
respectively (Figure 8f–j). Thirty-two watersheds for P-LSH were insignificantly correlated,
and they were mainly distributed in the Colorado Basin, California–Nevada, and North-
west regions (Figure 8f). Twenty-one watersheds for PML and nineteen watersheds for MTE
were insignificantly correlated, and they were mainly distributed in the California–Nevada
and Northwest regions (Figure 8g,i). Thirty-nine watersheds for MODIS were insignifi-
cantly correlated, and they were mainly distributed in the Colorado Basin, Missouri Basin,
and Northwest regions (Figure 8h). Nineteen watersheds for GLEAM were insignificantly
correlated, located in the Northwest and Colorado Bain. Overall, the five remote sensing
ET datasets were insignificantly correlated with Recon data in the Northwest (Figure 8). A
possible reason is that the Northwest region is located at high latitudes, where it freezes all
year round due to a low temperature, leading to little ET. In addition, it may be possible
that the Recon data are unreliable in the Northwest. As the spatial resolution of GRACE
is coarse, it may lead to inaccurate calculations of water storages in small watersheds
(<10000 km2).

3.4. Overall Evaluation of Five ET Products

Using the yearly Recon (2003–2008) dataset as a reference, we compared the five remote
sensing ET datasets across the 592 watersheds through a quantile plot (Figure 9). To facilitate
analysis of the results, we divided the data into three segments: low-value section, middle-
value section, and high-value section. The corresponding ranges were 0–600, 600–1100,
and 1100–1500 mm/year. PML and P-LSH tended to overestimate ET in the low-value
section (Figure 9), while PML was closest to Recon for values ranging from 400 mm/year to
600 mm/year. The data points of P-LSH were generally close to the one-to-one line in the
middle- and high-value sections (Figure 9). PML tended to underestimate ET in the middle-
and high-value sections (Figure 9). MTE tended to overestimate ET in all sections except for
really-low values (<200 mm/year) (Figure 9). MODIS systematically underestimated ET
in all sections (Figure 9). Figure 9 shows why MTE and MODIS presented large bias and
RMSE values in Figure 2. The data points of GLEAM were generally close to the one-to-one
line in low- and middle-value sections, but it tends to underestimate the ET values in
high-value section (Figure 9). In summary, P-LSH and GLEAM were the closest to Recon
in the middle-value section, while the other three remote sensing ET datasets presented
various degrees of overestimation and underestimation in the low- and high-value sections.
This demonstrates that these three remote sensing ET algorithms (PML, MODIS, and MTE)
need to be improved in these sections.
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There were 371 watersheds with an average annual ET ranging from 600 to 1100 mm/year
according to Recon data in CONUS, accounting for 63% of the total (Figure 3a). The five
remote sensing ET datasets identified 351, 302, 237, 376, and 327 watersheds in this ET range
(Figure 3b–f). The spatial distribution of average annual P-LSH was most similar to that
of Recon (Figure 3a,b). This indirectly demonstrates that P-LSH was consistent with Recon
in the middle- and high-value sections (Figure 9). Few ET data points were larger than
1100 mm/year, as shown in Figure 9, which corresponds to Figure 3a showing that only
two watersheds had an average annual ET of more than 1100 mm/year according to Recon
data. The remote sensing datasets identified 5 (P-LSH), 0 (PML), 0 (MODIS),37 (MTE), and 0
(GLEAM) watersheds with an average annual ET higher than 1100 mm/year (Figure 3b–f),
thus confirming the results showing no watershed with an average annual ET higher than
1100 mm/year according to PML, MODIS, and GLEAM in Figures 4 and 9.

4. Discussion

In this study, we compared five remote sensing ET datasets with Recon data. The
choice of benchmark is especially important, as it determines the reliability of the compari-
son result [51,56]. The main driver of uncertainty for ET comparison may stem from the
use of Recon data as the benchmark. In the calculation process of Recon data, downscal-
ing of the GRACE satellite data was involved [52]. The coarse resolution of the original
GRACE satellite data may cause some uncertainty in Recon dataset in these basins with a
smaller area (<10,000 km2). Accuracy of the five ET datasets is also related to many other
factors, such as the forcing data (precipitation, air temperature, vapor pressure, shortwave
downward radiation, longwave downward radiation, and wind speed), the accuracy of
observation from the flux tower station, the density of flux tower stations, vegetation
types, the ET algorithm, the parameters of each ET algorithm, and the climatological and
geographical conditions of the considered region [30,39]. Previous studies have mentioned
that the above-listed factors are insufficient for ET estimation [7,38]. Although the results
of this study clearly demonstrate that PML, P-LSH, and GLEAM performed better on a
yearly and seasonal scale (Figures 2–6), these ET algorithms still need to be improved in the
future. Firstly, the drive datasets for the five remote sensing ET datasets were different. The
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drive dataset for P-LSH was the National Centers for Environmental Prediction (NCEP)
Reanalysis daily surface meteorology [7]. GLDAS-2.1 meteorological forcing was used to
drive the PML model [42]. Global Modeling and Assimilation Office (GMAO) meteorologi-
cal data were used to drive the MODIS model [38,39,57]. The selection of a drive dataset
can impact the accuracy of the ET algorithm. More studies on how to choose the best drive
dataset should be carried out.

Secondly, as demonstrated in our results, the R-value of MTE was the largest on the
yearly scale and hourly scale, while the bias and RMSE values were one of the largest
among the five remote sensing ET datasets. The MTE algorithm’s good fit was based on the
use of a machine-learning algorithm, but it tends to generally overestimate the ET values,
leading to large bias and RMSE values. The other four algorithms were based on physical
processes, whereby the P-LSH, PML, and GLEAM in particular recorded smaller bias and
RMSE values. Combining artificial intelligence algorithms and physical process algorithms
can be applied to achieve high-quality ET products in the future study [58].

Thirdly, the spatial distribution of the five remote sensing ET datasets presented
differences in the southern Colorado Basin region, which can be characterized as arid area.
Despite the P-LSH, PML, MODIS, and GLEAM algorithms all being based on physical
processes, the PML and GLEAM outperformed the other two in the southern Colorado
Basin. The algorithm for soil evaporation used for the P-LSH is similar to that used
for MODIS [39,40,59], whereas PML-V2 considers the restriction of precipitation on soil
evaporation [42,60]. The GLEAM algorithm considered multiple layers of vegetation
and multiple layers of soils from the land surface to the root zone [43]. The soil layers
have a depth of 0-0.05 m, 0.05-1.00 m, and 1.00-2.50 m, respectively. Soil evaporation is
an important part of ET, and its accuracy directly affects the reliability of ET products.
Many previous studies have developed or applied algorithms for soil evaporation [61,62].
To further improve the accuracy of soil evaporation data, algorithms accounting for or
offsetting these uncertainties or limitations should be studied.

5. Conclusions

Assessing ET datasets is an integral part of ET algorithm development based on a
reference. In this study, we chose the ET dataset named Recon as the benchmark, which was
generated from a simple ET reconstruction method based on the principle of water balance.

Although the R-value of MTE with an annual temporal resolution was the largest,
its bias and RMSE values were larger than those of P-LSH, PML, and GLEAM (Figure 2).
Comprehensive consideration of the three indicators of BIAS, RMSE and R, the P-LSH, PML
and GLEAM demonstrated a better performance on the yearly scale (Figure 2). The P-LSH,
PML, and GLEAM were closest to Recon in terms of the spatial distribution of multiyear
average annual ET, while all remote sensing ET datasets could capture spatial trends and
changes from west to east (Figure 3). Regardless of the time series or spatial distribution
on a yearly scale, both P-LSH and PML performed well (Figures 2–4). However, the bias
and RMSE of the MODIS and MTE algorithms should be improved.

A spatial gradient for spring, summer, and autumn was clearly visible, whereas
the spatial distribution for winter showed no spatial variability for the five ET datasets
(Figure 5). According to the results of areal ET, P-LSH was most consistent with Recon
data, followed by PML, MODIS, GLEAM, and MTE (Figure 6). This confirms that P-
LSH performed better on a seasonal scale; however, the five remote sensing ET datasets
performed poorly in winter, especially the GLEAM tends to overestimate in winter. This
may have been due to the small ET, low temperature, and low vegetation in winter.

The spatial distribution of the correlation coefficients and significance levels on a
monthly scale illustrated that the PML and MTE algorithms were effective in arid regions,
due to their consideration of the constraints of precipitation and soil moisture on soil
evaporation. Therefore, the estimation accuracy of the P-LSH and MODIS algorithms
should be improved in arid regions. The MODIS tended to underestimate ET overall, which
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may be because it did not use observations from flux towers to calibrate the parameters of
the ET algorithm.

This study provides a reference for improving the quality of ET datasets and ET
estimation algorithms in the future across CONUS. It will also play an important role
in promoting the application of remote sensing in ET estimation. Various ET algorithms
have been proposed and implemented on a global scale. However, the practicability of
each algorithm varies across regions. Future research should focus on how to combine the
advantages of multiple algorithms to estimate ET and obtain high-quality ET products.
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