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Abstract: The awareness of spatial and temporal variations in site-specific crop parameters, such as
aboveground biomass (total dry weight: (TDW), plant length (PL) and leaf area index (LAI), help in
formulating appropriate management decisions. However, conventional monitoring methods rely on
time-consuming manual field operations. In this study, the feasibility of using an unmanned aerial
vehicle (UAV)-based remote sensing approach for monitoring growth in rice was evaluated using a
digital surface model (DSM). Approximately 160 images of paddy fields were captured during each
UAV survey campaign over two vegetation seasons. The canopy surface model (CSM) was developed
based on the differences observed between each DSM and the first DSM after transplanting. Mean
canopy height (CH) was used as a variable for the estimation models of LAI and TDW. The mean
CSM of the mesh covering several hills was sufficient to explain the PL (R2 = 0.947). TDW and
LAI prediction accuracy of the model were high (relative RMSE of 20.8% and 28.7%, and RMSE of
0.76 m2 m−2 and 141.4 g m−2, respectively) in the rice varieties studied (R2 = 0.937 (Basmati370),
0.837 (Nipponbare and IR64) for TDW, and 0.894 (Basmati370), 0.866 (Nipponbare and IR64) for LAI).
The results of this study support the assertion of the benefits of DSM-derived CH for predicting
biomass development. In addition, LAI and TDW could be estimated temporally and spatially using
the UAV-based CSM, which is not easily affected by weather conditions.

Keywords: precision agriculture; unmanned aerial vehicle; digital surface model; leaf area index;
rice; biomass

1. Introduction

Obtaining knowledge about the dynamic of plant biomass is an essential part of
precision agriculture, as such information aids in the management decision making, risk
assessment and the design of labor-saving and efficient technologies and that can compen-
sate for the physical deficiency in the agricultural labor force [1–3]. Aboveground biomass
(total dry weight: TDW) estimation has been widely explored due to its direct relation to
crop yield commonly by farmer’s expert knowledge and destructive sampling which are
not timely and labor efficient. The consequences thereof leading to lower productivity [4,5]

Alternatively, the potential of satellite-based remote sensing for crop management
has been widely studied [6]. However, satellite imaging is hindered by coarse resolution,
cloud cover and fixed-timing image acquisition, which may not synchronize with some
specific phenological phases [7,8]. In addition, information on sufficient resolution and
apt revisit frequency for precisely mapping smallholder farm units has been a challenge
until the influx of unmanned aerial vehicles (UAVs) [9]. The low cost, high flexibility,
simple handling and high spatial resolution of UAVs enable their application in many
fields of research including biology, forestry and hydrology [10–18]. Recent studies based
on vegetation indices (VIs) extracted from the images captured by relatively inexpensive
UAV-based digital and multispectral cameras have been used to examine many options
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for crop growth indices [19,20]. However, it has been established that the normalized
difference vegetation index (NDVI), widely used in remote sensing, saturates the index
values as the growth stage progresses, affecting its sensitivity to genetic and environmental
conditions in the acquisition of high-resolution data [20,21].

The emergence of UAV photogrammetry has facilitated the on-demand generation
of high-resolution datasets such as the Digital Surface Model (DSM) [22]. Comparatively,
DSM generated from UAV photogrammetry offers advantages such as easy handling of
the UAV platform, the likelihood of adapting sensors, user-friendly data evaluation tools,
accessibility of difficult terrains and low cost, over terrestrial platforms or the light detection
and ranging (LiDAR) [23–25]. Differing from satellite imagery, the DSM generated from
overlapped aerial images is relatively less affected by the weather and time zone, except
by strong winds and rainfall at the time of the filming. The spike in the use of UAVs for
image acquisition proceeded simultaneously with the onset of a novel photogrammetric
technique known as structure-from-motion (SfM), which together with multi-view stereo
(MVS) provides a robust system capable of creating high-resolution DSMs using less
expensive cameras [26–29].

DSMs have been used extensively in agriculture for monitoring important traits such
as plant height, yield and biomass estimation in major crops such as maize, rice, barley,
potato and even perennial grasses such as Miscanthus giganteus [30–34]. However, little
information is known of studies conducted on rice paddy fields and their particularities
which highlights significant varietal differences among cultivars. Additionally, the fact
constrains the location of control points (differing from dry land), could lead to potential
correlation errors in SfM due to water reflections. Even though, investigations into several
other factors that affect DSMs from UAV photogrammetry such as image quality, the
layout of the Ground Control Point (GCPs), flight altitude among others have been carried
out [35–37]. However, the analysis of time-series dynamic processes of various allometry
and phenology mechanisms and their relationship with a different environment in rice has
not been well studied. For these reasons, rigorous efforts to redress these information gaps
are needed.

Unquestionably, previous works have made significant contributions to improve the
feasibility of DSM application in agriculture by outlining various prospects, methodologies,
challenges and mitigation strategies. However, lapses in the available information for
estimating crop growth under various environmental conditions using this method require
significant attention especially in a homogeneous canopy such as rice fields. Hence, in this
study, UAV photogrammetry was used to assess the time-series aerial growth dynamics
of different paddy rice varieties under different environmental conditions to improve the
estimation of and biomass growth from canopy height using the DSM. Obtaining such data
is a good step towards designing precise phenological calendars that are variety specific to
feed crop estimation models. Linear regression models based on the DSM and extrapolated
from overlapped RGB images were developed to estimate crop growth. From the estimated
results of LAI and crop biomass, the differences in the planting year and growth conditions
were revealed using DSM instead of VIs, especially under various conditions, with high
spatio-temporal resolution.

2. Materials and Methods
2.1. Experimental Site

Two field experiments were conducted during the summers of 2018 and 2019 as shown
in Figure 1 (hereinafter referred to as Area 1 and Area 2, respectively) in a paddy field
containing alluvial clay loamy soil, on the farm belonging to the Tokyo University of
Agriculture and Technology (35◦39′57′ ′N, 139◦28′16′ ′E, 49 m above sea level). The climatic
conditions of this area are mild and generally warm, with a mean annual temperature
and precipitation of 15 ◦C/59 ◦F and 1530 mm, respectively [38]. Areas 1 and 2 measured
45 m × 15 m and 15 m × 27 m, respectively, and were arranged in a randomized complete
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split-plot block design, with three replicates each, with fertilizer treatment as the main
plots and rice varieties as sub-plots.

Figure 1. Study fields and layouts in 2018 and 2019.

2.2. Rice Cultivars and Fertilizer Application

Three rice cultivars—Nipponbare (Japonica), IR64 (Indica) and Basmati370 (Indica)
were used based on their wide genotypic variability. Nipponbare is the first japonica
cultivar in the world whose genome sequence has been sequenced in 2004 and was used
as a representative of japonica varieties [39]. IR64 is the most widely cultivated indica
variety in the world and was used as a representative of indica varieties [40]. Basmati370 is
a traditional indica variety of aromatic rice with relatively less genetic improvement [41].
It was used in this study because the traditional (less genetically improved) varieties tend
to show vigorous vegetative growth, and the plant morphological traits are very different
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from the improved varieties such as Nipponbare and IR64 [42]. Seedlings at the fourth
leaf stage were transplanted at a hill spacing of 15 cm × 30 cm with one seedling per
hill. The transplanting dates were 30 May 2018, in Area 1, and 22 May 2019, in Area
2. Nitrogen fertilizer was applied in three and two splits in 2018 and 2019, respectively.
Fertilization in 2018 was divided into no fertilization, low fertilization (basal: 3 g m−2,
and topdressing 3 g m−2) and high fertilization areas (basal: 3 g m−2, and topdressing
3 g m−2 × 6 times). For 2019, the plots were divided into non-fertilized (0N) and fertilized
(+N) areas (basal: 2 g m−2, and topdressing: 2 g m−2 × 6 times). Phosphorous pentoxide
(P2O5) and potassium oxide (K2O) were also applied at a ratio of 10:10 g m−2 as the basal
dose for each plot (17.5% P and 60% K concentrations, respectively).

2.3. Aerial Image Acquisition

Ground control points (GCPs) were established in both experimental fields using the
total station and auto level by conducting traverse surveying and levelling. The coordinates
of the GCPs were referred to the Japan Geodetic Datum 2011/Plane Rectangular Coordinate
System zone 9 as a map projection, and the GCPs were set at the four corners of each field
(Figure 1). A set of overlapped images of the fields was taken using a UAV (Inspire 2; DJI,
Shenzhen, China) equipped with an RGB camera (Zenmuse X4S; DJI, Shenzhen, China)
with 20 megapixels (5472 × 3648 resolution). The flight altitude was fixed at 30 m above
the rice canopy with a forward and lateral overlap rate of 85%. Approximately 160 images
were acquired during each flight campaign, and the flight survey was performed at two-
week intervals in 2018 (eight flights) and weekly intervals in 2019 (eleven flights). For
time-series monitoring, the aerial survey was achieved weekly in 2019 to acquire more
detailed phenological changes in rice growth. In case of the occurrence of rain or strong
winds, the shooting time and dates were altered accordingly. Due to the predominant
flooded conditions in the paddy field at the early stages, it is better to take the UAV images
at the time when the sun altitude is not high.

2.4. Ground Truth Data Collection

Plants were harvested from a 60 cm × 60 cm area that covers eight standard hills from
each plot (Figure 1). A total of 27 and 18 plots were sampled in 2018 and 2019, respectively
per each sampling date. The total number of samples was 189 (27 plots × 7 times) and
108 (18 plots × 6 times) for up to 89 and 87 days after transplanting in 2018 and 2019,
respectively to examine TDW, LAI and PL. Figure 2 shows an example of images of three
cultivars taken on 3 and 27 July, and the area of the photos almost correspond to the
sampling area covering eight hills per plot. The above-ground parts of the plants such as
leaf blades and stem plus leaf sheaths were retained, while the roots were discarded. PL
was obtained by straightening the plants one at a time and measuring the height from the
ground surface level to the tip of the rice plant. The PL was measured simultaneously along
with the CH on each UAV survey Day. Leaf area was obtained by measuring randomly
sampled, fully expanded and healthy laminae, based on in situ area measurement using an
automatic leaf area meter (AAM-9A; Hayashi Denko, Tokyo, Japan) with a conveyer belt
assembly. After determination of leaf area, the plant organs were oven-dried at 80 ◦C for
72 h to attain a constant dry weight, after which their dry weights were measured. The
specific leaf area was calculated as suggested by San-oh et al. [43], after which the LAI, on
a ground area basis, was calculated.
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Figure 2. Examples of photos of 8 hills of 3 cultivars (Nipponbare, IR64 and Basmati370) with
medium fertilization in replication 2 taken on (a) 3 July and (b) 27 July in 2018.

2.5. Generation of the Digital Surface Model and Canopy Surface Model

The Agisoft Metashape Professional (ver. 1.5.1), an SfM software, was used to generate
a 3D point cloud, ortho-mosaic images and DSMs by processing the UAV-acquired images.
This approach, as outlined by Gindraux et al. [44], supports the simultaneous processing
of overlapped images using the geometric constraints of camera positions. Hereinafter,
the DSM is also referred to as the canopy surface model (CSM) because it reflects the
crop surface. The process of generation of DSM and ortho mosaic image as explained by
Yamaguchi et al. [45] was used in this study as shown in Figure 3.

Figure 3. The flowchart of generation of the digital surface model and ortho mosaic image from UAV images.

First, tie points were automatically identified from the overlapped aerial images; then
the tie points were used to calibrate the camera parameters such as the focal length of the
lens, principal point positioning and radial and tangential distortions. The parameters of
external orientation (camera position and tilting angle) were estimated using the detected
tie points and the four installed GCPs, and a dense point cloud was generated. This
processing was performed to achieve a GCP accuracy within 1 pixel. A DSM and an
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ortho mosaic with a spatial resolution of approximately 9 mm/pixel were developed.
The standard deviations of the z-coordinate (elevation) at the two checkpoints each year
(Figure 1) were examined from the generated time-series DSMs and were ±8.4 mm and
±18.4 mm in 2018 and ±4.9 mm and ±4.5 mm in 2019. From this, it was confirmed that
the DSM generated using the minimum number of 4 GCPs required for photogrammetry
showed sufficiently robust and stable in the use of the analysis of crop height.

Using the DSM, CSM was calculated from the distance between the DSM of each
observation day (DSMn) and the first DSM after transplanting (DSM1st) [46]. DSM1s can
be regarded as almost flat inside the paddy field and is defined as the reference plane to
generate CSMs. At this time, since the paddy is flooded, the influence of the refraction of
water may be included in the z-coordinate, but this was a systematic error and was not
corrected. The value of the CSM was defined as the canopy height (CH). This relation is
mathematically expressed as:

CSMn = DSMn − DSM1st, (1)

where n represents the observation dates.

2.6. Procedures of Spatio-Temporal Estimation of Biomass Growth

Using CSM and ground truth data collected in 2018 and 2019, we developed the
models to estimate LAI and TDW from CH in relation to PL and tried to estimate LAI and
TDW spatially and temporally. Figure 4 shows the flowchart of spatio-temporal estimation
of biomass growth using the CSM. First, we examined the method of calculating CSM in
2018 and derived the relations with PL. in addition, the relations between PL and LAI/TDW
were derived, and from these relation formulas, LAI and TDW estimation models using
CH as the variable were derived and evaluated. Furthermore, these models were applied
to CH in 2019 to estimate and evaluate LAI/TDW and estimated LAI and TDW spatially
and temporally.

Figure 4. Procedures of spatio-temporal estimations using canopy surface models.

3. Results and Discussions
3.1. Seasonal Variations in Rice Growth

This study analyzed the potential of UAV-based DSM for monitoring crop growth,
with an emphasis on developing estimation models to predict the growth of three rice
varieties grown under varying environmental conditions. The results demonstrated the
feasibility of using CSM-derived canopy height to predict biomass growth in rice cultivars.
The approach used is uncomplicated, practicable and can achieve timeliness compared
to the conventional destructive sampling method. Even though the droopy nature of rice
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leaves makes it difficult to measure accurately using UAVs in the field, the high correlation
with the ground truth data shows a high degree of accuracy in using this technology. A
growth survey on plant indices was conducted on the three rice cultivars, and the variations
in their results are presented in Figure 5. The agronomic parameters investigated in this
study yielded similar per-unit area values over the growth period compared to those of the
other authors [47–49] (Figure 5a–f). Shoot biomass reached approximately 1334 g m−2 and
1242 g m−2 in Nipponbare and IR64, respectively (Figure 5b,e), which are characteristic of
the influence of genotype and environmental conditions [50].

LAI increased almost linearly, especially under nitrogen fertilization conditions until
after heading, in all varieties (Figure 5a,d), and this result agrees with Yoshida et al. (2010),
who emphasized the importance of fertilizer application in enhancing LAI growth [51].
PL showed a similar increasing tendency, except for Basmati370 (Figure 5c,f). Nitrogen
fertilization plays a pivotal role in rice growth because of its involvement in physiological
processes such as LAI development and biomass growth. The data collected exhibited
large variations in each parameter, as described above, and plant height could be obtained
throughout the growth period. It can be inferred that nitrogen fertilizer had a significant
effect on LAI, TDW and PL (Figure 5).

Figure 5. Comparison of seasonal changes in crop growth; (a,d) LAI, (b,e) TDW and (c,f) PL at various days after
transplanting (DAT) in 2018 and 2019 for three rice cultivars: Basmati370 (BAS), IR64 (IR) and Nipponbare (NIP).

3.2. Relation between the Measured Plant Length (PL) and UAV Canopy Height (CH_dsm)

Generally, CH is relatively lower than PL because CH represents the entire canopy
surface and not necessarily the highest point of the plant when measured from the field [30].
The increase in CH can be calculated from the height differences between successive CSMs
using the maps obtained, as shown in Figure 6. At the early growth stages, a homogeneous
canopy growth pattern was observed, which changed at the later growth stages. The results
of the recorded CSMs indicate the suitability of the model developed to estimate CH with
a high spatial resolution (approximately 9 mm) and accuracy as opposed to the spaceborne
remote sensing approach [52–54]. In Figure 7, two types of CH calculated from CSMn
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using the values at the 97th percentile [55] and the mean values of a 60 cm × 60 cm area
that covers eight hills are presented. As seen in Figure 7a, the two types of CH strongly
correlate with PL, and the determination coefficient (R2 = 0.947) of the mean CSM shows a
little higher than the 97th percentile (R2 = 0.937). Furthermore, the root mean square errors
of the mean and the 97th percentile of CSM were 0.067 m and 0.074 m respectively. From
these results, a complicated method is not required to derive representative CH in this case,
and it implies that PL can be estimated simply using the mean of CSM.

Figure 6. Examples of canopy surface model (CSM) for three rice cultivars in two vegetation seasons.
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The model accurately predicted PL in agreement with the conventional meter rule
measurement method (R2 = 0.947 and 0.904 in 2018 and 2019, respectively) as sown in
Figure 7b. The strong linear correlations between the predicted and measured datasets
of 2018 and 2019 (Figure 5) indicate a high accuracy in the model application. When
deriving the estimation formula of LAI and TDW from CH, the relational formula of PL
and CH in 2018 (y = 1.1384x + 0.207) was used (Figure 7b). Even though constraints such
as underestimation by UAVs exist as reported, the results showed enhanced accuracy
compared to that of earlier reported models [45,46].

Figure 7. Comparison between; (a) measured plant length (PL) and two types of canopy heights (CH) calculated from the
mean values and 97th percentile of CSMn and (b) the seasonal relationships between them.

3.3. Canopy Height Calculation

Variations in pixel units make it difficult to estimate crop growth accurately. Therefore,
as shown in Figure 8, ortho-mosaic and CSM images were developed, and the entire field
was divided into polygons of 30 cm × 30 cm square meshes (2 plants) from which the
mean value of the plant height of each mesh was used as the representative value. The
model developed was then applied to the representative values of each mesh to estimate
the growth in 2019.

Figure 8. Canopy height calculation from (a) ortho image and (b) CSM in a 30 × 30 cm area covering two plants.
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3.4. Biomass Modelling and Evaluation

The dataset was further divided into two; datasets of replications 1 and 3 were for the
model calibration (n = 48) and replication 2 was used for the model validation (n = 24). A
linear regression model was then developed to compare the PL with LAI and TDW and
was evaluated using their coefficient of determination values (Figure 9). The calibration
data for LAI yielded R2 values of 0.886 and 0.764 for Basmati370, and Nipponbare and IR64
combined, respectively (Figure 9a). Aboveground shoot biomass recorded a high R2 value
of 0.961 in Basmati370 (Figure 9b). A similar correlation between biomass and plant height
has been previously reported [56–58]. The effect of fertilizer on the relationship between PL
and LAI/TDW was not significant in this study (Figure 9), so we regarded it as negligible
because we could develop the same regression lines for the parameter. From the observed
linear relationship between the PL and CH, and the relationship of PL with LAI and TDW,
a model for estimating LAI and TDW from the CH was developed using the two types of
relational expressions expressed below:

Figure 9. Relationship of (a) Leaf area index (LAI) and (b) aboveground biomass dry weight (TDW) with measured plant
height in 2018 (Rep. 1 and 3).

Nipponbare and IR64:

LAInipir = 9.15CH − 0.66 (2)

TDWnipir = 2071.3CH − 412.8 (3)

Basmati370:
LAIbas = 7.21CH − 0.83 (4)

TDWbas = 1030.7CH − 201.6 (5)

Basmati370 had different relational expressions compared to the other cultivars; there-
fore, different models were built for Basmati370 and the other two cultivars using ArcMap.
Relatively, Basmati370 is less genetically improved than the other two cultivars used in this
study, and generally, less genetically improved rice varieties tend to have higher nitrogen
requirements and become taller compared to genetically improved rice varieties.

The derived model from the validation dataset was used to estimate LAI and TDW, as
shown in Figure 10, and the results were compared with measured values considering their
strong relationship with plant height. The correlation between measured and estimated
values was high in TDW (R2 between 0.894 and 0.926) as compared to LAI (R2 between
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0.780 and 0.814). In rice canopies, where leaves overlap during canopy closure, leaf area
estimation could be hindered as segregation of individual tillers and leaf blades become
difficult, which could result in underestimation [59]. Again, the scattering of values
increased with the progress in vegetative growth, especially in LAI.

Figure 10. Accuracy assessment of CSM derived estimated (a) LAI and (b) TDW against standard ground-based measure-
ments in 2018 (Rep. 2). BAS: n = 12, NIP and IR: n = 24.

The aerial survey campaign was suspended on 27 August because of strong winds
from a typhoon that resulted in the lodging of some plots; thus, subsequent surveys
became challenging. Therefore, the CSMs up to 17 August was used for the estimation. The
influence of lodging on the development of different cultivars could be a major limiting
factor in the application of CSM [30]. Table 1 shows the estimation accuracy of the LAI and
TDW on the validation dataset that was set in 2018. The root mean squared error (RMSE) of
LAI was approximately 1.0 m2 m−2 for all varieties. The RMSE of TDW was approximately
119 g m−2 and 84 g m−2 for Basmati370 and the other two varieties, respectively. The
relative RMSE of estimating LAI and TDW was approximately 18% to 20% and 12% to 18%,
respectively, for all cultivars. The results indicated the ability of plant height derived from
the DSM approach to predict crop growth.

Table 1. Estimation accuracy of leaf area index (LAI) and total dry weight (TDW) in 2018 (Rep. 2).

LAI (m2 m−2) TDW (g m−2)

BAS IR and NIP BAS IR and NIP

Mean 5.24 4.96 657.8 708.5
Mean error −0.67 −0.55 −85.9 25.9

RMSE 1.09 0.93 119.0 84.4
Relative RMSE (%) 20.8 18.8 18.1 11.9

RMSE, root mean square error; BAS, n = 12; NIP and IR, n = 24.

In 2019, the regression model derived from the validation dataset of 2018 was applied
and evaluated based on the relationship between the measured and predicted values of
LAI and biomass (Figure 11). As shown in Figure 11a, the prediction of aboveground dry
biomass had the highest R2 value (R2 = 0.937) in Basmati370 with an RMSE of 0.76 (Table 2).
Compared to 2018, the LAI distribution was slightly smaller in 2019 (R2 = 0.894 to 0.866
(Figure 11b) in Basmati370 and the two other cultivars. However, the values tended to
be more scattered toward the estimated LAI and TDW compared to the measured values.
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This is the result of bad weather conditions experienced in the early stages of the growing
season, which had adverse effects on the plants. Cloudy weather conditions caused about
80% reduction in the average daylight, which reduced from approximately 7.9 h in 2018 to
1.5 h in 2019. Under cloudy weather conditions, which results in reduced solar radiation,
plants tend to elongate more rather than increase their net biomass weight, and several
studies assert this assumption [60–62]. This implies that as the environment changes, there
may be a need to modify the model to fit the environment.

Figure 11. Relationship between the estimated and observed values of (a) TDW and (b) LAI in 2019 (Rep. 1, 2 and 3). BAS:
n = 24, NIP and IR: n = 48.

Table 2. Estimation accuracy of LAI and TDW in 2019 (Rep. 1, 2 and 3).

LAI (m2 m−2) TDW (g m−2)

Mean 3.66 442.9
Mean error 0.13 55.3

RMSE 0.76 141.4
relative RMSE (%) 20.8 28.7

The estimation accuracy of the model applied in 2019 showed that there was an
improvement in LAI, as shown in Table 2. Even though there was a reduction in the mean,
which decreased from approximately 5.0 in 2018 to approximately 3.7 in 2019, the RMSE
improved from 1.0 in 2018 to approximately 0.8 in 2019, with little variation between the
years. As mentioned earlier, this result seems to suggest that the estimation results of 2018
tend to be underestimated.

Regarding the accuracy of TDW estimation in 2019, a significant mean reduction
from 657.8 g m−2 in 2018 to 472.6 g m−2 was observed in Basmati 370 (Table 3). The
RMSE of Nipponbare and IR64 in 2019 (161.5 g m−2) was approximately twice that of
2018 (84.4 g m−2), indicating a large variance between the two seasons. The relative RMSE
increased from 18.1% in 2018 to 18.7% in Basmati370 in 2019 (Table 3). In 2018, 12 samples
were used to evaluate the accuracy compared to the 24 samples used in 2019. Since the
number of samples was large, the model fitted well with the variation, which was evaluated
to be relatively small as the accuracy was improved.
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Table 3. Estimation accuracy of LAI and TDW for three rice cultivars in 2019 (Rep. 1, 2 and 3).

LAI (m2 m−2) TDW (g m−2)

BAS NIP and IR BAS NIP and IR

Mean 3.93 3.53 472.6 503.0
Mean error −0.04 0.22 0.9 82.5

RMSE 0.79 0.75 88.3 161.5
relative RMSE (%) 20.1 21.2 18.7 32.1

BAS: n = 24, NIP and IR: n = 48.

3.5. Temporal Changes in Time-Series Estimation

By changing the survey frequency from two weekly intervals in 2018 to weekly
intervals in 2019, our approach could gather a multi-temporal dataset that provided
detailed changes in LAI and biomass growth dynamics under field as shown in Figure 12.
LAI development increased sharply between 20 June and 10 July after which a steadier
growth pattern was observed (Figure 12a). A similar tendency was observed in biomass
increase but the increase was prominent in Nipponbare and IR64 under + N conditions
(Figure 12b). The weekly observation revealed the detailed growth pattern of the cultivars
relative to the growth environment which may not have been revealed by prolonged
intervals between monitoring periods This approach helps in real-time monitoring of
crop growth at important phenological stages essential for precision agriculture [63], in
contrast to single date measurements, which may hinder growth dynamics monitoring
in real time [55]. In addition, the hassle of in situ destructive growth evaluation was
eliminated [64]. Biomass production in rice is very important for yield formation, and
it was pointed out that its importance changes dynamically depending on the growth
stage [65]. Therefore, the ability to monitor growth on a fine temporal scale can be used to
predict yield with high accuracy.

Figure 12. Observed temporal changes of estimated (a) LAI and (b) TDW in 2019 (Rep. 2) at various days after transplanting
(DAT).

3.6. Spatial Estimation of Biomass Growth

For farmers and researchers alike, information on within-field variations and discrep-
ancies in crop status and edaphic factors is beneficial for making management decisions [66].
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In this regard, UAV-based DSM offers clear advantages over conventional manual practices
in addition to providing reliable estimates of canopy heights from mean CSM, as seen
in this study. Such time saving and real-time monitoring of spatial variations within the
field (Figures 13 and 14) can also provide cost-effective and site-specific information for
important farm operations, such as fertilizer and pesticide application [67–69].

Figure 13. Examples of Spatial estimation of LAI in 2019 using the DSM model (greener areas
represent higher LAI).
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Figure 14. Example of spatial estimation of TDW in 2019 using the DSM model (greener areas
represent higher biomass growth).

The spatial estimation showed a uniform growth pattern in LAI and TDW at the
initial growth stages; however, detailed genotypic differences were evident at the advanced
growth stages, with fertilized areas showing more prominent growth. Based on these
results, it can be inferred that a good correlation between the variables translates into
areas with high canopy height (greener areas), indicating high LAI and aboveground
biomass. Thus, this technology can be used to evaluate rice growth spatially. In addition,
the technology can be applied not only to precision agriculture technologies, such as site-
specific fertilization but also for accurate prediction of growth dynamics in the entire field.
The key limitations of the models developed in this study were the effects of weather and
genotypic differences between varieties. When the model was applied in 2019, a tendency
of overestimation due to reduced sunshine hours during the initial stages of the growing
season was observed. As the bad weather persisted, the relationship between plant height,
LAI and TDW was affected. Therefore, further investigation is required to understand
the variations in the measured and estimated values and to improve the robustness of the
model because the genotypes, environmental conditions and parameters investigated in
this study were limited.



Remote Sens. 2021, 13, 2388 16 of 19

4. Conclusions

In this study, CSM was used to determine canopy height from UAV aerial images of
three rice cultivars in a time series. Manual measurement of relevant growth parameters
was performed to validate the UAV aerial surveys. Linear regression models based on the
findings of this experiment were established and were used to estimate the biomass of rice
plants based on multitemporal and multispectral evaluations. From the observations of the
calibration datasets (replications 1 and 3), a strong linear correlation between plant height,
LAI and TDW were observed.

A linear relationship with different slopes was obtained for Nipponbare and IR64
combined, and Basmati 370. The estimation model developed using these relational
expressions was then applied to the validation dataset (replication 2). Genotypic and
environmental differences affected the development of LAI and TDW. In addition, spatial
variations in plant growth within the field was observed. The estimation accuracy of the
model was found to be high, with relative RMSEs of 20.8% and 28.7% for LAI and TDW,
respectively. From this, it was determined that it is possible to perform time-series biomass
estimation using this model.

Furthermore, since DSM was used in this study, the influence of weather was relatively
small and stable, and easy weekly observations could be made. The results outlined in this
study require further investigation in different environmental conditions over multiple
years to ascertain its transferability, because several other factors that influence model
development and application were not investigated in this study. Furthermore, the spatial
resolution of the data can also influence the results obtained, especially in the earlier stages
of the growth cycle. By comparing the results under different environmental conditions
or planting seasons, we can understand the effect of weather variables such as sunshine,
temperature and cloud cover on the application of the model.
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