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Abstract: Prescribed burning is a common strategy for minimizing forest fire risk. Fire is introduced
under specific environmental conditions, with explicit duration, intensity, and rate of spread. Such
conditions deviate from those encountered during the fire season. Prescribed burns mostly affect
surface fuels and understory vegetation, an outcome markedly different when compared to wildfires.
Data on prescribed burning are crucial for evaluating whether land management targets have been
reached. This research developed a methodology to quantify the effects of prescribed burns using
multi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) imagery in the forests of southeastern
Australia. C-band SAR datasets were specifically used to statistically explore changes in radar
backscatter coefficients with the intensity of prescribed burns. Two modeling approaches based on
pre- and post-fire ratios were applied for evaluating prescribed burn impacts. The effects of prescribed
burns were documented with an overall accuracy of 82.3% using cross-polarized backscatter (VH)
SAR data under dry conditions. The VV polarization indicated some potential to detect burned areas
under wet conditions. The findings in this study indicate that the C-band SAR backscatter coefficient
has the potential to evaluate the effectiveness of prescribed burns due to its sensitivity to changes in
vegetation structure.

Keywords: prescribed burns; SAR; fire impact; radar burn ratio; post-fire restoration; change detection

1. Introduction

Wildfires are a global agent for environmental change [1,2], and prescribed burning is
an important strategy to minimize the harmful impact of wildfires globally [3]. Prescribed
burning has proven effective in various regions, including Southern Europe [4], North
America [5,6], and Australia [7–9]. In order to meet particular environmental protection
targets, controlled fires are required for prescribed burning. A fire is set under specific
environmental conditions, over an explicit region, and with a specific length, intensity,
and spread rate [3]. Prescribed burning was first implemented in forests with the aim of
minimizing wildfire risks in Australia in the late 1950s [9]. The prescribed fire is used
for: (i) fuel reduction to moderate the adverse effects of wildfires on biodiversity, water,
and soil [10–12], and (ii) land management [13], including logging restoration, forest
maintenance, and conservation of biodiversity [14].

The intensity of prescribed burns varies between low to moderate in southeastern
Australia [15]. The rate of fire spread depends on the seasons. For example, there are
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fewer fire ignitions in spring, which is from September to December, whereas there are
more ignitions in autumn, from March to May, when weather conditions are mild. Broad-
scale adoption of prescribed burning as a conservation measure has altered the structure
and pattern of the fuel period, substantially decreasing the frequency and magnitude
of unplanned fires, along with the severity of impacts on land, environmental factors,
and vegetation in this area [9,11]. However, the effects of prescribed burning should be
monitored to confirm whether defined consumption, area coverage, and fire intensity levels
were achieved. In various habitats, coarse woody debris is a crucial structural feature
for forest biodiversity and functioning [16], and can be impacted by the burning season,
severity, and frequency of prescribed fire treatments [17,18]. Historical data on prescribed
burning effects expressed as intensity or severity of fire are important for determining the
degree to which the goals of land/wildfire management have been accomplished and also
for informing the reporting process aimed at quantifying atmospheric emissions from fire.

The degree or magnitude of environmental changes caused by fire can be defined
as the severity of fire and can be calculated by bio-loss [19]. These environmental trends
are generally measured by severity indices, including the Composite Burn Index (CBI), to
assess the rate of burning for vegetation areas in various sections [20]. Nevertheless, field
investigations are expensive and their application over large areas is impractical. Remote
sensing methods have been widely used to collect information on post-fire landscape
conditions over broad spatial scales [21–23], and spectral indices from multi-spectral
remote sensing data are commonly used for assessing burn severity at the spatial grain of
the sensor [24,25]. However, reflectance-based indices have difficulty in yielding accurate
results due to the influence of multiple factors, such as forest sensitivity, plant phenology,
or solar elevation, rather than structure [26,27].

Considering their sensitivity to scattering elements and capacity to provide direct
measurements of vegetation structure, active sensors such as radar and LiDAR may over-
come the above limitations [28,29]. Various SAR-based techniques are useful to examine
the effects of fire on the three-dimensional structures of canopy and the strata of lower
plants, as radar waves have the ability to penetrate through canopy. The possibility to
estimate the effects of forest fires via radar-based measurements, such as polarimetric
decomposition coefficients, interferometric coherence, and backscatter intensities, has been
demonstrated in previous studies [30,31]. These studies obtained satisfactory estimation
accuracies in wildfire-affected forests and emphasized the need for model calibration with
reference datasets. Burned area algorithms based on temporal differences between pre-
and post-fire radar backscatter values may also suffer from the temporal decorrelation
effect that must also be accounted for. A recent study also revealed that undesirable effects
caused by topography and varying environmental circumstances could be minimized with
bi-temporal approaches [30].

Since prescribed burns primarily affect surface fuels and understory vegetation, their
effect on radar backscattering is largely unknown and may vary from that of wildfires. The
feasibility of analysis methods developed for wildfires has barely been evaluated when ap-
plied to controlled burns. Due to the introduction of thresholds for distinguishing different
groups of fires categorized by their severity, their applications are further complicated. In
addition, it is difficult to distinguish between high-intensity wildfire events and controlled
burns, where the impact of fire ranges from low to moderate. Since SAR data provide a
wealth of information on fire effects even for fires at low severity levels, C-band SAR data
hold great potential for assessing the impacts of prescribed burns [22]. The objectives of
this study include developing and applying a framework for forest fire analysis in areas
impacted by controlled burns, and evaluating the effect of SAR sensor polarization and
environmental conditions on analysis in comparison with wildfires.

2. Study Area

This study was conducted in Croajingolong National Park in southeastern Australia
(36◦13’30” S to 39◦24’42” S, 149◦47’53” E to 150◦18’12”) (Figure 1) [32]. One of only twelve
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world biosphere reserves in Australia, Croajingolong National Park in the state of Victoria
is adjacent to Nadgee Nature Reserve in New South Wales. The study area has an oceanic
Mediterranean climate with mean annual precipitation of about 1200 mm, which can be
divided into a warm and dry season (October to April) and a cool and wet season (May to
September) with >70% of precipitation [33]. The monthly average temperature can be as
high as 27.2 ◦C, usually in January [34]. The above-ground biomass (AGB) ranges between
250 and 350 t/ha for mature Croajingolong National Park, with a further tall woody
understory of 10–20 t/ha and woody debris of 50–70 t/ha. Southeastern Australia’s forests
in Croajingolong are distinguished by breeding plants (70% of the species, specifically
the main species of tree) from post-fire stems [35]. With high-intensity fires, the trees
may withstand defoliation, destruction of stem, and total top scorch, and some particular
trees regenerate apically dominant crowns within five years. Within a month of burning,
epicormics shoots emerge when fire-destroyed branches and upper stem parts weakened
by fire eventually split and fall within the first two years. Fire-defoliated crowns of trees
are typically destroyed, with shoots of epicormics restricted to the lower stem. With 35%
to 45% of the total trees impacted by complete crown scorch, crown mortality also occurs.
Depending on the species, crown replacement is between 30% and 95% within five years,
and it is impossible to differentiate plants with substituted tops from those that have not
experienced top death. In the lesser plant layers, up to 85% of classes can achieve flowering
in the first two years after prescribed burns. Therefore, in the first year after the fire, certain
improvements in forest composition can be predicted, as leaves emerge from the stem
and main branches of both eucalyptus and shrub plants. Between 11 November and 30
December 2019, a scheduled burn was carried out, and approximately 88,500 hectares of
tall open karri forest were burned in Croajingolong (Figure 1).
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Figure 1. Geographic location of the study area: (a) the study area in Australia, (b) main forest distribution in Victoria,
Australia, and (c) geographical location and main forest distribution in the study area.



Remote Sens. 2021, 13, 2386 4 of 15

The goal of the planned burn was to moderate the danger of wildfires by reducing
fuel such as dead wood, leaf litter, bark, and shrubs, preventing extreme scorching or
defoliation of tree crowns in the forest with young regrowth. The flow diagram in Figure 2
summarizes the approaches developed in this study.
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Figure 2. General framework of this study.

3. Materials and Methods
3.1. Radar Data

The Sentinel-1 Single Look Complex (SLC) datasets were obtained from the Copernicus
Open Access Hub and used in this study (Table 1). The dual polarization mode of the
fine-beam (polarization of VV and VH) datasets (orbit: 29794, frame: 716, path: 147)
were collected with a 36.4◦ incident angle at the middle of the swath. For burn severity
estimation, two SAR images (6 October 2019 and 22 February 2020) obtained under different
environmental conditions (dry and wet) were used. The post-fire tree growth was examined
using a third SAR imagery dataset (18 October 2020), which was collected ten months
after the fire (Table 1). Sentinel-1 datasets were obtained over the same season (austral-
autumn) to reduce the possible variations caused by plant phenology and to ensure that
environmental settings are as comparable as possible.

Table 1. The obtained SAR data and cumulative precipitation (mm) three days prior to image acquisition. Historical median
values for temperature and precipitation over the study period are also provided.

SAR
Acquisition

Dates
Timing Mission

Identifier
Mode/
Beam

Product
Type Polarization

Cumulative Precipitations (mm)

Point
Hicks Genoa Mallaooota Gabo Island

Lighthouse

Fire occurrence
data

29 November
2019

Pre-fire 06 October 2019 S1A IW SLC VV/VH 33 a 16.3 a 38.5 a 36.9 a

Post-fire 22 February 2020 S1A IW SLC VV/VH 0 b 4.0 b 11.3 b 28.5 b

Post-fire tree
regrowth 18 October 2020 S1B IW SLC VV/VH 20.8 a 21.8 a 9.3 a 26.8 a

a: Precipitation registered partially during the acquisition date. b: Precipitation reported the following day after image acquisition.
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The SLC data were co-registered to the first image of the series (6 October 2019) us-
ing a lookup table generated from the images’ orbital state vectors. An image-to-image
cross-correlation algorithm was used to estimate the residual offsets present in the lookup
table [36]. Least square and third-degree polynomial function regression methods were
used to solve the errors in the lookup table, and offsets in the table were modeled. Multi-
look (eight looks in azimuth and four in range) techniques were applied to the co-registered
images to achieve a spatial resolution of 30 m. The SAR intensity data was normalized
using an incident field of a derived DEM to achieve the gamma naught backscatter co-
efficient [3]. Using the Range-Doppler approach, the SAR images were orthorectified to
UTM 50S/WGS 84 projection with topography information from DEM and SAR data
orbital details as input [37]. The preprocessing steps were mainly performed using ESA’S
SNAP8.0.3 software.

After preprocessing, the SAR images were grouped into three stacks, one for each
polarization (VH/VV), and one for normalized difference backscatter intensity (NDBI).
The NDBI is a normalized ratio between VV and VH backscatter coefficients (Equation (1)).
For each image stack, three images collected on different dates were processed.

NDBI =
VV − VH
VV + VH

(1)

The radar burn ratio (RBR) basically works as the post- to pre-fire ratio of the backscat-
tering coefficients (Equation (2)):

RBRxy =
γ0Post f irexy

γ0Pre f irexy
(2)

where xy describes a particular polarization based on VV or VH and NDBI, and the
normalized backscatter coefficient based on a linear scale is γ0 (gamma naught). In both
dry and wet conditions, the indices of RBR were computed based on the two polarization
(VV, VH) images and NDBI. The RBR was also computed using the mean of all pre- and
post-fire images. Image histograms were analyzed, and the first (1) and last (99) percentiles
were masked to eliminate outliers. In total, nine RBR images were created.

3.2. Reference Data

A total of 139 geo-located field photographs and an aerial orthophoto with 17 cm
spatial resolution were used to create reference data (i.e., 730 points of different severity
levels). The orthophoto was taken on 22 February 2020 (two months after the burn) with a
Hasselblad H4D-60 camera and georeferenced and orthorectified by Parks and Wildlife
Service, WA. Field images were taken between September and October 2020 (ten months
after the fire) and corresponded to areas with varying levels of effects. Parks and Wildlife
Service from the Department of Agriculture provided the aerial image and field photos.
We further explain three burn severity levels and regrowth of vegetation in Figure 3.

(I) Unburnt class: The prescribed burn appears to have had little effect on these areas.
(II) Low–medium severity class: Areas where the fires affect only understory vegetation

while the crown remains largely unaffected, as well as areas where convective heat
from fire scorched the crown but the canopy structure was maintained (most of the
leaves and main branches). Due to the difficulty in identifying subtle fire effects
through aerial image photointerpretation and the sensitivity of the C-band to the
largest structural elements of vegetation, severity levels from low to moderate were
considered as a single class (mainly stems and branches). Hence, the C band’s ability
to distinguish moderately intense thresholds where large canopy elements remain
relatively unchanged may be affected.

(III) High severity: The crown canopy is entirely absent, and the main branches are partly
burned or missing. There are still several fallen stems.
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vegetation.

Within the prescribed burn boundary, a standard point grid with 300 m spacing was
used to select the sampling points. While the unburned region within the burn area was
small, to represent unburned trees, the points found outside the fire border were also
sampled. There were 730 points sampled proportional to the area in each single class. The
distribution of sample points was stratified by severity classes. The dataset was divided
into two sets after each plot was allocated to a severity class. The first set was used to
calibrate the model, while the second was used to validate it. The points for validation
were selected randomly, leaving all the unselected points for calibration. The results were
not influenced by the various calibration sample sizes for each class, since median value
was used for model calibration for every single class.

3.3. Ancillary Data

The Meteorology Bureau, Government of Australia, provided regular precipitation
weather data in the nearest four meteorological stations, i.e., Point Hicks (Lighthouse),
Genoa (Fools Haven), Mallacoota, and Gabo Island lighthouse (http:/www.bom.gov.au/
climate/data/, accessed on 10 May 2021) (Table 1). In order to explain the environmental
conditions (dry or wet) related to radar backscatter variability due to changes in soil mois-
ture, the data for cumulative precipitation for the three days prior to the SAR acquisition
date were obtained. Low spatial variability of soil moisture in the top few centimeters is
related to high temperatures (high evapotranspiration potential) and low precipitation. The
dates 6 October 2019 and 22 February 2020 were labeled as dry and wet, respectively. Since
the cumulative precipitation was low and the precipitation was registered at least one day
before the SAR acquisition date, the image used to assess post-fire tree survival (18 October
2020) was considered dry. The Shuttle Radar Topography Mission Digital Elevation Model
(DEM) data with 30 m spatial resolution was used for the orthorectification of SAR data.

3.4. Analysis and Modeling of Prescribed Burns

RBR values were derived for all sample points (dry, wet, mean), taking into considera-
tion each type of polarization/index (VV, VH, and NDBI) with different environmental
conditions. To describe the relationship between prescribed burn effects and RBR under
different environmental conditions and polarizations, the mean values with standard devi-

http:/www.bom.gov.au/climate/data/
http:/www.bom.gov.au/climate/data/
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ation values were analyzed. Two modeling approaches were combined for the extraction
of prescribed burn effects using the RBR images. The first modeling approach was sug-
gested in [29] (the STAND model below). An initial strategy was developed and tested
to ease organizational execution (the NORM model). Note that linear scale operations of
a mathematical approach were conducted on the SAR images, while a logarithmic scale
(base 10) was used for data analysis (decibels, dB), which is a standard procedure in radar
remote sensing.

3.4.1. Standard Model (STAND)

There are three continents with seven different forest types included in the original
RBR system, translating into the large variations of RBR ranges. By standardization of
mathematical data (having z-scores), which rescales the values of RBR to a particular range,
compensation for different RBR ranges was achieved. It is important to note that RBR
standardization is not exclusively appropriate for the small area examined in this study. The
original RBR system, however, was retained for reference purposes. Furthermore, using
standard values (z-scores, distance among the significance of the sample values and the
mean of the population) is helpful to interpret the RBR values over various environmental
conditions. Standardization was carried out using Equation (3):

sRBR =
(x − µ)

σ
(3)

where the standardized RBR value is sRBR, x represents the pixel value, and σ and µ are
the mean and standard deviation values of RBR applied to adjacent non-fire-affected areas
of forest.

For standardization, the unburned pixels were used to show the difference compared
to the original process, as the burned region typically displayed gradient ranges from
moderate to low, which then leads to the high variability of the backscatter. Every pixel
value shows the difference in backscatter present in the pixel and backscatter mean of
unburned areas with the use of unburned area for standardization, allowing for better data
analysis (the difference with unburned conditions). To measure the µ and σ values, a total
of 3524 pixels in 5 polygons across the prescribed burn were used to account for spatial
variability in the forest. Once the images with uniform characteristics (sRBR) were collected,
for each single image, the mean value of each class related to severity was determined
using the backscatter values derived from the calibration dataset coordinates. Thresholds
dividing various severity classes were calculated as the median value of the mean (sRBR) of
neighboring severity classes [30]. The median was perceived to be a stable central tendency
test (where outliers are less sensitive) in the case of SAR image analyses marked with
speckle noise.

3.4.2. Normalized Model (NORM)

This model uses the normalized values (nRBR, Equation (4)) of backscattering coeffi-
cients. The benefit of using nRBR lies in its simplified calculation and interpretation, as the
index does not require standardization:

nRBR =
γ0Post f irexy − γ0Pre f irexy

γ0Post f irexy + γ0Pre f irexy
(4)

where xy is a definite polarization (i.e., VV or VH) or NDBI, and γ0 (gamma naught) is the
linear-scale normalized backscattering coefficient. As in the previous model, the median
values were used for computing thresholds between groups.

3.4.3. Model Validation

Using the thresholds obtained for each model, images were classified using sRBR or
nRBR, including unburned, low to medium, and high severity. A total of 18 maps were
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produced (Appendix A, Figures A1–A3). In order to minimize the influence of isolated
pixels, a major filter (3 × 3) was employed on all maps.

Confusion matrices were constructed using the validity points by removing the mod-
eled fire grades. In order to evaluate the agreement between estimated fire impact and
reference, overall accuracy (OA), Cohen’s kappa (kc), omission error (OE), and commission
error (CE) were calculated using the confusion matrices (Equations (5)–(8)) [38].

OA =
TP + TN

TP + FP + FN + TN
(5)

kappa =
OA − pe

1 − pe
(6)

CE =
FP

TP + FP
(7)

OE =
FN

TP + FN
(8)

where TP = true positive, TN = true negative, FP = false positive, FN = false negative,
and p

e= (TP+FN)·(TP+FP)+(FP+TN)·(FN+TN)
TP+FP+FN+TN

. OA is the total number of accurately predicted values

divided by the total number of predictions. The omission error of one class (OE) is the
proportion of real samples of that class that were misclassified (they were class A in the
ground truth, but we classified them as B, C, or D). The commission error of one class (CE)
is the proportion of all classified points in that class that were misclassified (they were
classified as class A, but they belong to class B, C, or D in ground truth). The average
values of CE and OE in each class were calculated by adding up all false positives, false
negatives, true positives, and true negatives. The perception of kappa values relies on
various considerations, with no agreement (kc < 0), mild agreement (0 to 0.20), good
agreement (0.21 to 0.40), modest agreement (0.41 to 0.60), significant agreement (0.61 to
0.80), and nearly perfect agreement (0.81 to 1) [39].

4. Results

In Figure 4a, RBRVH decreased as the intensity of the fire increased under dry condi-
tions. For the cross-polarized channel between the intensity classes of low to moderate and
unburned, an increasing factor in soil moisture due to wet conditions shows a fairly com-
plex relationship with the detection of minor differences. In dry conditions, RBRVV was
less effective in distinguishing between fire severity classes but showed the potential under
wet conditions to distinguish unburned from burned areas, as explained in Figure 4b. Wet
conditions produced the highest dynamic range between unburned and high severity
(2 dB) for RBRVV , which may be due to increased backscatter from the field. Under both
environmental conditions, the RBRNDBI showed an increase with fire severity, as explained
in Figure 4c.

In the process of retrieving the effect based on prescribed burns, two modeling meth-
ods produced comparable results. The most reliable predictions were obtained in dry
conditions, RBRVH , using the STAND model (OA = 82.3%; kc = 0.78). The results are
illustrated in Figure 5.

Figure 6 and Table 2 illustrate validation results for both approaches (STAND and
NORM). The gap between the two models was relatively small. Omission and commission
errors for the severity class of low to moderate were the largest (30% and 35%, respectively).
Errors did not exceed 20% for unburned and high-severity classes. For the cross-polarized
pathway (RBRVH), elevated humidity contributed to a significant loss of sensitivity to inten-
sity levels (Table 2). In contrast to the analysis in dry conditions for the cross-polarization
channel, RBRVV and RBRNDBI displayed lower OA estimation accuracies (70–80%).
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Table 2. Validation results for severity estimates under different environmental conditions obtained for the VH polarization.

Environmental
Condition Polarization Model

OA
(%) Kc

Omission Error (%) Commission Error (%)

Low
Severity

Low–
Medium
Severity

High
Severity

Low
Severity

Low–
Medium
Severity

High
Severity

Wet

VV
STAND 70.0 0.55 18.8 46.0 19.1 13.3 33.3 43.3
NORM 76.6 0.69 7.2 32.5 33.6 8.2 35.4 36.5

VH
STAND 51.2 0.26 8.3 50.8 54.6 35.9 92.5 28.9
NORM 52.6 0.28 9.3 52.9 56.5 36.7 85.9 30.8

NDBI
STAND 65.5 0.48 8.3 53.2 16.9 24.5 36.8 51.6
NORM 60.3 0.50 9.6 52.6 17.8 25.9 23.3 36.6

Dry

VV
STAND 61.1 0.42 9.6 55.3 24.0 36.7 43.3 36.7
NORM 40.0 0.23 62.5 78.6 50.0 50.0 90.0 40.0

VH
STAND 82.3 0.78 6.5 35.9 33.9 25.6 42.8 46.6
NORM 77.2 0.74 27.3 40.7 16.7 20.0 46.7 16.7

NDBI
STAND 68.9 0.53 20.6 47.4 16.7 10.0 33.3 50.0
NORM 51.1 0.27 44.2 52.0 54.6 20.0 60.0 66.7

Mean

VV
STAND 60.0 0.40 30.2 60.0 36.4 0.30 66.7 53.3
NORM 58.9 0.38 34.9 48.2 45.0 6.7 53.3 63.3

VH
STAND 44.4 0.21 46.7 66.7 63.6 20.0 86.7 60.0
NORM 74.4 0.62 25.7 36.0 16.7 13.3 46.7 16.7

NDBI
STAND 66.7 0.50 15.6 50.0 34.6 10.0 46.7 43.3
NORM 50.0 0.25 7.4 50.0 52.3 33.3 86.7 30.0

The NORM model outperformed the STAND model for wet images and the mean
between dry and wet images (Table 2). Although VH polarization provided the most
reliable fire severity forecasts (OA = 82.3%; kc = 0.78) in dry conditions, VV was of particular
importance in wet conditions. RBRVV obtained more accurate results than VH and NDBI
under wet conditions, with the NORM model showing the least errors (OA = 76.6%;
kc =0.69). The NORM model and RBRVH generated the most reliable results (OA = 74.4%;
kc = 0.62) for the mean between dry and wet images. It was also possible to differentiate
between unburned and burned areas in those circumstances (Appendix A, Figures A1–A3).

5. Discussion

Previous experiments have demonstrated that the impacts of fire can be measured
by integrating pre- and post-fire datasets. This study focused on the areas impacted by
the incidents of wildfires that are normally marked as high. Our study improves previous
knowledge on the accuracy of RBR over prescribed burns to minimize ground fuels with
limited effects on the upper canopy. Since C-band SAR data was highly sensitive to scatter
from the top part of the canopy [40], the response of RBR to the lower effect levels in areas
controlled by prescribed burns should be assessed.

This work proved, even in low to moderate severity, that the cross-polarized channel
and dry conditions are the most suitable combination for a fire effect evaluation. The fire
sensitivity was found to be poor in the co-polarized channel, specifically in dry conditions,
and increased under wet conditions, which is consistent with previous studies using X-, C-,
and L-band data over different types of woods [26,28,41]. Since the ground surface shows
more susceptibility with increased backscattering, the VV polarization method and NDBI
provide the ability to detect burned areas under wet conditions. A simplified modeling
technique was applied and yielded comparable accuracies.

The RBR structure and the thresholds suggested in [30] were used to extract severity
maps for the study area. The benefit of using a standard calibration for prescribed burns was
demonstrated by maps validated using reference data in this study. The calibrated models
greatly improved average efficiency from 60% to 82% and the Kappa coefficient ranged
from 0.21 to 0.78. Similarly, the overall accuracy exceeded the minimal value required to
map the severity of prescribed burns (82.3%) [42]. However, further studies are required
to assess the accuracy attained in other forest types and ecosystems. The results obtained
in WA are marginally higher compared to approaches based on a high-resolution optical
dataset (OA value range of 78–83%) [15]. The application of SAR polarimetric and phase
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information and deep learning methods achieved high accuracies for burnt area mapping
from Sentinel-1 SAR data [29,31]. Although the accuracies of the proposed method were
relatively lower, it might be more suitable for operational forest fire monitoring with the
low demand for computational resources. Moreover, the proposed modeling strategy
extracted different severity levels of prescribed burns.

Among the limitations of this study, it is important to point out that five levels of
fire severity were considered in previous studies [15], although only three classes were
included here. For prescribed burns, fewer groups were considered to distinguish between
the unburned (failed burns), burning areas at low to moderate severity levels, and burned
areas at a high severity level, where crown tree damage or decreasing trends in stems
may decrease productivity of the forest. Using fewer groups may affect the outcomes,
as simulation techniques could be more stable, and hence the accuracy will increase. As
compared to field investigations, another weakness was due to the use of reference data
obtained from satellite image interpretation. Such a strategy can produce noise and lead
to the reduction in potential for discrimination. In addition, variations in environmental
conditions before and after the burn cause uncertainties in remote sensing detection results.
The variations in soil moisture in multi-temporal images may inhibit the evaluation of the
impact of fire using SAR datasets [43]. By combining multiple SAR images, the impact of
environmental variations can be minimized each time before and after a fire event [9,44].

6. Conclusions

This study expanded our knowledge of SAR data for impact assessment of wildfires
through an innovative example, prescribed burns. The outcome of prescribed burning
was analyzed by estimating fire effects (severity) on forest flora in Victoria, Australia. The
freely available Sentinel-1 C-band SAR data, with a 12-day temporal coverage and a 5 m
spatial resolution, was applied because of its sensitivity to structural changes in vegetation
after forest fires. A fire intensity assessment was carried out for various polarization and
environmental conditions using multi-temporary SAR indices. A modeling approach for
prescribed burns that can be implemented operationally was developed. The validation
results showed that the VH polarization data under dry conditions provided reliable fire
severity forecasts with an overall accuracy of 82.3% (kc = 0.78). Although VH polarization
provided the most reliable estimation results in dry and mean between dry and wet images,
VV polarization data obtained optimal results in wet conditions. Based on our analysis,
the NORM models outperformed the STAND models in wet and mean between dry and
wet images. The modeling strategy mostly retained the accuracy of the initial RBR method
while reducing computational complexity. This study provided a novel technique to assess
the effectiveness of controlled burns for forest management and decision-makers in fire-
prone areas. The analysis framework could be useful for forest conservation and fire control
decision-makers, not only in southeastern Australia, but also in other areas where burning
is used as a land management method. Future research will involve the deployment of
multiple SAR wavelength channels and the integration of Sentinel-1 data with optical
sensor data to further improve fire severity estimates.
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