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Abstract: Computational fluid dynamics (CFD) simulation is a core component of wind engineering 

assessment for urban planning and architecture. CFD simulations require clean and low-complexity 

models. Existing modeling methods rely on static data from geographic information systems along 

with manual efforts. They are extraordinarily time-consuming and have difficulties accurately in-

corporating the up-to-date information of a target area into the flow model. This paper proposes an 

automated simulation framework with superior modeling efficiency and accuracy. The framework 

adopts aerial point clouds and an integrated two-dimensional and three-dimensional (3D) deep 

learning technique, with four operational modules: data acquisition and preprocessing, point cloud 

segmentation based on deep learning, geometric 3D reconstruction, and CFD simulation. The ad-

vantages of the framework are demonstrated through a case study of a local area in Shenzhen, 

China. 

Keywords: urban wind environment; computational fluid dynamics; aerial point clouds; deep 
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1. Introduction 

Wind environmental analysis is of the most interest in urban physics. It helps address 

challenges in climate, energy, health, and safety [1]. Many studies have conducted differ-

ent forms of wind environmental analysis to study wind-induced disasters and their cor-

responding risk and economic impact [2,3]. Besides using historical data and empirical 

models [2,3], computational fluid dynamics (CFD) simulation emerges as an increasingly 

powerful tool for urban wind environment analysis. Existing studies also employed CFD 

to analyze wind-induced damages towards buildings, trees, and pedestrians [4–6]. 

CFD simulation is critically dependent on modeling, which is the first and most time-

consuming step. For many cities, three-dimensional (3D) models that reflect the current 

environment are not available for urban wind environment analysis. The modeling of 

these cities relies on the static data from geographic information systems (GISs). The 3D 

model development based on the building perimeter has two problems: (1) The GIS data 

may be outdated or publicly unavailable. (2) The GIS data do not include the vegetation 

information that is critical to the simulation [6–8]. Critical projects often necessitate extra 

corrective efforts to reflects the current environment. The manual efforts can never meet 

urgent demands, such as the pollutant analysis for emergence hospital construction dur-

ing COVID-19 [9]. 
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Airborne remote sensing enables obtaining vast built environment information. It 

falls into active and passive categories. The former corresponds to synthetic-aperture ra-

dar and light detection and ranging (LiDAR), whereas the latter is associated with optical 

and thermal range [10]. Remote sensing is extensively employed in the land-use analysis 

[11,12], environmental change detection [13,14], and disaster management [15–17]. Re-

mote sensing also helps obtain point clouds to reconstruct the 3D features of a built envi-

ronment. There are two common methods to obtain point clouds for urban reconstruction: 

LiDAR and oblique photography. A LiDAR system actively emits laser pulses to a target 

and receives the reflected signals, and the point clouds are usually directly recorded by 

LiDAR devices and saved in LAS format. Oblique photography uses optical cameras to 

obtain overlapping images and then generates dense 3D point clouds based on multi-view 

images using structure from motion and multiple view stereo algorithms [18]. Both Li-

DAR devices and optical cameras can be installed on unmanned aerial vehicles (UAVs) to 

collect information about a built environment by aerial surveys. Because optical cameras 

cost less and generate denser point clouds than LiDAR devices [19], it is advantageous for 

characterizing a complex urban built environment comprising numerous buildings and 

trees. 

CFD modeling requires assigning various physical parameters to geometric models 

based on their object classes. Therefore, it is essential to extract semantic and geometric 

information from remote sensing data. For semantic information, the traditional methods 

[20–23] require professional participation and are challenging to automate. Zhou [24] used 

a support vector machine (SVM) to perform semantic segmentation on LiDAR point 

clouds; however, the calculation of point-wise geometric features (i.e., the SVM input) had 

low efficiency and is based on a limited range of local features. 

In recent years, deep learning networks have been extensively used in semantic seg-

mentation. Deep learning uses multiple neural layers to encode the input data in order to 

obtain higher-level representations than conventional artificial neural networks and thus 

enhance the performance [25]. Common networks for 2D semantic segmentation include 

fully convolutional networks [26], U-Net [27], and DeepLab series [28–30]. When applied 

to 3D point clouds in urban wind environment analysis, 2D semantic segmentation is not 

competent. The prediction accuracy is low at the edges of objects because of the lack of 

height information. In addition, when point clouds within a certain range in the projection 

plane are classified as tree canopies, the underlying objects that are not supposed to be in 

the CFD model, such as tree trunks, may also be identified and included in the model. On 

the other hand, networks for 3D semantic segmentation include Voxnet [31], PointNet 

[32], and PointNet++ [33]. They have shown their power in understanding 3D geometries 

and the corresponding engineering applications [34,35]. Such kind of technique has also 

been employed for semantic segmentation of urban built environments [36] but faces 

some challenges. The required GPU memory increases exponentially with an increasing 

number of points. A practical simulation requires point-cloud downsampling that limits 

the local textural features and leads to inaccurate predictions. For point clouds generated 

from oblique photography images, occlusion produces low-quality parts, which results in 

compromised prediction associated with the errors in the height information. This study 

contributes by integrating the 2D and 3D semantic segmentation techniques and leverag-

ing their advantages, to yield a more accurate classification result for the following mod-

eling process. 

There are various mature techniques for 3D reconstruction using point clouds, such 

as alpha shapes [37], ball pivoting [38], and Poisson surface reconstruction [39], which 

generate triangular mesh surfaces. The surfaces generated by these types of methods typ-

ically have flaws (e.g., holes and sharp corners), which cannot be directly used as the CFD 

models. Fixing these geometrical flaws entails huge human efforts. In addition, the num-

ber of polygons becomes extremely large as the detail level increases [40], which unnec-

essarily makes it challenging for the modeling operations such as fixing, importing, as 

well as observation and meshing in the CFD software. Some other methods utilize the 
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morphological characteristics of objects and establish clean and low-complexity models, 

which is more in line with the needs of CFD analysis than the methods generating mesh 

surfaces. Hågbo et al. [41] also showed that this kind of model had a minor impact on 

decisions made towards urban wind simulations compared to a highly detailed model. 

The simulation of an urban wind environment mainly requires the reconstruction of 

buildings and tree canopies. Existing studies focused on the 3D reconstruction of build-

ings [19,24,42,43], as opposed to simulations. Three-dimensional reconstruction of tree 

canopies is mainly based on refined tree modeling [44–46], which is unable to meet the 

detail-level requirement for considering canopies in CFD analysis. In this work, multiple 

modeling techniques are utilized to form the geometric 3D reconstruction module in the 

proposed framework. 

In brief, this study proposes an automated simulation framework for urban wind 

environments based on aerial point clouds and deep learning to address these limitations. 

By combining 2D and 3D deep learning techniques, the accuracy of semantic segmenta-

tion is significantly improved. Based on the existing studies on 3D reconstruction, both 

building models and canopy fluid volume models suitable for CFD simulation are estab-

lished. The findings of this study provide automated modeling support for the CFD sim-

ulation of urban wind environments, which can further facilitate the analysis and deci-

sion-making towards wind-induced disasters. 

2. Automated Simulation Framework for Urban Wind Environments 

As shown in Figure 1, the proposed automated simulation framework for urban 

wind environments is composed of four modules: (1) data acquisition and preprocessing, 

(2) point cloud segmentation based on deep learning, (3) geometric 3D reconstruction, and 

(4) CFD modeling and simulation. 

(1) Module 1: data acquisition and preprocessing 

In this study, oblique photography is performed to obtain the data needed for mod-

eling. Compared to LiDAR point clouds, the point clouds generated by oblique photog-

raphy have (a) a lower acquisition cost, (b) a higher density, which is suitable for complex 

and dense objects in an urban built environment, (c) color information, which enhances 

the detection of canopies with a significant color feature, and (d) building façade infor-

mation, which provides more complete object features for deep learning. The aerial tra-

jectory and the camera parameters can be saved during the oblique photography process, 

and dense point clouds with RGB color information can be generated. Compared with 

modeling methods using GISs, this method can efficiently and conveniently collect the 3D 

up-to-date data of a target area and, thus, provide fundamental data support for model-

ing. 

(2) Module 2: point cloud segmentation based on deep learning 

Considering the impact of canopies, the CFD simulation of an urban wind environ-

ment requires models of the terrain, buildings, and canopy fluid volumes, which are as-

signed different physical parameters. To establish their respective models, the first step is 

to perform a semantic segmentation of the point clouds, which divides the point clouds 

into three parts: terrain, buildings, and tree canopies. A filter is applied to separate the 

point clouds of the terrain. Subsequently, the point clouds are segmented using deep 

learning, which remarkably reduces the work of feature engineering and enhances the 

capture of local features. The method combines the 2D network, DeepLabv3, and the 3D 

network, PointNet++. The point clouds are first rasterized into 2D images as the input of 

DeepLabv3, which subsequently predicts the probability vectors of pixel-by-pixel classi-

fication and maps them back to the points. Finally, the point clouds are sparsified and 

input into PointNet++ to obtain point-by-point classification results. Details of this module 

are elaborated in Section 3. 

(3) Module 3: geometric 3D reconstruction 

After obtaining the respective point clouds of the terrain, buildings, and tree cano-

pies, it is necessary to establish clean and low-complexity models of the target area, which 
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are suitable for CFD simulation. For the terrain, Gaussian process regression is conducted 

to fit the elevation of the terrain point clouds, which completes the digital surface model 

of the area and establishes a 3D model. For buildings, the roof planes are extracted, and 

their boundaries are detected and refined to form 3D models. For tree canopies, the 2D 

boundary and height range of each cluster of canopies are determined, and the prisms of 

the canopy fluid volumes can be established. Finally, the above three parts are integrated, 

with the overlapping parts eliminated by a Boolean operation. Specific steps relating to 

this module are introduced in Section 4. 

(4) Module 4: CFD modeling and simulation 

The 3D models in STL format generated by Module 3 are directly imported into the 

Phoenics CFD simulation software [47]. Grids are generated using its automatic grid gen-

eration function. To perform a CFD simulation of an urban wind environment, the models 

of the terrain, buildings, and canopy fluid volumes are assigned different physical param-

eters by implementing an automated script. 

 

Figure 1. Proposed automated simulation framework for urban wind environments. 

3. Point Clouds Separation Based on Deep Learning 

3.1. Terrain Filtering 

Both terrain and building roofs contain similar horizontal surfaces, which may cause 

unnecessary misunderstandings in 3D semantic segmentation. The cloth simulation filter 

(CSF) [48] is applied to the point clouds obtained by oblique photography to extract the 

terrain point clouds, using a plug-in in the open-source software CloudCompare [48,49]. 
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3.2. Segmentation of Buildings and Tree Canopies 

As mentioned in Section 1, point cloud segmentation of an urban environment using 

2D networks may have limited prediction accuracy at the edges of the objects and cannot 

reflect 3D features. Although 3D networks overcome the above limitations, they may lose 

local texture information owing to the limitation of the GPU memory. Moreover, they are 

more sensitive to the errors in oblique photography point clouds. To overcome the short-

comings of a single 2D or 3D deep learning technique in the point cloud segmentation of 

an urban environment, both methods are combined to better utilize their respective ad-

vantages. The 2D image semantic segmentation network DeepLabv3 [30], which applies 

an atrous convolution to capture multiscale information, is used. A pre-trained ResNet18 

is used as its backbone network. PointNet++ [33], with PointNet [32] as its backbone net-

work, is used as the 3D point cloud semantic segmentation network. It is composed of set-

abstraction layers for hierarchical feature extraction and feature-propagation layers for 

prediction. Using the coordinates and the point-by-point feature vectors as the input, 

PointNet++ can capture the local characteristics of the point clouds. As shown in Figure 2, 

the integrated method comprises four steps. 

 

Figure 2. Point cloud semantic segmentation method combining 2D and 3D deep learning networks. 

(GT is the abbreviation for ground truth.). 
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Step 1: data preparation and labeling 

In the first step, the dense point clouds are labeled manually, and the dataset is di-

vided into training and test sets as the input of the deep learning networks. 

Step 2: 2D data generation 

The dense point clouds are projected onto a horizontal plane and rasterized into im-

ages. The point set of a tile, which is a point cloud segment of the entire model generated 

by the oblique photography processing software, is denoted as 𝑃. The rasterization pro-

cess first creates a grid of dimensions 𝐻 × 𝑊 over the rectangular bounding area of the 

tile. Then, an image of the same dimensions 𝐻 × 𝑊 is created, and each pixel (𝑚, 𝑛) in 

the 𝑚th row and the 𝑛th column corresponds to a grid cell 𝑔(𝑚,𝑛). Let 𝑝 ∈ 𝑃 denote a 

point. The subset of 𝑃  containing the points in 𝑔(𝑚,𝑛)  is denoted as  𝑃(𝑚,𝑛) =

{𝑝|𝑝 ∈ 𝑃, 𝑝 𝑖𝑛 𝑔(𝑚,𝑛)} . The label set of the semantic classes is 𝐿 = {𝑙building, 𝑙tree, 𝑙misc} , 

whose elements represent buildings, tree canopies, and miscellaneous items, respectively. 

The RGB color vector, 𝒄(𝑚,𝑛), of each pixel (𝑚, 𝑛) equals the color vector of the highest 

point in 𝑔(𝑚,𝑛), and it restores the aerial top view. 𝒄(𝑚,𝑛) is calculated using Equation (1). 

𝒄(𝑚,𝑛) = 𝒄𝑝, 𝑝 = argmax
𝑞∈𝑃(𝑚,𝑛)

𝑧𝑞, (1) 

where 𝒄𝑝 is the color vector of a point 𝑝, and 𝑧𝑞 is the vertical coordinate of a point 

𝑞. Similarly, the ground truth label is rasterized into images. The label of each pixel (𝑚, 𝑛), 

𝑙(𝑚,𝑛), is the label with the most occurrences in 𝑔(𝑚,𝑛), as expressed in Equation (2). 

𝑙(𝑚,𝑛) = argmax
𝑙∈𝐿

∑ 𝕀[𝑙𝑞 = 𝑙]𝑞∈𝑃(𝑚,𝑛)
, (2) 

where 𝕀(∙) is the counting function with a value of 0 or 1, and 𝑙𝑞 is the label of a 

point 𝑞. If 𝑔(𝑚,𝑛) does not contain any point, 𝒄(𝑚,𝑛) is calculated by linear interpolation, 

while 𝑙(𝑚,𝑛) is obtained by the nearest-neighbor interpolation. The data forms required 

for the 2D image semantic segmentation—2D images and ground truth masks—are thus 

available. 

Step 3: 2D feature extraction 

The number of 2D top view images generated by the rasterization is quite small be-

cause each tile corresponds to one image only, which is much less than the number of 

original aerial images directly obtained by a UAV. This amount of data cannot meet the 

training requirement of DeepLabv3. Therefore, the 2D image data need to be augmented. 

Random cropping, rotation, and flipping are conducted in this study. After training, 

DeepLabv3 can produce the probability vectors of the pixel-by-pixel classification, and 

the length of the vector equals the number of classes, namely |𝐿|. 

Step 4: feature combination and 3D prediction 

The dense point clouds are randomly downsampled to a reasonable density based 

on the capacity of the computing device. The downsampled point clouds have spatial co-

ordinates, RGB colors, and normal vectors. The location relationship between the points 

and the pixels is determined using the coordinates, and the predicted probability vectors 

of the pixel-by-pixel classification are mapped to each point. In addition, the relative 

height of a point is added as one of the features to reflect the vertical characteristics of the 

objects in the urban environment. The relative height, ℎ𝑝, of a point 𝑝 is calculated using 

Equation (3). 

ℎ𝑝 = 𝑧𝑝 − min
𝑞∈𝑃

𝑧𝑞. (3) 

The combined feature is a 13-dimensional vector comprising spatial coordinates, 

RGB colors, normal vectors, 2D predicted probabilities, and a relative height. Only the 

non-terrain point clouds filtered by the CSF are retained for training and evaluation. 

PointNet++ yields the point-by-point classification results. 

The proposed integrated method has the following three advantages: 
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(1) The 2D prediction of DeepLabv3 is combined with the 3D input features of Point-

Net++, which allows fully utilizing the advantages of the 2D data containing dense 

texture features and overcomes the shortcoming of the 3D network of losing the local 

characteristics when the point clouds are sparsified owing to device capacity. 

(2) The 𝑧 coordinates and the relative heights entailed in PointNet++ strengthen the im-

portance of the vertical information and improve the accuracy at the edges of objects 

compared to that of the single 2D network. 

(3) The input images of the 2D network are not oblique photos captured by a UAV but 

are the images rasterized from the projected point clouds. No extra efforts are needed 

to determine the mapping relationship between the oblique photos and the 3D point 

clouds. Labeling for training is required only once for the point clouds, which avoids 

the burden of labeling on 2D images. 

4. Geometric 3D Reconstruction 

4.1. Terrain Generation 

The filtered terrain point clouds, described in Section 3.1, are used to establish a dig-

ital surface model. Regular rectangular meshes are applied by fitting the terrain point 

clouds with the Gaussian process regression model [50]. 

4.2. Building Reconstruction 

As shown in Figure 3, the building reconstruction comprises three steps before estab-

lishing the geometric models. 

 

Figure 3. Workflow of building reconstruction. 

Step 1: Roof plane detection 

Wang et al. [43] used RANSAC to extract roof planes from airborne LiDAR point 

clouds. This method is adopted in this study as well. However, different from the tech-

nique of Wang et al. [43], in this study, (1) the building point clouds are already separated, 

as discussed in Section 3.2, which reduces the adverse impact of nonbuilding objects on 

the extraction of roof planes, (2) oblique photography point clouds are used, which con-

tain the points of building façades; therefore, an angle threshold is set to filter façade 

planes. RANSAC is implemented using a plug-in of CloudCompare [49,51]. 

Step 2: Boundary extraction 

Constructing 3D models requires the boundary lines of the roof planes. The 2D alpha 

shape algorithm [37] is adopted to extract the boundaries. To extract reasonable bounda-

ries, the alpha value in the algorithm is adjusted based on the density of the point clouds. 

Step 3: Boundary refinement 

Owing to the irregularities of building facades and the errors caused by point cloud 

generation, the boundary geometries may present a zig-zag characteristic after the 
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boundaries are extracted. To create models maintaining general building geometrical and 

topological features for a CFD simulation, specific steps are taken as follows: 

(1) To address the zig-zag problem, the method proposed by Poullis [52] is adopted, 

which detects principal directions and regularizes building boundaries based on 

Gaussian mixture models and energy minimization. The energy minimization prob-

lem is equivalent to a minimum cut problem and is solved using gco-v3.0 [53–56] in 

this study. 

(2) The Ramer–Douglas–Peucker (RDP) algorithm [57,58] is used to sparsify the bound-

ary points to retain the points that lie along straight lines. 

(3) All boundary line segments in the target area are searched for the segment pairs 

whose two segments have a distance and an angle within certain thresholds. Subse-

quently, each segment pair is combined to make both segments in the pair collinear 

in the horizontal plane. 

(4) The angle between each adjacent boundary line segment pair of a building is further 

revised. As shown in Figure 4, for the point set of a building boundary, 𝐵, and its 

sequential points 𝑝𝑖−1, 𝑝𝑖 , and 𝑝𝑖+1, based on the threshold, the revision is as fol-

lows: 

(a) The extreme acute angles caused by outliers 𝑝𝑖  are eliminated. The new point 

set of the building boundary, 𝐵∗, becomes 

𝐵∗ = 𝐵 − {𝑝𝑖}. (4) 

(b) 𝑝𝑖  is moved along the median 𝑝𝑖𝑝𝑚̅̅ ̅̅ ̅̅  of the triangle to 𝑝𝑖
∗ when the angle is ap-

proximately a right angle. Coordinates 𝒙𝑖
∗ of 𝑝𝑖

∗ in 𝐵∗ are revised as follows: 

𝒎 =
𝒙𝑖+1+𝒙𝑖−1

2
 and (5) 

𝒙𝑖
∗ = 𝒎 +

1

2
||𝒙𝑖+1 − 𝒙𝑖−1||

𝒙𝑖−𝒎

||𝒙𝑖−𝒎||
. (6) 

(c) The obtuse angles that are approximately 180° are eliminated to further 

smoothen the boundary. 𝐵∗ is modified as in Equation (4). 

 

Figure 4. Angle revision of building boundaries for (a) extreme acute angles, (b) approximate right 

angles, and (c) obtuse angles approximate to 180°. 

The 3D reconstruction of buildings is completed using the aforementioned proce-

dure. It should be noted that existing studies have proposed various methods for building 

reconstruction, among which one feasible technique is adopted in this study. If a method 

can generate clean and low-complexity building models required for a CFD simulation, it 

can replace this part of the proposed framework. 

4.3. Canopy Fluid Volumes 

It is labor-intensive and unnecessary to model each tree in an urban environment for 

CFD simulations. Amorim et al. [7] grouped neighboring trees and manually modeled 

each group into a strip-like cuboid, whose height equaled the vertical distance between 

the average bottom and the average top of canopies in a local area. This can drastically 

improve the modeling and analysis efficiency and has a limited impact on accuracy [6,7]. 
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In this study, the obtained canopy point clouds are used to build the models of prism-

shaped canopy fluid volumes as described in Algorithm 1; specifically, 

(1) The outliers with average distances to neighboring points remarkably larger than the 

average level in the entire area are removed. 

(2) The point clouds need to be clustered into groups for modeling. Different clustering 

algorithms have been developed in existing studies [59–61]. For the grouping task 

based on the Euclidean distance, k-means-based algorithms require a pre-specified 

number of clusters and assume the clusters are convex. Thus, the DBSCAN algorithm 

[59] is adopted due to its robustness to outliers, explicit control over density via pa-

rameters, and variable cluster shapes. The minPoints and eps of DBSCAN are set to 1 

and 3.0, respectively, in this study. The groups with a point number less than the 

threshold are ignored and removed. 

(3) The 2D boundary of each canopy point group is extracted using the 2D alpha shape 

algorithm [37] and sparsified by the RDP algorithm [57,58]. 

Algorithm 1. Generation of boundaries of tree canopy volumes 

Input: point clouds of tree canopies 𝑃tree = {𝑝𝑖|𝑖 = 1,2, … , 𝑘} 

Output: set of boundaries of tree canopy volumes ℬtree 

for 𝑖 ← 1 to 𝑘 do 

𝑁(𝑝𝑖) ← neighbors(𝑝𝑖 , 𝑛)    //Set of n-nearest neighbors of 𝑝𝑖  

𝑑(𝑝𝑖) ←
1

|𝑁(𝑝𝑖)|
∑ distance(𝑝𝑖 , 𝑞)𝑞∈𝑁(𝑝𝑖)  //Average distance in 𝑁(𝑝𝑖) 

end 

𝑃tree ← {𝑝|𝑝 ∈ 𝑃tree, 𝑑(𝑝) ≤
1

𝑘
∑ 𝑑(𝑝𝑖)𝑘

𝑖=1 + 𝜎threshold}  

𝒯 ← DBSCAN(𝑃tree)      //Set of clustered point clouds 
𝒯 ← {𝑇|𝑇 ∈ 𝒯, |𝑇| ≥ 𝑛threshold}  

foreach 𝑇 of 𝒯 do 

𝐵𝑇 ← AlphaShape2D(𝑇)    //Boundary points of tree canopy 𝑇 
𝐵𝑇 ← RDP(𝐵𝑇)  

end 
ℬtree = {𝐵𝑇|𝑇 ∈ 𝒯}  

4.4. Postprocessing 

The terrain, buildings, and canopy fluid volumes models are integrated. Owing to 

possible overlap, a Boolean operation is implemented in 3ds Max [62] via a script. 

5. Case Study 

5.1. Case Description 

To validate the effectiveness of the proposed automated simulation framework for 

urban wind environments, a real city is chosen for a case study. Bao’an is an administra-

tive district of Shenzhen, a city in southern China. Various types of buildings are densely 

built in the district, including residential, industrial, commercial, and other old buildings. 

In addition, as a typical city in southern China, the city has extensive vegetation, such as 

street trees. The densely distributed buildings and trees pose a significant challenge to the 

CFD modeling of its urban environment (Figure 5). By an aerial survey of a local part of 

Bao’an using a UAV, 3265 photos with a total of 78.4 × 103 trillion pixels are captured. 

Thirty tiles of point clouds having similar sizes are generated using ContextCapture [63] 

(Figure 6). Because oblique photography is easy to implement, the proposed method can 

better reflect the current environment of the target area than a GIS-based method. The 

data are labeled by professional students after using the CSF to filter the ground, as shown 

in Figure 7. The Thirty tiles are rasterized into images for 2D segmentation and feature 

extraction. The grid size is set to 0.1 m in this study, which approximates the density of 

the generated point clouds. 
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Figure 5. Baidu street view of Bao’an, Shenzhen. 

 

Figure 6. Point clouds generated from oblique photography: (a) top view (b) front isometric view. 

 

Figure 7. Point-by-point label without terrain: (a) top view (b) front isometric view. 

5.2. Results and Analysis 

5.2.1. Point Cloud Separation 

After the terrain point clouds are filtered by the CSF, the 30 tiles of point clouds are 

divided in a 6:4 ratio into training and test sets, which contain 18 and 12 tiles, respectively. 

The prediction accuracies of classification of an SVM, a random forest (RF), DeepLabv3, 

PointNet++, and the proposed integrated method are compared. The SVM and the RF are 

implemented based on Scikit-learn [64], while the deep learning techniques are imple-

mented based on PyTorch [65]. The SVM employs the features used by Zhou [24], which 

describe the regularity, horizontality, flatness, and normal vector distribution. Because 

Zhou [24] used LiDAR point clouds without color information, a greenness feature, 
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𝑆greenness(𝑝) [19], is added for the oblique photography point clouds, as expressed in 

Equation (7). 

𝑆greenness(𝑝) =
1

|𝑁(𝑝)|
∑

𝐺𝑞

𝑅𝑞+𝐺𝑞+𝐵𝑞
𝑞∈𝑁(𝑝) , (7) 

where 𝑁(𝑝) is the neighborhood point set of a point 𝑝 and has a range that is con-

sistent with the features used by Zhou [24]. [𝑅𝑞 , 𝐺𝑞 , 𝐵𝑞] is the color vector of a point 𝑞. 

The RF uses the same features as the SVM, and classifiers containing 10, 50, and 100 trees 

are tested, which are denoted as RF-10, RF-50, and RF-100, respectively. 

The backbone network of DeepLabv3 is a ResNet-18 pre-trained on ImageNet. 

DeepLabv3 applies Atrous Spatial Pyramid Pooling (ASPP) to resample features at differ-

ent scales. The dilation rates of the kernels (also known as the atrous rates) of the paral-

leled atrous convolutions are set to (12, 24, 36) in this study. After the augmentation of the 

original training set through random rotation, flipping, and cropping, the input data of 

DeepLabv3 comprise 3000 images with a size of 256 × 256. The batch size is 30, and the 

Adam optimizer with a cosine learning rate initialized at 0.001 is adopted. 

PointNet++ uses four set-abstraction layers with single-scale grouping and four fea-

ture-propagation layers in this study. The architecture is as follows: 

SA(2048, 0.8, [32, 32, 64]) → SA(1024, 1.6, [64, 64, 128]) → SA(512, 3.2, [128, 128, 256]) 

→ SA(256, 6.4, [256, 256, 512]) → FP(256, 256) → FP(256, 256) → FP(256, 128) → FP(128, 

128, 128) → FC(128, 0.5) → FC(3) 

SA(K, r, [l1, …, ld]) represents a set-abstraction layer with K feature points, a ball query 

radius r, and d fully connected layers with width li(i = 1, …, d); FP(l1, …, ld) denotes a 

feature-propagation layer with d fully connected layers; FC(l, rdrop) is a fully connected 

layer with width l and dropout ratio rdrop. The input data are downsampled to 50,000 

points for each tile. The batch size is 6, and the Adam optimizer with a step learning rate 

initialized at 0.001 is adopted. Readers can refer to [30] and [33] for more details of the 

architectures of DeepLabv3 and PointNet++. 

The prediction accuracy of the point cloud segmentation is measured in terms of the 

precision, recall, and F1 score, which are calculated as follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, (8) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, and (9) 

𝐹1 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
, (10) 

where 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 denote true positive, false positive, and false negative, re-

spectively. The F1 score is a comprehensive equal-weight metric of precision and recall. 

Table 1 lists the average metrics achieved on the test set tiles. Taking one building with its 

surrounding environment as an example, the isometric and top views of the original point 

clouds, ground truth labels, and predicted labels of the five methods are shown in Figure 

8. 

It can be concluded that: 

(1) The SVM fails to differentiate between buildings and tree canopies, leading to a mis-

prediction of miscellaneous items (Figure 8c) and relatively low precision for build-

ings and canopies. 

(2) The RF hardly improves its performance when the number of trees increases but has 

a slightly higher performance than the SVM; however, there are many outliers mixed 

in the true classes, which is disadvantageous for the subsequent modeling process. 

(3) Because DeepLabv3 does not have height information, it has a low accuracy at the 

edges of objects and tends to predict the edge points as miscellaneous items (blue 

points at the edges of the buildings and the canopies in Figure 8e). This makes the 
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recall higher for miscellaneous items and significantly lower for buildings and cano-

pies compared to their respective precision. 

(4) Although PointNet++ has a satisfying result for buildings, the precision for canopies 

is low because the normal vector distribution of the canopy areas is irregular. As 

shown in Figure 8f, the canopy points on the right side of the building have a high 

probability of being predicted as building points. This may lead to unexpected build-

ing point clouds and incomplete canopy point clouds in the modeling step. 

(5) The method proposed in this paper combining DeepLabv3 and PointNet++ improves 

the accuracy at the edges of objects as well as addresses the problems caused by the 

complexity of point cloud characteristics and the low generation quality due to oc-

clusion. The accuracy for miscellaneous items is remarkably improved, and the pre-

cision and recall of buildings and canopies are balanced well, which can provide ac-

curate point clouds for 3D modeling. 

Table 1. Average metrics achieved by different methods on test set. 

Classes Building Tree Canopy Miscellaneous Items 

Metrics Precision Recall F1 Precision Recall F1 Precision Recall F1 

SVM 0.88 0.96 0.92 0.72 0.81 0.76 0.00 0.00 0.00 

RF-10 0.89 0.94 0.91 0.76 0.82 0.79 0.34 0.16 0.22 

RF-50 0.89 0.95 0.92 0.76 0.84 0.80 0.42 0.12 0.19 

RF-100 0.89 0.96 0.92 0.76 0.84 0.80 0.43 0.12 0.18 

DeepLabv3 0.97 0.85 0.90 0.90 0.80 0.85 0.36 0.79 0.49 

PointNet++ 0.93 0.94 0.93 0.76 0.82 0.79 0.59 0.45 0.51 

This work 0.96 0.96 0.96 0.86 0.92 0.89 0.68 0.62 0.65 

 

Figure 8. Original point clouds, ground truth labels, and predicted labels of five methods. 

5.2.2. Three-Dimensional Reconstruction 

To determine the effects of buildings and tree canopies on the flow field, a local area 

with densely distributed buildings and trees is selected as the case in the 3D reconstruc-

tion and CFD simulation. The selected area is approximately 650 m × 550 m and has 59 

buildings in total, with a maximum height of 80 m. The method introduced in Section 4 is 

utilized to model the terrain, buildings, and canopy fluid volumes, as shown in Figure 9. 
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The models meet the requirement for CFD simulations and retain the geometric features 

of the main objects to a certain extent. The models are stored in STL format. 

 

Figure 9. Three-dimensional models of terrain, buildings, and canopy fluid volumes of target area. 

5.2.3. CFD Simulation 

The Phoenics CFD simulation software is commonly used for the simulation of out-

door wind environments [66–68]; it is easy to use and computationally fast. Therefore, 

Phoenics is used in this study for the wind simulation of the target area. The generated 

STL files, described in Section 5.2.2, are directly imported as Phoenics geometric models, 

as shown in Figure 10a. The domain size is 2300 m × 2300 m × 500 m, which meets the 

requirements of the distance from domain boundaries to the target area under different 

wind directions [69]. Adaptive structural grids are generated using the automatic grid-

creating function in Phoenics. The grid sizes for the building surfaces can reach approxi-

mately 1 m, which meets the requirement for a CFD simulation (Figure 10b). 

 

Figure 10. Computational models in Phoenics: (a) geometric models, (b) grids (red lines denote 

adaptive constrains, and blue represent grid lines). 

Typical methods of urban wind environment analysis are adopted when setting the 

boundary conditions and model parameters in the CFD simulation. The details are pro-

vided in Appendix A. 

Two scenarios are analyzed in this study. 

(1) Annual dominant wind direction 

Based on the Shenzhen Climate Bulletin 2019 [70], the annual dominant wind direc-

tion is north-northeast (NNE), with a frequency of 17% and an average wind speed of 2.1 

m/s at a 10 m reference height. The wind speed, mean age of air, and wind pressure are 

analyzed under this scenario. The wind amplification factor (WAF) is defined as the local 
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air velocity divided by the wind-profile speed at the local height. The mean age of air 

represents the time that the air has taken to travel from the domain entry to the local point, 

and its relative value reflects the degree of air circulation. The height position of the fol-

lowing metrics refers to the height above the ground. Because the model contains a non-

planar terrain, the simulation results are extracted in Phoenics using an automatic probe 

script. 

Figure 11 shows the wind speed and the WAF at a pedestrian height of 1.5 m. The 

whole area is exposed to a wind speed of less than 5 m/s and a WAF of less than 2, which 

meets the requirements in the Chinese code [71] concerning outdoor walking and comfort. 

However, because of the dense buildings on the east side and a large L-shaped building 

on the west side, the wind speed in some internal streets is low and their mean age of air 

(Figure 12) is higher than that in the surrounding open area. This suggests a poor air cir-

culation condition. Figure 13 shows the wind pressures at 1.5 m, 15 m, and 50 m. Most 

buildings have a wind pressure difference exceeding 0.5 Pa between their indoor and out-

door environments, which meets the requirements of natural ventilation. Except for the 

buildings facing streets and the top stories of the west-side tall buildings, the wind pres-

sure difference between the windward and leeward sides meets the requirement of not 

exceeding 5 Pa [71]. 

 

Figure 11. (a) Wind speed and (b) WAF at pedestrian height of 1.5 m (NNE 2.1 m/s). 

 

Figure 12. Mean age of air at pedestrian height of 1.5 m (NNE 2.1 m/s). 
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Figure 13. Wind pressure at different height levels: (a) 1.5 m, (b) 15 m, and (c) 50 m (NNE 2.1 m/s). 

(2) Tropical storm 

In 2019, Shenzhen experienced the tropical storm Wipha, which exhibited a wind 

speed of 14.1 m/s at a 10 m reference height [70]. The dominant wind direction was south-

east (SE). The wind speed and pressure are analyzed under this scenario. 

Figure 14 shows the wind speed and WAF at 1.5 m. Because the wind direction is 

close to the street direction inside the area, a significant wind amplification effect is ob-

served near the street entrance, which makes pedestrian walking difficult. The wind pres-

sures at 1.5 m, 15 m, and 50 m are shown in Figure 15. Under the tropical storm, some of 

the buildings facing streets experience a large pressure difference between the windward 

and leeward sides, which increases the risk of falling debris and thus requires attention. 

 

Figure 14. (a) Wind speed and (b) WAF at pedestrian height of 1.5 m (SE 14.1 m/s). 
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Figure 15. Wind pressures at different height levels: (a) 1.5 m, (b) 15 m, (c) 50 m (SE 14.1 m/s). 

6. Discussion 

6.1. Data Acquisition and Errors 

The proposed framework adopts digital aerial photogrammetry as its data acquisi-

tion approach, considering that its cost is significantly lower than that of airborne laser 

scanning (ALS) using LiDAR [72]. That would enable a frequent implementation of the 

proposed method to consider changes in the CFD models. Nevertheless, noises exist in 

the point clouds generated by oblique photography due to reasons such as occlusion, par-

allax, texture loss, and lighting conditions [73]. Many studies have lain their emphasis on 

the issue of data noise [74,75]. However, common noise filtering algorithms for point 

clouds, such as statistical outlier removal and radius outlier removal, significantly rely on 

parameter settings. Unreasonable parameters would cause the point clouds to be sparse 

and thus lose geometric information. Since data noise is not the focus of this work, no 

noise filtering is applied before the semantic segmentation module to avoid an adverse 

effect on the local feature learning of the following classification models. Although the 

noise is not filtered in advance, the proposed method can be robust to outliers. That is 

because both the feature calculation required by SVM/RF and the 

ASPP(DeepLabv3)/SA(PointNet++) layer perform local feature extractions, which implic-

itly help identify the outliers. On the other hand, the building reconstruction first applies 

RANSAC to extract roof planes, equivalently performing a plane-wise outlier filtering. As 

for trees, the model of canopy fluid volumes is generated by the 2D alpha shape algorithm, 

making the detected boundary more sensitive to outliers than internal sparseness. There-

fore, an outlier removal is performed in Algorithm 1. The noise of point clouds might also 

be brought by systematic errors. Gopalakrishnan et al. [76] used ALS data to address the 

vertical misregistration issue of the photogrammetry-based point clouds. This kind of 

method would be able to reduce the data noise, whose impact on the proposed method 

needs further study. 
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6.2. Efficiency 

The segmentation experiment is carried out on a high-performance computer. The 

device is equipped with an Intel Xeon E5-2630 v3 @ 2.40GHz as CPU, an NVIDIA GeForce 

GTX1080 as GPU, and 64 GB RAM. The system is Ubuntu 20.04. The time cost of the pro-

posed method mainly consists of two parts: the calculation time of DeepLabv3 and Point-

Net++. In the case study, the time cost is 1664 s during training, while being 147 s for the 

test. In comparison, the single DeepLabv3 method costs 344 s and 126 s for training and 

test respectively, while the figures for PointNet++ are 1316 s and 21 s. The SVM and RF 

methods spend a lot of time on point-wise feature calculation, which is 1377 s and 879 s 

for the training set and the test set, respectively. The training time for SVM is 221 s, while 

its test time is 0.1 s which can be ignored. As for RF, the training time is 191 s, 967 s, and 

1939 s for RF with 10, 50, and 100 trees, respectively, while the test process costs 27 s, 124 

s, and 261 s. It should be noted that the figures above are based on the same training and 

test set, and do not take into account the time for file I/O required by the implementation 

of the framework. In addition, the deep learning techniques leverage the GPU, while SVM 

and RF only use the CPU. 

Although the proposed segmentation method slightly costs more time for an accu-

racy improvement, the time efficiency is competent in terms of the entire modeling frame-

work. In the case study, using the point cloud segmentation and model reconstruction 

methods presented in this study, the CFD models are established by the well-trained 

model within minutes for a complex urban area including vegetation on a personal com-

puter, saving hours of professional manual works on establishing the up to date as-built 

models. The CFD simulation considers complex buildings, vegetation, and their interac-

tion effects. The proposed method significantly reduces the labor cost of CFD modeling 

of an urban wind environment, and professionals can focus more on the simulation and 

result analyses, which is surely beneficial to applications in wind disasters, such as fragil-

ity analysis, risk analysis, and decision making. 

6.3. Geometric Quality 

The geometric quality of the model is critical to an accurate CFD result. For the 

ground model, Gaussian process regression is used to reconstruct the digital surface 

model. If the accuracy needs to be improved, the sampling density on the surface can be 

increased, or methods such as Poisson surface reconstruction can be applied to build a 

high-precision surface. For building models, this work adopts common implementations 

in relevant regional simulation studies in terms of the level of detail [6,7]. Hågbo et al. [41] 

also showed that the adopted level of detail would have a limited impact on decision-

making using wind environment analysis results. For canopy fluid volumes, Gu et al. [6] 

used the field measurement data to validate the model without vertical geometric 

changes, and the results showed that the simulation outcomes of the wind speed are 

within a standard deviation of the measurement. Thus, such a model is adopted in this 

work for simplicity. Normally, by increasing the level of details of the models, such as 

using building models established by the mesh surface reconstruction and canopy fluid 

models built hierarchically to consider vertical changes, the simulation accuracy would 

be enhanced. However, this would reduce modeling efficiency and result in higher re-

quirements for the CFD meshing, which needs more numerical verifications. 

7. Conclusions 

CFD is an effective tool for the simulation of urban wind environments and can be 

employed to wind disaster analysis. A CFD simulation requires accurately and efficiently 

establishing clean and low-complexity models of a city, including terrain, buildings, and 

vegetation. This paper proposes an automated simulation framework for urban wind en-

vironments based on aerial point clouds and deep learning, and mainly focuses on the 
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modeling process. The practicality of the framework is validated by a case study on 

Bao’an, Shenzhen. The main conclusions are as follows: 

(1) Compared with the traditional CFD modeling methods based on GISs, the automated 

method based on oblique photography point clouds can reflect the current environ-

ment of the target area and drastically reduce the labor cost. 

(2) Compared to the point cloud semantic segmentation methods based on SVM, RF, or 

a single deep learning network, the proposed method combining 2D and 3D deep 

learning techniques achieves a higher accuracy, which provides more accurate clas-

sification results for the modeling process. 

(3) The modeling method of the terrain, buildings, and canopy fluid volumes can retain 

general geometric characteristics of the objects while reducing the model complexity, 

which meets the requirements of CFD simulations. 

Author Contributions: Conceptualization, X.L., F.Z. and C.S.; methodology, C.S.; software, C.S.; 

validation, P.Z.; data curation, X.Z.; writing—original draft preparation, C.S.; writing—review and 

editing, X.L. and Y.H.; funding acquisition, X.L. All authors have read and agreed to the published 

version of the manuscript. 

Funding: This research was funded by the Central Research Institute of Building and Construction 

Co., Ltd., MCC Group, China (No. YYY2020Z047), and Tencent Foundation through XPLORER 

PRIZE. 

Acknowledgments: The authors would like to appreciate Beijing PARATERA Tech Co., Ltd. for 

providing the computational support in this work, and also the anonymous reviewers for the con-

structive suggestions. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

The inlet boundary is set as a velocity inlet and uses the power-law wind profile, as 

expressed in Equation (A1). 

𝑈(𝑧) = 𝑈r (
𝑧

𝑧r
)

𝛼

, (A1) 

where 𝑧r and 𝑈r represent the 𝑧 coordinate and wind speed at the reference posi-

tion, respectively; 𝑧r is typically 10 m, and 𝛼 is the power-law exponent, which is set as 

0.22 for an urban area with dense buildings according to the Chinese code [8]. The surfaces 

of the terrain and buildings are set as nonslip boundaries and wall functions. Other do-

main boundaries are set as fixed-pressure boundaries. The Reynolds-averaged Navier–

Stokes (RANS) model and the Chen–Kim k–ε turbulence model [77] are adopted for the 

computation. 

The main impact of trees on the wind field is the reduction in the wind speed due to 

the drag forces and the additional turbulence levels produced by the canopies. These ef-

fects are simulated by adding a sink term to the momentum equation and source terms to 

the transport equations of 𝑘 and 𝜀. Equations (A2)–(A5) are the RANS equations of the 

incompressible flow used in the simulation. For the notations, the Einstein summation 

convention is used as follows: 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (A2) 

𝑢𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜈𝑡) (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗] + 𝑆𝑑, (A3) 

𝜕

𝜕𝑥𝑖
(𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝜈𝑡 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝜀 + 𝑆𝑘, and (A4) 
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𝜕

𝜕𝑥𝑖
(𝜀𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] + 𝐶1𝜀

𝜀

𝑘
𝜈𝑡 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝐶2𝜀

𝜀2

𝑘
+ 𝑆𝜀

𝐶𝐾 + 𝑆𝜀,  (A5) 

where 𝑢𝑖 is the velocity (where 𝑖 equals 1, 2, or 3), 𝑥𝑖 denotes the spatial coordi-

nates, 𝜌 is the density; 𝑝 is the pressure, 𝛿𝑖𝑗 represents the Kronecker delta, 𝜈 is the vis-

cosity, and 𝜈𝑡 is the eddy viscosity, which can be calculated based on the kinetic energy, 

𝑘, and the turbulent energy dissipation rate, 𝜀 [78], as follows: 

𝜈𝑡 = 𝐶𝜇
𝑘2

𝜀
. (A6) 

𝑆𝜀
𝐶𝐾 is the source term introduced by Chen and Kim [77]. 

𝑆𝜀
𝐶𝐾 = −

𝐶4𝜀

𝑘
[𝜈𝑡 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

𝜕𝑢𝑖

𝜕𝑥𝑗
]

2

. (A7) 

𝑆𝑑 is the sink term associated with the drag forces of the tree canopies, and 𝑆𝑘 and 

𝑆𝜀 are the source terms introduced to account for the turbulent interaction between the 

airflow and the tree canopies. 

𝑆𝑑 = −𝐶𝑑𝛼|𝒖|𝑢𝑖, (A8) 

𝑆𝑘 = 𝐶𝑑𝛼(𝛽𝑝|𝒖|3 − 𝛽𝑑|𝒖|𝑘), and (A9) 

𝑆𝜀 = 𝐶𝑑𝛼 (𝐶5𝜀𝛽𝑝|𝒖|3 𝜀

𝑘
− 𝐶6𝜀𝛽𝑑|𝒖|𝜀), (A10) 

where 𝛼 is the leaf area density (LAD), and |𝒖| is the scalar value of the velocity 

vector. Various studies have proposed different parameter values to consider the influ-

ence of tree canopies [79–82]; the value suggested by Green [79] is adopted in this study. 

Because of the lack of detailed data on vegetation, the LAD is typically 4.0 and is assumed 

to be vertically invariant [83], and the drag coefficient, 𝐶𝑑, is set as 0.2 [7]. The constants 

used in the numerical equations are listed in Table A1. 

Table A1. Constants used in numerical equations for modeling effects of trees on airflow. 

𝑪𝝁 𝝈𝒌 𝝈𝜺 𝑪𝟏𝜺 𝑪𝟐𝜺 𝑪𝟒𝜺 𝑪𝟓𝜺 𝑪𝟔𝜺 𝜷𝒑 𝜷𝒅 𝑪𝒅 𝜶 

0.09 0.75 1.15 1.15 1.9 0.25 1.50 1.50 1.00 4.00 0.20 4.00 
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