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Abstract: Hyperspectral image (HSI) super-resolution has gained great attention in remote sensing,
due to its effectiveness in enhancing the spatial information of the HSI while preserving the high
spectral discriminative ability, without modifying the imagery hardware. In this paper, we proposed
a novel HSI super-resolution method via a gradient-guided residual dense network (G-RDN), in
which the spatial gradient is exploited to guide the super-resolution process. Specifically, there are
three modules in the super-resolving process. Firstly, the spatial mapping between the low-resolution
HSI and the desired high-resolution HSI is learned via a residual dense network. The residual dense
network is used to fully exploit the hierarchical features learned from all the convolutional layers.
Meanwhile, the gradient detail is extracted via a residual network (ResNet), which is further utilized
to guide the super-resolution process. Finally, an empirical weight is set between the fully obtained
global hierarchical features and the gradient details. Experimental results and the data analysis on
three benchmark datasets with different scaling factors demonstrated that our proposed G-RDN
achieved favorable performance.

Keywords: hyperspectral image (HSI); super-resolution (SR); spatial gradient; residual dense
network (RDN)

1. Introduction

A hyperspectral image (HSI) is a three-dimensional data cube that consists of hundreds
of bands ranging from the visible to the infrared wavelengths [1]. From the spatial aspect,
the HSI can be treated as a combination of the bands sampled at different wavelengths.
Meanwhile, it can also be formulated as a collection of spectral curves with discrimina-
tion ability, in which different curves correspond to different materials [2]. This spectral
discrimination ability has enabled the wide application of HSIs, such as for environment
monitoring [3] and military rescue [4], among other fields [5–7]. However, due to the limi-
tation of imagery sensors, the number of electrons reaching a single band is limited, which
makes the spatial resolution always sacrificed for the spectral resolution. Super-resolution
(SR) aims at improving the spatial detail of the input image through some image recon-
struction technologies, without modifying the equipment. It has attracted much attention
because of its convenience and flexibility. When applied to HSIs, the SR HSI is designed
to improve the spatial resolution of the HSIs while preserving their spectral information,
which is of great significance for accurate classification and precise detection [8].

In recent years, many SR HSI methods have been proposed. According to the number
of input images, all these works can be roughly classified into two categories [9]. In the
first category, more than one image is input to generate the finer spatial description of the
scene, which is a multiple-to-one process and is called the fusion-based category. In the
second category, only one low-resolution (LR) HSI is input to achieve the high-resolution
(HR) HSI, which is a single-to-single category.
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When it comes to the fusion-based category, there is an important prerequisite that all
the descriptions for the scene should be fully registered. In [10], the HSI with rich spectral
information was fused with another image with fine spatial detail and to obtain the HSIs
with both rich spatial and spectral information. The fusion can be formulated by both the
classical matrix decomposition and the tensor decomposition [11], which takes the intrinsic
three-dimensional feature of the HSIs. Meanwhile, considering the ill-posed property of
the fusion process, many priors have been imported to tackle this inverse problem, such as
the spatial group sparsity [12], the similarities in the super-pixels [13], and the nonlocal
low rankness [14]. Compared with the single-to-single category, more information is input
in the fusion-based category, and it is reasonable that this kind of method achieves greater
spatial enhancement. However, the fusion-based category requires that the inputs should
be fully registered, which may be unavailable in some cases. Hence, many works have been
proposed in the single-to-single category. Among them, Li et al. [15] firstly introduced a
three-layer spectral difference convolutional neural network to super-resolve the HSIs while
keeping the spectral correlation between neighboring bands. Yuan et al. [16] transferred
the classical super-resolution convolutional neural network (SRCNN) for each band of
the HSI, and coupled nonnegative matrix decomposition was further applied to fuse
the band super-resolved HSI and the original LR HSI. Xie et al. [17] blended the feature
matrix extracted by a deep neural network with the nonnegative matrix factorization
strategy for super-resolving a real-scene HSI, in which the estimation of the HR HSI was
formulated as a combination of the latent spatial feature matrix and the spectral feature
matrix. Considering the three-dimensional intrinsic characteristics of the HSI, Mei et al. [18]
proposed a 3D full-CNN to explore both the spatial and spectral information. Li et al. [19]
alternately employed 2D and 3D units to solve the problem of structural redundancy by
sharing spatial information. Furthermore, the subpixel mapping, which employed the
principle of spatial autocorrelation, transformed fractional abundances into finer-scale
classified maps [20]. Since spectral information preservation is also an indispensable
part of hyperspectral images, more and more methods have been proposed in this area.
Wang et al. [21] introduced a recurrent feedback network to fully exploit the complementary
and consecutive information among the spectra of the hyperspectral data. Inspired by the
high similarity among adjacent bands, Mei et al. [22] designed a dual-channel network
through 2D and 3D convolution to jointly exploit the information from both a single band
and adjacent bands. Liu et al. [23] introduced the spectral grouping and attention-driven
residual dense network to facilitate the modeling of all spectral bands and focused on the
exploration of spatial–spectral features. Two strategies [24], which are combining spatial
feature extraction and spectral feature extraction in series and parallel, were used to solve
the problem of the spectral information lost during the reconstruction.

1.1. Related Work

In this subsection, we review the development of the deep-learning-based SR HSI
methods and give a brief introduction to the residual network (ResNet) and the residual
dense network (RDN) utilized in this paper.

1.1.1. CNN-Based SR HSI Methods

In recent years, deep learning has achieved great success in many computer vision
tasks, including the image SR. The SRCNN [25] is the pioneering work that utilized a
three-layer network to simulate the sparse representation process, and it achieved a more
appealing performance than the traditional sparse representation method. Inspired by
this network, a spectral difference CNN (SDCNN) [15] was proposed to learn the map-
ping of the spectral difference between the LR HSI and that of the HR HSI, which took
the spectral correlation as a constraint during the SR process. Meanwhile, the spectral
difference between neighboring bands was expressed as the high-frequency detail. In this
way, because of the spectral difference, it not only ensured the correlation between neigh-
boring bands, but also represented the high-frequency details in the scene. In this way,
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the importing of the spectral difference could reconstruct the spatial information while pre-
serving the spectral information. Jia et al. [26] proposed the spectral–spatial network (SSN),
which included two parts: space and spectrum. This method learns the end-to-end spatial
mapping between single bands to enhance the spatial information. Meanwhile, a spectral
angle error loss function was imported to preserve the spectral information. Yuan et al.
used the method of transfer learning to carry out hyperspectral image super-resolution
and used the SRCNN method with natural images to apply it to the super-resolution of
hyperspectral images. In order to make up for the loss of the spectral dimension, coupled
nonnegative matrix factorization [27] was employed with the CNN technology to force the
maintenance of high spectral resolution. In the process of the reconstruction of the spatial
resolution, the above method did not make full use of the information of each feature layer,
and it made greater use of the information of the last layer in the network, which led to the
failure to obtain a better spatial resolution. Combined with the three-dimensional charac-
teristics of hyperspectral images, 3D convolution has become a new strategy to solve this
problem while improving the spatial resolution of images and maintaining good spectral
similarity. Mei et al. proposed a 3D fully convolutional neural network (3D-FCNN) [18],
which contained four convolutional layers. Different from the ordinary CNN, these use
a 3D convolution kernel, learn the correlation between spectra, and reduce the spectral
loss. Similar to the above method, Wang et al. proposed the spatial–spectral residual
network (SSRNet) [28], which used more complex modules to improve the performance
of super-resolution. In order to reduce the number of 3D modules, the mixed 2D-3D
convolutional network (MCNet) [19] was used for super-resolution, which combined 2D
and 3D modules in parallel to achieve better performance with fewer parameters. Recently,
Li et al. proposed a new method called exploring the relationship between 2D and 3D
convolution for hyperspectral image super-resolution (ERCSR) [29]. This method connects
2D convolution and 3D convolution alternately to overcome the problem of redundancy in
the MCNet under the condition of sharing spatial information. From the above description,
it can be found that although the 3D convolution kernel can greatly reduce the spectral
loss, it greatly increases the number of parameters.

1.1.2. ResNet and RDN

Detailed descriptions of the ResNet [30] and RDN utilized in the proposed G-RDN are
introduced in this subsection. CNN cannot make full use of the feature information of each
layer in the end-to-end process of feature learning. In order to solve this problem, very deep
convolutional networks (VDSRs) [31] and enhanced deep residual networks (EDSRs) [32]
use the residual information in the network to learn the spatial resolution more accurately,
to obtain the global feature information in the image, achieving effective results. At the
same time, a corresponding strategy is the DenseNet proposed by Tong et al. [33]. Different
from the addition of the ResNet, the DenseNet concatenates the features of all layers, which
enhances feature reuse and further reduces the parameters. On this basis, the RDN for
super-resolution proposed by Zhang et al. [34] combined the advantages of residual net-
works and dense networks to further improve the super-resolution performance. However,
in the SR HSI, it is also necessary to take full account of the spectral similarity between
images of different bands, which is also constrained by the reconstruction of better spatial
details. To solve this problem, we proposed G-RDN, which not only effectively extracts
and fuses the information of all layers in the LR HSI, but also uses a gradient branching
network to impose constraints on the super-resolution process to obtain a better SR HSI.

1.2. Main Contribution

In order fully utilize the information that the LR HSI conveys and to obtain a recon-
structed HR HSI with appealing performance, we proposed a novel SR HSI method in
this paper. The gradient detail is injected into the SR process via joint optimization of the
mapping stages, with a feedback mechanism. There are mainly three modules in the SR
process. Specifically, the spatial mapping between the LR HSI and the desired HR HSI is
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firstly learned via a residual dense network. The residual dense network is used to fully
exploit the hierarchical features learned from all the convolutional layers. Meanwhile,
the gradient detail is extracted via a ResNet, which is further utilized to guide the super-
resolution process. Finally, the fully obtained global hierarchical features are merged with
the gradient details via an empirical weight. In summary, the main contributions of the
proposed method can be summarized as follows:

• As far as we know, this is the first time that the gradient detail has been utilized
to enhance the spatial information of the HSIs. Specifically, the gradient is learned
via a ResNet and utilized to inject into the RDN, which ensures more information is
imported in the SR process;

• The gradient loss and the mapping loss between the LR HSI and the desired HR HSI
are combined to optimize both networks. This facilitates the joint optimization of the
gradient ResNet and the mapping RDN by providing a feedback mechanism;

• Experiments were conducted on three datasets with both indoor scenes and out-
door scenes. Experimental results with different scaling factors and data analysis
demonstrated the effectiveness of the proposed G-RDN.

The rest of the paper is organized as follows: A detailed description of the proposed
method is presented in Section 2. We provide a detailed description for the experimental
results in Section 3. The data analysis and the discussion are presented in Section 4. The
conclusions are given in Section 5.

2. Materials and Methods

In this section, we present the four main parts of the proposed method: framework
overview, mapping between the LR HSI and the HR HSI, learning gradient mapping by
the ResNet, and the combination of the gradient and the spatial information. Detailed
descriptions about these four parts are presented in the following subsections.

2.1. Framework Overview

This subsection gives a brief introduction to the proposed G-RDN framework. As shown
in Figure 1, the whole network framework is mainly composed of three modules. The first
module is the residual dense network, which can be formulated as the function F().
The original HSIs act as the input for this module. The second module is a lightweight
residual network, which can be expressed as function G(), which takes the gradient magni-
tude image of the original HSI as the input. Finally, the outputs of the mapping functions
F() and G() are combined via a subtle loss function in the last module.
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Figure 1. Workflow of the proposed G-RDN.

In order to facilitate the discussion, we clarify the notations of some frequently used
terms. The input the LR HSI and the desired HR HSI are represented as ILR ∈ Rw×h×n

and IHR ∈ Rsw×sh×n, where w and h denote the width and height of the input LR HSI. s
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and n denote the scaling factor and the number of bands, respectively. ISR denotes the
super-resolved HR HSI.

2.2. Mapping between the LR HSI and the HR HSI

In the super-resolving process, the low-resolution HSI is the exclusive input, and even
some prior information can be imported into the process. It still cannot be denied that the
spatial information the LR HSI occupies the largest part of all the input information. In this
way, the proposed method super-resolves the HSI by utilizing the spatial information in
the first module. Because the bands in the HSI can be regarded as a collection of images,
they were treated independently to make a full exploitation of their spatial information
and gradient information and to achieve an acceptable super-resolution performance. In
this way, learning the spatial mapping between the LR HSI and its HR image was the most
direct way to utilize the information. In this paper, there were four parts designed in the
RDN, including the shallow feature extraction (SFE) module, the local feature fusion (LFF)
module, the global feature fusion (GFF) module, and the upsampling (UP) module.

Specifically, the SFE module is composed of two convolutional layers, which can be
expressed by:

F0 = σ1(Conv(Conv(ILR))) (1)

where conv() is the convolutional operation and σ1 denotes the activation function achieved
by the ReLU layer. F0 is the output of the SFE module. With these shallow features obtained,
they are sent into several cascaded residual dense blocks (RDBs) to extract the local features
of the scene. This cascaded learning process can be expressed as:

FT = RDBT(RDBT−1(· · · (RDB1(F0)))) (2)

where RDB() denotes the extraction achieved by a residual dense block. Fi represents the
output of i cascaded RDBs.

Then, the hierarchical local features extracted by each of the RDBs are merged via a
concatenate layer, which can be denoted as:

FRO = σ1(Conv(Concat([F1, · · · , Ft, · · · FT ]))) (3)

where concat() means appending the features extracted by the cascaded RDBs. FRO is
utilized to represent the output of the merged features. Meanwhile, the original input with
a simple convolutional extraction is injected into the merged features to obtain the global
feature, which is expressed as:

FRO′ = F−1 + FRO (4)

where F−1 represents the extracted feature of the original input via a shallow convolutional
layer. FRO′ is the output of the injection. It is noted that all the aforementioned features
were extracted on the basis of the LR input HSI, whose spatial resolution was different
from the desired size. In this way, an upsampling operation was applied to FRO′ , and to
achieve the resulting feature map with the desired size. The optimization function of this
spatial mapping can be formulated as:

arg min
θ

losscon(ISR; θI |IHR) (5)

in which losconv can be treated as:

losscon(ISR; θI |IHR) =
1
n

n

∑
i=1

∥∥∥(IHR)
i − (ISR)

i
∥∥∥

1
(6)
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2.3. Learning Gradient Mapping by the ResNet

The gradient statistics characterizes the abundance of the boundary and edge for an
image, which conveys important prior information about the scene. In this paper, we
imported the gradient information as the guidance for the super-resolving process via a
ResNet. In order to achieve the gradient of the input HSI, both the horizontal differential
kernel and the vertical differential kernel were utilized, which can be denoted as:

Ix(x, y) = I(x + 1, y)− I(x− 1, y), Iy(x, y) = I(x, y + 1)− I(x, y− 1) (7)

which is the operation occupied in the gradient-computing block in Figure 1. In this way,
the gradient information of the pixel whose location is (x, y) can be expressed as:

∇I(x, y) = (Ix(x, y), Iy(x, y)) (8)

The magnitude of the gradient can be expressed as:

M(I) = ‖∇I‖2 (9)

In Figure 2, a visual exhibition of the original Washington DC Mall and its corre-
sponding gradient magnitude are demonstrated. As shown in Figure 2, the gradient image
contains the detail information, such as the textures, the boundaries, and so on. Hence, it is
rational that the gradient magnitude image can be utilized to enhance the SR performance.

Figure 2. Visual exhibition of the 70th band of the Washington DC Mall and its corresponding
gradient magnitude.

During the learning process of the gradient, upsampling is firstly operated to obtain
the gradient with the desired size:

GLR′ = UP(GLR) (10)

in which GLR is the gradient map of the input LR HSI.
Once having achieved the gradient with the desired size, a residual network with

two layers is further connected to extract the features for the gradient. Meanwhile, a leaky
ReLU layer acts as the activation function to represent the nonlinear mapping, which can
be denoted as a function σ2. The entire process is formulated by the expression:

GRO = σ2(Conv(Conv(GLR′ ))) (11)
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For the residual network, the original upsampled gradient is injected into the output
of the leaky ReLU, which can be formulated as:

GSR = GLR′ + GRO (12)

In this way, the optimization function of this gradient mapping can be formulated as:

arg min
θ

lossgrad(GSR; θG|GHR) (13)

in which lossgrad can be treated as:

lossgrad(GSR; θG|GHR) =
1
n

n

∑
i=1

∥∥∥(GHR)
i − (GSR)

i
∥∥∥

1
(14)

2.4. Combination of Gradient and the Spatial Information

With the deep learning gradient and the spatial information, the final output of the
G-RDN can be expressed as:

ISR = fG-RDN(ILR, IGLR) (15)

in which fG-RDN depicts the nonlinear mapping expressed by the G-RDN. In this way,
the loss of the whole network can be formulated as follows:

lossjoint(ISR; θ|IHR, GHR) = α1losscon(ISR; θI |IHR) + α2lossgrad(GSR; θG|GHR) (16)

in which α1 and α2 are the weights of the spatial information and the gradient information,
respectively. The optimization of the proposed G-RDN can be expressed as:

arg min
θ

lossjoint(ISR; θ|IHR, GHR) (17)

In the experiment, the values of α1 and α2 were analyzed according to the performance
and to determine the optimal arrangement. With the guidance of the gradient information,
the super-resolving performance was improved, which will be described in detail in the
following section.

3. Results

Extensive experiments were conducted to evaluate the performance of the proposed
G-RDN, for which different datasets were exploited. The details of the training process
and the parameter setting are introduced in this section.

3.1. Implementation Details
3.1.1. Datasets and Evaluation Metrics

We utilized three different datasets including both indoor scenes and outdoor scenes,
which are described in detail as follows:

CAVE dataset: The CAVE dataset (https://www.cs.columbia.edu/CAVE/databases/
multispectral, accessed on 19 May 2021) contains 32 indoor HSIs of high quality, which
were obtained by a cooled CCD camera at 10 nm steps from 400–700 nm. The dataset
covers a wide range of scenes including hair, food, paints, and other items. In this way,
there are 31 bands for each HSI. The number of pixels is 512× 512.

Pavia Center dataset: The Pavia Center dataset (http://www.ehu.eus/ccwintco/index.
php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University, accessed on
19 May 2021) was collected via the Reflective Optics System Imaging Spectrometer (ROSIS)
sensor at a 1.3 m spatial resolution over Pavia, Northern Italy. There are 115 bands with a
spatial size of 1096× 1096 for the scene. By removing the poor-quality area of the image
and the bands with a low SNR, the size of the final HSI was 1096× 715× 102.

https://www.cs.columbia.edu/CAVE/databases/multispectral
https://www.cs.columbia.edu/CAVE/databases/multispectral
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
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Washington DC Mall dataset: The Washington DC Mall dataset (http://engineering.
purdue.edu/~biehl/MultiSpec/hyperspectral.html, accessed on 19 May 2021) was gath-
ered by the HYDICE sensor. There are 1280× 307 pixels with 191 bands covering the
wavelength range of 400–2400 nm. The scene contains abundant information including
roof, street, grass etc.

Visual exhibitions of some typical scenes in these three datasets are demonstrated in
Figure 3. All the HSIs in the CAVE dataset were captured at the ground, which makes them
have comparatively finer spatial detail and a smaller scale. The other two datasets were
spaceborne HSIs, and they have larger scales, but poorer spatial information, bringing
a greater difficulty to the super-resolution process. By utilizing all three datasets in the
experiment, the effectiveness of the proposed method on both indoor scenes with finer
spatial detail and outdoor scenes with poorer spatial detail could be comprehensively
evaluated, which was the same operation as described in [18,29].

Figure 3. Visual exhibition of some typical scenes of the three datasets utilized in this paper.

Six objective evaluation metrics were used to evaluate the effectiveness of the proposed
method and the competitors. These six evaluations metrics were the root mean-squared
error (RMSE), the peak-signal-to-noise ratio (PSNR), the structural similarity (SSIM), the
correlation coefficient (CC), the spectral angle mapping (SAM), and the Erreur Relative
Globale Adimensionnelle De Synthese (ERGAS). These six metrics can be generally clas-
sified into three categories, depending on whether they attempt to measure the spatial,
spectral, or global quality of the estimated image [35]. The CC is a spatial measurement.
The SAM is a spectral measurement. The RMSE, PSNR, SSIM, and ERGAS are global
metrics. Specifically, among these six measurements, the RMSE, CC, PSNR, and SSIM
are universal measurement matrices for image quality assessment, so their detailed de-
scriptions were omitted in this article. The SAM evaluates the spectral preservation for
all the pixels. The optimal value of the SAM is zero. The ERGAS is a global statistical
measure of the SR quality whose best value is also zero. Generally speaking, the larger
the CC, PSNR, and SSIM are, the better the reconstruction quality is. The RMSE, SAM,
and ERGAS are exactly the opposite. To perform a comprehensive performance evaluation
of the proposed G-RDN, all the datasets were downsampled by a factor of 2, 3, and 4 to
achieve the LR input.

The competitors included the classical bicubic interpolation method, the pioneering
SR HSI work SRCNN, and the RDN without the guidance of the gradient. Meanwhile,
we also compared two fusion-based SR HSI methods, which are the NSSR [36] and the
LTTR [37]. It should be noted that in order to ensure all the models shared the same input

http://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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information, the auxiliary HR images required by the NSSR and LTTR were firstly averaged
among all the bands, and then, an upsampling operation was applied to the average result.

3.1.2. Training Details

It is noted that for the CAVE dataset, there were 26 HSIs randomly selected as the
training set, 3 HSIs were as the validation set, and the remaining 3 HSIs as the test set.
Since there was only a single HSI in both Pavia Center and Washington DC Mall, spatial
segmentation was utilized to achieve the three sets for the learning process. Specifically, for
Pavia Center, the first 600 columns were used as the training set, and the 601st to the 665th
columns were gathered as the validation set, while the remaining 50 columns acted as the
test set. For the Washington DC Mall dataset, the first 1024 rows were used as the training
set, the 1025th to the 1152nd rows as the validation set, and the rest 128 rows as the test set.

During the training process, the original HSI were divided into small patches whose
size was 64× 64, and the stride was set as one. Meanwhile, both the slide operation and
the rotation operation of 90◦, 180◦, and 270◦ were carried to enrich the training set.

All the experiments were run on a desktop with an Intel Core i9 10850k 3.6 GHz
CPU, 16 GB memory, and NVIDIA RTX 3070. The epochs for these three datasets were
respectively set as 300, 200, and 200.

3.2. Parameters’ Sensitivity

In the proposed G-RDN, the gradient information of the HSI was used to constrain
the SR process. Specifically, in the loss function (16), there α1 and α2 were set for the loss of
the spatial mapping RDN and the gradient loss achieved by the ResNet, respectively.

As mentioned in Section 2.2, the spatial mapping always plays an important role in
the SR process. Hence, α1 was set to a comparatively high value during the experiment.
Experimental data on the three datasets with different weight setting are demonstrated
in Figure 4, at the scaling factor of two. We gradually increased the value of α2 by a step
of 0.05. It was demonstrated that when α1 and α2 were respectively set as 0.95 and 0.05,
the performance of the G-RDN was poorer than the G-RDN with α1 and α2 set as 0.9 and
0.1. Meanwhile, if α1 and α2 were set as one and zero, the G-RDN would be the same
as the RDN, whose performance was also worse than the proposed G-RDN, which will
be presented in the next subsection. In addition, once the ratio of α2 became greater, the
performance of the G-RDN became worse, as demonstrated in the last three columns of
Figure 4. With the growth of α2, the performance of the G-RDN became more worse. All
the involved measure metrics including the PSNR, SSIM, and SAM exhibited the same
tendency. In this way, we set α1 and α2 as 0.9 and 0.1 as the final weight values.
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Figure 4. Variation of the (a) PSNR, (b) SSIM, and (c) SAM with different α1 and α2 values.

4. Discussion

The discussion of both the objective visual comparison and the subjective measure-
ment metrics is presented in this section.

4.1. CAVE Dataset

The HSIs in the CAVE dataset were all captured based on ground imagery sensors.
The spatial information of all these HSIs is comparatively richer than that of the other two
datasets. Table 1 lists the objective measurement metrics on this dataset, among which
the optimal values are highlighted in bold, and the second values are also highlighted by
underlines. The proposed G-RDN achieved the best value on most measurements. For the
SSIM, at the scaling factor of four, our proposed G-RDN also achieved the optimal value
on the PSNR, SAM, CC, RMSE, and ERGAS, and the SSIM was less than the optimal one,
only 0.0001. Specifically, at the scaling factors of 2, 3, and 4, the global metric PSNR of the
proposed the G-RDN achieved a 0.1 dB, 0.01 dB, and 0.04 dB improvement over the RDN,
respectively. Meanwhile, it achieved nearly a 2.3 dB, 1.7 dB, and 2.7 dB improvement over
the classical bicubic methods at the scaling factors of 2, 3, and 4. When it comes to the
spatial metric CC, the proposed G-RDN always achieved the optimal values regardless
of the scaling factor. For the spectral metric SAM, the spectral distortion brought by the
proposed G-RDN was always the smallest.

To further validate the effectiveness of the proposed G-RDN from the subjective
measurement, a visual comparison of the 30th band reconstructed by different methods
is demonstrated in Figures 5–7, which correspond to the case with the scaling factors
of 2, 3, and 4. As shown in Figure 5, the reconstructed letters in the first test HSI are
clearer than those achieved by the other methods. For the second test HSI in Figure 5,
the boundary of the ellipse palette reconstructed by the proposed method is sharper than
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those of the other methods. When it comes to the apple in the third test, it is noted that
the amplified rectangle region achieved by the proposed G-RDN still owned a sharper
boundary when compared with the other methods. The same phenomenon is demonstrated
in Figures 6 and 7. Meanwhile, for the apple region in the third test HSI in Figure 5, there
were grid artifacts in the HSIs achieved by the NSSR and LTTR, which demonstrated
their high dependency on the other high-resolution RGB image. It was demonstrated that
rectangles reconstructed by the proposed G-RDN were always much sharper than those of
the other methods. The boundary of the ellipse was also much more continuous than those
reconstructed by the other methods. As for the apples in the last two rows, it is seen that
the apples reconstructed by the G-RDN were closest to that in the reference image.

Table 1. Average measurement metrics for the three test HSIs for the CAVE dataset.

Scaling Factor Bicubic NSSR LTTR SRCNN RDN G-RDN

2x

MPSNR 43.6218 38.7055 40.4734 43.8789 45.8008 45.9048
MSSIM 0.9851 0.9572 0.9664 0.9863 0.9888 0.9888
MSAM 2.3093 3.5195 2.9955 2.5901 2.1038 2.0864

CC 0.9978 0.9893 0.9907 0.9963 0.9989 0.9991
RMSE 0.0105 0.0121 0.011 0.0096 0.0073 0.0067

ERGAS 5.5374 5.9292 5.7933 4.2332 3.3101 3.2807

3x

MPSNR 38.1441 33.9825 38.8393 38.2535 39.8439 39.8535
MSSIM 0.9667 0.9238 0.9663 0.9699 0.9756 0.9737
MSAM 3.3536 4.7017 4.6334 3.7036 3.1577 3.1574

CC 0.9943 0.9869 0.9895 0.9957 0.9971 0.9972
RMSE 0.0175 0.019 0.0183 0.0161 0.0127 0.0122

ERGAS 5.801 5.9397 5.8205 4.9949 3.8503 3.8494

4x

MPSNR 33.833 30.5175 33.531 34.2023 36.4958 36.5326
MSSIM 0.9381 0.8859 0.9137 0.9418 0.9508 0.9523
MSAM 3.9615 5.0025 4.1639 4.0125 3.8109 3.7993

CC 0.9904 0.9818 0.9842 0.9925 0.9940 0.9943
RMSE 0.0228 0.0231 0.0229 0.0207 0.0181 0.0177

ERGAS 5.6172 5.7003 5.6639 4.8337 4.1010 4.0494
X2

Ground Truth(GT) Bicubic NSSR LTTR SRCNN RDN G-RDN

Ground Truth(GT) Bicubic NSSR LTTR SRCNN RDN G-RDN
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Figure 5. Visual exhibition of the reconstructed test HSIs for the CAVE dataset at the scaling factor
of 2.
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Figure 6. Visual exhibition of the reconstructed test HSIs for the CAVE dataset at the scaling factor
of 3.
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Figure 7. Visual exhibition of the reconstructed test HSIs for the CAVE dataset at the scaling factor
of 4.

To further evaluate the spectral discrimination ability of the reconstructed HSIs, we
randomly selected a pixel from the reconstructed HSIs named “paints_ms” (the second
scene in Figure 5) and plot the corresponding spectral curves reconstructed by different
methods in Figure 8, in which Subfigure (a), (b), and (c) correspond to the scaling factors
of 2, 3, and 4, respectively. It can be seen that the curve reconstructed by the proposed
G-RDN was always the closest to the ground truth. Meanwhile, as the scaling factor
grew, the advantage of the proposed G-RDN method was more obvious in the spectral
preservation, which further proved the effectiveness of the gradient guidance.
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(a) (b) (c)

(a) x2 (b) x3 (c) x4

Figure 8. Visual exhibition of the spectral curves of a randomly selected pixel in the reconstructed test HSIs.

4.2. The Pavia Center Dataset

The Pavia Center dataset covers a wider range of ground object information within a
limited spatial resolution, which makes it more difficult to achieve an acceptable super-
resolution performance. The objective measurements for this dataset with the scaling
factors of 2, 3, and 4 are listed in Table 2. It is noted that the comparative correlation was
the same as that for the CAVE dataset. All the measurements were optimal, besides the
SSIM at the largest scaling factor of four. The optimal SSIM was only superior to that
of the G-RDN with a gap of 0.0001, but the G-RDN outperformed it on both the PSNR
and the SAM measurements. Specifically, compared with the second-best method, the
CC, RMSE, and ERGAS increased by 0.0009, 0.0004, and 0.0237, respectively. Meanwhile,
at the scaling factors of 2, 3, and 4, the global metric PSNR of the proposed G-RDN always
achieved the optimal value. As for the metric ERGAS, it achieved a 0.026, 0.0087, and
0.0237 improvement compared with the second-best method, the RDN, when the scaling
factors were 2, 3, and 4, respectively.

Table 2. Average measurement metrics for the Pavia Center dataset.

Scaling Factor Bicubic NSSR LTTR SRCNN RDN G-RDN

2x

MPSNR 33.6862 34.0858 34.3149 35.8849 36.0463 36.4479
MSSIM 0.9269 0.9248 0.9297 0.9487 0.9542 0.9545
MSAM 3.5016 3.6888 3.6018 3.4889 3.365 3.2299

CC 0.9821 0.9826 0.9837 0.9866 0.9889 0.9894
RMSE 0.0207 0.0199 0.0187 0.0172 0.0162 0.0151

ERGAS 6.9033 6.8302 6.6229 5.8707 5.1004 5.0744

3x

MPSNR 30.3553 30.6463 30.6624 31.0216 31.4001 31.4287
MSSIM 0.8561 0.8504 0.8594 0.8782 0.8860 0.8866
MSAM 4.2437 5.5145 5.5125 4.8702 4.1229 4.114

CC 0.9646 0.9687 0.9693 0.9712 0.9727 0.9731
RMSE 0.0304 0.0299 0.0295 0.0289 0.0272 0.0268

ERGAS 6.5948 6.5777 6.4981 6.0287 5.6505 5.6418

4x

MPSNR 28.4842 28.6269 28.971 29.4192 29.7698 29.8027
MSSIM 0.7917 0.7727 0.7761 0.8294 0.8379 0.8378
MSAM 4.7936 6.8398 6.3484 4.8281 4.7765 4.764

CC 0.9473 0.9488 0.9502 0.9545 0.9593 0.9602
RMSE 0.0377 0.0371 0.036 0.0346 0.0331 0.0327

ERGAS 6.0684 5.9553 5.7378 5.4939 5.2201 5.1964

Visualizations of the reconstructed dataset by different methods at the scaling factors
of 2, 3, and 4 are displayed in Figures 9–11, respectively. For the visual comparison of Pavia
Center, we also selected two additional small regions with comparative rich boundary
information to emphasize the spatial difference. As seen from the amplified gap in the
figures, the boundaries of the gaps reconstructed by the bicubic, NSSR, and LTTR were
vague, and the gap reconstructed by the proposed G-RDN was the closest to that of the
ground truth. The proposed G-RDN method always restored more structural information
for the roof edge in the enlarged image, and a better spatial enhancement was obtained
regardless of the scaling factor.
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Figure 9. Visual exhibition of the reconstructed Pavia Center at the scaling factor of 2.
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Figure 10. Visual exhibition of the reconstructed Pavia Center at the scaling factor of 3.

In addition, to present the spectral distortion of the reconstructed image, we randomly
selected one pixel from the scene and drew the corresponding spectral curves reconstructed
by different methods, as shown in Figure 12. It can be clearly seen that the RDN and the
G-RDN methods were obviously superior to the other methods in the spectral preservation.
When compared with the RDN, the spectral curve achieved by the proposed G-RDN was
closer to that of the ground truth, resulting in less spectral loss.
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Figure 11. Visual exhibition of the reconstructed Pavia Center at the scaling factor of 4.
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Figure 12. Visual exhibition of the spectral curves of a randomly selected pixel in the reconstructed Pavia Center.

4.3. The Washington DC Mall Dataset

Just as Pavia Center, the Washington DC Mall dataset is also a spaceborne HSI, which
had a relatively low spatial resolution when compared with the CAVE dataset. The low
spatial resolution makes it more difficult in the super-resolution process. Table 3 lists the
average quantitative results of different methods on the testing set from this dataset. A
seen from Table 3, the proposed method still obtained the best values on both the spatial
assessment metric PSNR and the spectral assessment SAM and the other metrics, except
the SSIM, being superior to the other approaches and ranking first. Our SSIM was less
than that of the RDN with a gap of 0.0002 when the scaling factor was three. Our PSNR
achieved a 0.086 dB improvement, and the performances of the CC, RMSE, and ERGAS
were improved by 0.0004, 0.0004, and 0.0844, respectively. Meanwhile, all metrics achieved
the top value at the scaling factors of two and four. Specifically, the global metric PSNR of
the proposed G-RDN achieved nearly 0.2 dB and 0.02 dB when the scaling factors were two
and four, respectively. For the spectral metric SAM, the spectral distortion of the proposed
G-RDN always achieved the best value under different scaling factors. It should be noted
that the band number of Washington DC Mall was larger than that of the other two datasets.
In this way, the spectral preservation was more difficult, and the SAM measurement was
larger than those of the other two datasets overall.
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Table 3. Average measurement metrics for the Washington DC Mall dataset.

Scaling Factor Bicubic NSSR LTTR SRCNN RDN G-RDN

2x

MPSNR 33.7651 31.2735 32.1645 34.1544 34.5633 34.7885
MSSIM 0.9334 0.8931 0.9213 0.9464 0.9488 0.9507
MSAM 3.774 5.5977 3.947 4.7756 3.9052 3.6993

CC 0.9699 0.9613 0.9678 0.9765 0.9794 0.9795
RMSE 0.0205 0.0258 0.0213 0.0196 0.0189 0.0182

ERGAS 11.1844 12.3789 11.9301 10.9491 10.8581 10.8572

3x

MPSNR 31.0348 27.5924 28.3509 31.1778 32.6729 32.7584
MSSIM 0.8717 0.8195 0.8288 0.8703 0.8776 0.8774
MSAM 5.4422 7.3769 6.4613 5.6762 5.3778 5.3676

CC 0.9414 0.9337 0.9369 0.9498 0.9568 0.9572
RMSE 0.0361 0.0443 0.0401 0.0318 0.0294 0.0290

ERGAS 8.3716 10.0755 9.7328 8.1876 7.9231 7.8387

4x

MPSNR 29.5499 25.7901 26.4819 29.3781 30.5434 30.5691
MSSIM 0.8212 0.7642 0.7645 0.8342 0.8408 0.8408
MSAM 6.5745 8.1343 8.0897 7.8393 6.4336 6.291

CC 0.9264 0.9197 0.921 0.9318 0.9339 0.9341
RMSE 0.0362 0.0409 0.0387 0.0351 0.0337 0.0333

ERGAS 7.3201 8.9878 8.2713 6.9525 6.4718 6.4647

Figures 13–15 exhibit the visualization of the reconstructed Washington DC Mall at
the scaling factors of 2, 3, and 4, respectively. Seen from the amplified rectangle regions, the
proposed G-RDN had advantages in restoring the structural information of the building
and the surrounding details. For the reconstructed HSIs, the shape of the selected trapezoid
region in the HSI achieved by the proposed method was still the clearest. When it comes to
the visual figures, the shape of the selected trapezoid region was still the clearest, which
further validated the effectiveness of the proposed method. Meanwhile, other competitive
methods were not clear enough in the reconstruction of the edge information, and there
was a visible visual gap with the proposed method. Meanwhile, to verify the spectral
discrimination ability of the reconstructed HSIs, Figure 16 displays the spectral curves of a
randomly selected pixel in the reconstructed HSIs, also at the scaling factors of 2, 3, and 4.
The spectral curve reconstructed by the proposed method was still superior to those of the
other algorithms.
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Figure 13. Visual exhibition of the reconstructed Washington DC Mall at the scaling factor of 2.
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Figure 14. Visual exhibition of the reconstructed Washington DC Mall at the scaling factor of 3.
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Figure 16. Visual exhibition of the spectral curves of a randomly selected pixel in the reconstructed Washington DC Mall.
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Data comparison between the RDN and the proposed G-RDN further validated the
significance of the gradient guidance. Experimental results on both subjective visual effects
and objective evaluation indexes verified the effectiveness of the proposed G-RDN for both
ground-based HSIs and the spaceborne HSIs with poorer spatial information.

5. Conclusions

In this paper, a novel G-RDN was proposed for SR HSIs based on an end-to-end
mapping between low- and high-spatial-resolution HSIs under the guidance of gradient
information. Specifically, the spatial information was learned via several residual dense
blocks in a hierarchical to extract the spatial feature at different levels. Meanwhile, the gra-
dient information was learned via a ResNet and acted as a guidance for the SR process,
which further improved the reconstruction performance. The spatial mapping and the
gradient information were subtlety fused with an empirical weight setting. The main
contribution of this paper was that, for the the first time, the gradient detail was imported
to super-resolve the HSIs. Experimental results and data analysis on both the ground-based
HSIs and the spaceborne HSIs with different scaling factors proved the effectiveness of
the proposed G-RDN. In our future work, we will focus on how to more deeply utilize the
gradient information and achieve better super-resolution performance.
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