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Abstract: Quantitatively identifying the influences of vegetation restoration (VR) on water resources
is crucial to ecological planning. Although vegetation coverage has improved on the Loess Plateau
(LP) of China since the implementation of VR policy, the way vegetation dynamics influences
regional evapotranspiration (ET) remains controversial. In this study, we first investigate long-term
spatiotemporal trends of total ET (TET) components, including ground evaporation (GE) and canopy
ET (CET, sum of canopy interception and canopy transpiration) based on the GLEAM-ET dataset.
The ET changes are attributed to VR on the LP from 2000 to 2015 and these results are quantitatively
evaluated here using the Community Land Model (CLM). Finally, the relative contributions of VR
and climate change to ET are identified by combining climate scenarios and VR scenarios. The
results show that the positive effect of VR on CET is offset by the negative effect of VR on GE, which
results in a weak variation in TET at an annual scale and an increased TET is only shown in summer.
Regardless of the representative concentration pathway (RCP4.5 or RCP8.5), differences resulted
from the responses of TET to different vegetation conditions ranging from −3.7 to −1.2 mm, while
climate change from RCP4.5 to RCP8.5 caused an increase in TET ranging from 0.1 to 65.3 mm. These
findings imply that climate change might play a dominant role in ET variability on the LP, and this
work emphasizes the importance of comprehensively considering the interactions among climate
factors to assess the relative contributions of VR and climate change to ET.

Keywords: canopy evapotranspiration; community land model; ground evaporation; sensitivity
experiment; spatiotemporal change

1. Introduction

Evapotranspiration (ET) is an essential component of both hydrological processes
and surface energy exchange, which regulates water allocation to a land surface and thus
plays an important role in water resource management [1,2]. Over the past three decades,
dynamic changes in ET have been investigated extensively, revealing that global annual ET
generally exhibits an increasing trend, but the magnitude of the increase varies between
different regions [3,4]. Although it has been demonstrated that the local climate is a key
driver of ET, land cover changes also play an important role in ET changes as the ET
process can be modulated by vegetation cover by altering canopy interception, canopy
transpiration, and ground evaporation (GE) [5–9]. Quantitatively identifying the causes of
ET change is crucial to better understand hydrological process change due to climatic and
anthropogenic impacts and to support decision makers in water resource planning and
management.

In the context of climate change, many studies have tried to explain ET change [10,11]
and the responses of ET to various climatic factors, such as air temperature, solar radiation,
precipitation, relative humidity, and wind speed, and these factors have been extensively
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investigated through observations and modeling; however, inconsistent conclusions have
been drawn due to different climate zones, vegetation cover characteristics, and land
management practices. For example, Guo et al. [12] assessed the sensitivity of ET to climate
conditions based on 30 Australian locations in different climatic zones and concluded
that wind and relative humidity are important variables for dry and humid catchments,
respectively, while solar radiation has the greatest influence in warmer catchments. Wang
et al. [13] found that wind speed was the most influential climatic variable for ET variability
in China during 1961−2013, followed by the maximum daily temperature and sunlight
duration. Pour et al. [14] reported that minimum temperature was the most influential
factor for ET increase in peninsular Malaysia. Additionally, the rate of evaporation from
open pans of water in the Northern Hemisphere has been steadily decreasing in past
decades, which is in contrast with the expectation that a warming climate should cause
an increase in the rate of evaporation from terrestrial open water bodies [15]. These
findings reveal the complexity of the interaction between climate variables and ET and the
uncertainty of existing knowledge.

The influences of land cover change on ET have also attracted much attention. There
is consensus regarding the responses of ET to ecological restoration, i.e., afforestation is
generally effective in improving land surface greenness and simultaneously decreases
water yields and increases ET at the watershed scale [16–19]. In contrast, vegetation
degradation exerts the opposite effects and leads to decreased ET [20–23]; however, the
consequences of the restoration on ET at regional scales and in large river basins are
still contentious [18,24,25], because different land cover types have different biophysical
effects due to different leaf area index (LAI), surface albedo, and root depth characteris-
tics [16]. Moreover, stomatal responses to increased atmospheric CO2 concentrations vary
in vegetation species, which correspondingly have different evaporation rates [26,27].

Identifying the contribution of climate change and vegetation coverage to ET change
can help understand the causes of hydrological variations and explain the complex interac-
tions between vegetation and climate. For this purpose, a number of attribution analyses
have been conducted globally [1,21,28–30], and several types of approaches have been
used to investigate the linkage of ET and various driving variables. Field observations are
commonly used to quantify the impacts of climate and vegetation on ET, such as eddy
covariance techniques, porometry, and lysimeters, and scintillometry, but these observation
methods only cover small areas at the site level with short time spans; thus, the response
mechanisms depending on the multiple vegetation cover and long-term climate evolution
at the regional scale cannot be completely reflected. In recent years, remote sensing has
been used to explore ET changes over a large spatial scale. An increasing number of ET
products have been developed using land surface models and data assimilation based
on remote sensing. These products have been largely used to detect ET trends [4] and
statistically regress and correlate ET and environmental factors, such as land cover types,
surface temperature, precipitation, and wind speed [6,19,31,32]. The correlation values
cannot quantitatively reflect the contribution of certain factors to ET, and assuming lin-
ear relationships between ET and climatic factors is inconsistent with reality because the
relationship is nonlinear [33].

With the advancement of computer techniques and the understanding of land and
atmosphere coupling, large-scale hydrological models [17,34], empirical models based on
the Budyko framework [35], remote sensing- or energy balance-based ET models [36,37]
and process-driven land surface models [38,39] have been created and applied to explore
how environmental factors affect ET. In particularly, land surface models, as offline hydro-
logic models or land surface modules in tandem with Earth system models, have become
powerful tools to study regional and global water cycles and climate change under hetero-
gonous underlying surface conditions, because they have comprehensive biogeophysical
parameterization mechanisms to capture the physical and biological interactions between
land and atmosphere [40].
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The Chinese Loess Plateau (LP), located in the transition zone between the southeast hu-
mid monsoon climate and northwest inland arid climate, covers an area of 6.4 × 105 km2 [41].
The plateau has experienced severe vegetation degradation and soil erosion. To conserve
soil and water resources in this region, a series of ecological restoration programs have
been implemented since the 1960s, leading to increased vegetation coverage [41]. In par-
ticular, the largest program, called the Green for Grain Project, was launched in 1999, in
which a large proportion of cropland was converted to forest and grassland. These actions
largely modify the landscape and simultaneously caused decreases in both water discharge
and sediment load [42]. Inevitably, large scale revegetation consumes more water from
soil to maintain growth, accompanied by water loss through canopy transpiration [43].
Consequently, elucidating whether current vegetation restoration (VR) results in more
water loss through ET in the LP has attracted the attention of many scholars [35,44–47];
however, the quantitative analysis of the contribution of VR and climate change to ET
remains limited. In this study, we quantitatively evaluate the contribution of VR and
climate change to the ET on the LP at the regional scale based on remote sensing products
and the Community Land Model (CLM). The specific objectives here are to (1) detect the
spatiotemporal change in the ET component, including GE and canopy ET (CET) during
1980−2018, (2) evaluate the CLM performance in simulating ET change in the LP region,
and (3) quantitatively differentiate the contributions of climate change and VR to ET based
on sensitivity simulations. The results can not only help us gain a better understanding of
the hydrological effect of VR, but also provide decision makers with accurate and timely
information for restoration planning and water resource management.

2. Materials and Methods
2.1. Model Description

All simulations used version 4.0 of the CLM (CLM4.0, hereafter referred to as CLM),
which is coupled in Community Earth System Model version 1.2 (CESM1.2) and has
been widely used in different ecosystems to evaluate the effects of land cover change,
atmospheric deposition, and climate change on soil and surface waters in terrestrial ecosys-
tems. The model parameterizes solar radiation partitioning, water transfer between the
atmosphere and land surface, and soil organic matter dynamics. The CLM is designed to
represent complex vegetation structures by applying plant functional types (PFTs), and
seventeen PFTs are defined to capture plant physiology and ecological function, includ-
ing needleleaf evergreen temperate trees, needleleaf evergreen boreal trees, needleleaf
deciduous boreal trees, broadleaf evergreen tropical trees, broadleaf evergreen temperate
trees, broadleaf deciduous tropical trees, broadleaf deciduous temperate trees, broadleaf
deciduous boreal trees, C3 arctic grasses, C3 non-arctic grasses, C4 grasses, broadleaf ever-
green shrubs, broadleaf deciduous temperate shrubs, broadleaf deciduous boreal shrubs,
corn, wheat, and bare ground. The CLM allows multiple PFTs to coexist in each grid cell
and land cover heterogeneity is specified through the foliage projective cover and LAI of
each PFT. The soil profiles are divided into 15 layers with different depths from 0.007 m to
35.178 m in each grid cell. More information about the CLM and its theory can be found in
the theoretical document [48].

2.2. Data Sources

The ET dataset, based on the Global Land Evaporation Amsterdam Model (GLEAM),
was used to detect the spatiotemporal change in ET in the LP region during the period
of 1980−2018. The GLEAM encompasses a set of algorithms which use satellite forcing
data to separately estimate ET components, including GE, canopy transpiration, canopy
evaporation, snow sublimation, and open-water evaporation [49]. Actual ET in the GLEAM
is expressed as a function of potential ET and a stress factor that accounts for water limita-
tions, and the potential ET is calculated based on the Priestley and Taylor equation [50].
The newest version, GLEAM-ET 3.3a, is provided with a 0.25◦ × 0.25◦ latitude–longitude
grid with a monthly temporal resolution (https://www.gleam.eu/; accessed on: 6 January

https://www.gleam.eu/
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2021). The GLEAM dataset has been widely used and verified to reflect the spatiotemporal
characteristics of different terrestrial evaporation components. The GLEAM-ET dataset
for the period from 1995–2004 was compared with ET components simulated by the CLM
to evaluate the model performance in the LP region. The necessary atmospheric forcing
data for driving the CLM were developed by Qian et al. [51], and these data have been
widely tested and successfully used in different regions to explore the water cycle. The
vegetation cover represented by PFT on the LP in 2000 and 2015 was acquired from satellite
observation-based global land cover products at a 300 m resolution from the European
Space Agency (ESA) as part of the Climate Change Initiative (CCI) land cover project
(http://www.esa-landcover-cci.org/; accessed on: 16 September 2020). The LAI data,
obtained from the eight-day composite Global Land Surface Satellite (GLASS) product with
a spatial resolution of 1 km, were retrieved from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) reflectance product (MOD09A1) [52] (downloaded from the National
Earth System Science Data Center, http://www.geodata.cn; accessed on: 9 September
2020). The LAI datasets were combined with the vegetation cover dataset to obtain the
monthly LAI of each PFT using spatial overlay analysis.

2.3. Experimental Designs

Our analyses of the impact of VR on ET dynamics are based on two modern simula-
tions that are performed using an offline CLM with fixed atmospheric forcing. The first
simulation was designed for the control experiment (LC2000), representing vegetation
cover in the LP region at the 2000 level. The model was forced with Qian atmospheric
forcing data during 1972–2004, and the greenhouse gases were set at the 2000 level, with a
CO2 concentration of 367 ppm. Then, the model was run for 99 years with three replicates
of forcing data. The first two cycles were simulated for 66 years as spin-up periods to bring
the carbon and nitrogen states of the land surface into dynamic equilibrium, and the third
cycle was simulated for 33 years for analysis. The second simulation was a sensitivity
simulation (LC2015) which considered the reality of VR in the LP region. The model set
is similar to the control simulations, except that land surface conditions associated with
vegetation distribution were substituted with the 2015 level. Finally, the differences were
quantified by comparing two simulations to estimate the magnitude and direction of ET
change due to VR.

To explore the impact of climate change on ET, high-frequency weather data under
future representative concentration pathways (RCPs) of greenhouse gases were needed to
use the CLM. Thus, the fully coupled CESM was run under a medium climate stabilization
scenario (RCP4.5, stabilized radiative forcing at 4.5 W/m2 in 2100) and high emission
scenario (RCP8.5, increasing radiative forcing up to 8.5 W/m2 in 2100) to generate 3-hourly
weather data from 2005 to 2100 [53], including solar radiation, precipitation, humidity, wind,
surface air pressure, and near-surface air temperature. We conducted four simulations that
were designed by combining two future climate scenarios (RCP4.5 and RCP8.5) and two
vegetation cover scenarios (LC2000 and LC2015). (1) LC2000RCP45: vegetation cover in
2000 with climate forcing under RCP4.5. (2) LC2000RCP85, vegetation cover in 2000 with
climate forcing under RCP8.5. (3) LC2015RCP45, vegetation cover in 2015 with climate
forcing under RCP4.5. (4) LC2015RCP85, vegetation cover in 2015 with climate forcing
under RCP8.5.

2.4. Data Analysis and Model Evaluation

In this study, to focus on the contribution of vegetation to ET, we mainly analyzed the
responses of GE, CET, and total ET (TET) to VR and climate change. CETs were defined as
the sum of canopy evaporation and canopy transpiration, and TET was calculated as the
sum of GE and CET. The spatiotemporal changes in GE, CET and TET during 1980–2018
were detected using linear regression analysis (least squares method), with a statistical
significance analysis based on a t-test. To evaluate the model performance on the ET simu-
lation, the CLM-simulated GE, CET and TET were compared with GLEAM-ET data sets

http://www.esa-landcover-cci.org/
http://www.geodata.cn
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from 1995 to 2004, and the statistical criteria, including the determination coefficient (R2)
and root-mean-square error (RMSE), were calculated to indicate how well the simulated
ET fit the GLEAM data sets. R2 mainly indicates the linear association, while the RMSE
can reveal the deviations between different datasets [54]. To simplify the spatiotemporal
information of ET under the combination of different vegetation coverages and future
climates, empirical orthogonal function (EOF) analysis was used to extract the main spa-
tiotemporal patterns of annual ET that were ranked based on their representations of data
variance during the period of 1921–2100, and each pattern was associated with a series of
time coefficients that described the time evolution of the particular spatial mode [55].

3. Results
3.1. Historic Changes in Vegetation Coverage and ET on the LP

Comparing the LAI values of the main vegetation cover types from 2000 to 2015
(Figure 1), most forests were located in the southeastern region of the LP, and the LAI
clearly increased, with the area-averaged LAI changing from 1.2 in 2000 to 1.7 in 2015
(Figure 2). Grass was mainly distributed in the northern and central areas of the LP, and
the LAI values of grassland also increased with values of 0.40 in 2000 and 0.55 in 2015.
Although shrubs were sparsely distributed in the LP, the LAI increased from 1.20 to 1.50,
and an evident increase mainly occurred in the eastern region of the LP. Crops covered the
southernmost and eastern edges of the LP, and the area-averaged LAI in 2015 was higher
than that in 2000. These results show that the LAI values for all vegetation types clearly
increased with the implementation of VR.
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Area-averaged GE on the LP for the period of 1980−2018 fluctuated interannu-
ally, ranging from 95 mm to 65 mm, and the annual trend decreased with a gradient
of −0.52 mm/year (Figure 3a). Spatially, the average annual GE on the LP was higher in
the northwestern regions with sparse vegetation, and the GE was lower in the eastern and
southern regions with abundant vegetation (Figure 3b). Most regions of the LP showed
significant decreasing trends with gradients ranging from −1.2 mm/year to −2.0 mm/year
(p < 0.05) (Figure 3c). In contrast with GE, the area-averaged CET on the LP exhibited a
significant increasing trend (p < 0.01), with a gradient of 2.1 mm/year (Figure 3d), and a
larger increase occurred in the western and northern LP, where grassland and forestland
clearly increased (Figure 3f). Although the southern LP had a higher annual average CET,
the increasing trend was not statistically significant, even showing a decreasing trend
in some areas. Similarly, the area-averaged TET increased significantly with a gradient
of 1.58 mm/year (p < 0.01) (Figure 3g), even though the increased CET was offset by a
decreased GE. Overall, the spatiotemporal patterns of CET can reflect the corresponding
pattern of TET (Figure 3h,i).

3.2. Model Validation

The CLM performance in the ET simulation was evaluated by comparing the simulated
GE, CET, and TET values with GLEAM datasets from 1995 to 2004 (Figure 4). In general,
the CLM performed well in capturing the dominant spatial pattern of annual average
GE, CET and TET, showing a high magnitude in the southeastern LP and low magnitude
in the northwestern LP; however, there were overestimations for GE (Figure 4a), which
were clearly observed in the area-averaged monthly time series (Figure 4g). The simulated
CET and TET had consistent fluctuating trends with the GLEAM-based monthly time
series (Figure 4h,i). To further evaluate the performances quantitatively, the R2 and RMSE
between simulated and GLEAM-based area-averaged monthly series were calculated.
The obtained high R2 (ranging from 0.89 to 0.92) and low RMSE (ranging from 4.72 to
7.73) indicated good performance for the CLM in reflecting the spatiotemporal pattern of
ET on the LP.
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Figure 3. Spatiotemporal features of ET on the LP during the period of 1980–2018. The left column
shows the area-averaged annual (a) ground evaporation, (d) canopy ET, and (g) total ET and their
linear trends (unit: mm/year). Note that “**” indicates a statistically significant level (p < 0.01); the
middle column shows the spatial pattern of annual mean (b) ground evaporation, (e) canopy ET
and (h) total ET; and the right column shows the spatial pattern of linear trends (unit: mm/year) for
the (c) ground evaporation, (f) canopy ET and (i) total ET. Areas with a significant change (p < 0.05)
based on the t-test are stippled.

3.3. Spatiotemporal Change in ET Attributed to VR

Figure 5 depicts a comparison of the area-averaged annual ET for the two simulations.
The simulated GE showed clear differences in their annual time series, and the GE of
LC2015 was higher than that of LC2000; however, the CET showed opposite responses to
vegetation coverage change, with a larger CET under LC2015 in comparison with LC2000.
Consequently, the simulated TET did not show evident differences between LC2000 and
LC2015, because the positive effect of VR on CET was offset by the negative effect of VR
on GE. The spatial variation in annual average ET associated with VR is illustrated in
Figure 6. The whole LP region, except for the small area of the central part and northern
edge, showed decreased GE due to vegetation coverage changes from LC2000 to LC2015,
particularly in the eastern LP, where GE decreased by more than 15 mm, with a statistical
significance level of 0.05 (Figure 6c). The CET showed opposite responses to vegetation
coverage change compared with GE, and LC2015 had a higher CET in the western and
southeastern LP, with magnitudes ranging from 2 to 6 mm (Figure 6f). Due to the offset
between GE and CET in the process of VR, the TET variation at the annual scale showed a
complex and inconsistent pattern in the LP region, with magnitudes ranging from −4 to
2 mm (Figure 6i).
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Figure 4. Comparison of the simulated mean annual ET by the CLM and GLEAM-based average
values on the LP during 1995–2004. The top row (a–c) shows GLEAM-based ground evaporation,
canopy ET, and total ET, respectively; the middle row (d–f) shows CLM-simulated ground evapora-
tion, canopy ET, and total ET (unit: mm), respectively; and the bottom row (g–i) shows the model
performance expressed as the R2 and RMSE values for the area-averaged monthly time series for
ground evaporation, canopy ET, and total ET, respectively.
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Figure 6. Spatial pattern of the simulated annual average ET (unit: mm) and differences (LC2015
minus LC2000) between LC2000 and LC2015 on the LP. The first column (a,d,g) and second column
(b,e,h) show simulated ground evaporation, canopy ET and total ET under LC2000 and LC2015,
respectively, and the third column (c,f,i) shows differences in ground evaporation, canopy ET and
total ET between LC2015 and LC2000. Areas with significant differences (p < 0.05) based on t-tests
are stippled.

Seasonally, the spatial patterns of the responses of GE to vegetation change were
similar among the four seasons, showing a consistent decrease in the eastern LP, while
the magnitudes varied. June, July, and August (JJA) had the largest decreases, ranging
from −3.20 to −2.00 mm, followed by September, October, and November (SON) ranging
from −2.00 to −0.80 mm, and December, January, and February (DJF) with approximately
0.40 mm, with a statistical significance level of 0.05 (Figure 7b–d); however, the responses
of CET varied among the four seasons. Nearly the whole LP region showed a dominant
increase in CET in JJA with vegetation cover change from 2000 to 2015. The largest increase
was found in the eastern LP, with a value of approximately 0.8 mm, and the increased
magnitudes decreased in the northwest direction (Figure 7f). During SON, mixed negative
and positive responses were observed with magnitudes varying from −0.8 mm in the north
to 0.8 mm in the southeast (Figure 7g). Notably, the area with increased ET changed in
DJF, showing a significant increase in the northeastern LP and a nonsignificant increase in
the western LP, where the grassland clearly increased (Figure 7h). The overall change in
TET is inconsistent among the four seasons due to the different responses of GE and CET.
Nearly the whole LP exhibited increased TET in JJA (Figure 7j), while the TET decreased in
the whole LP during March, April, and May (MAM) and SON with vegetation coverage
changes from 2000 to 2015, particularly in the eastern LP (Figure 7i,k). During DJF, only
a small area in the southern LP had a decreased TET, and most LP regions exhibited an
increased TET (Figure 7l).
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Figure 7. Spatial distributions of the seasonal differences (LC2015 minus C2000) in ET (unit: mm) between LC2000 and
LC2015 on the LP. The first column (a,e,i), second column (b,f,j), third column (c,g,k) and fourth column (d,h,l) show
differences in the ground evaporation, canopy ET, and total ET for spring, summer, autumn, and winter, respectively.
MAM, JJA, SOM, and DJF represent spring for the months from March to May, summer for the months from June to
August, autumn for the months from September to November, and winter for the months from December to February of the
following year, respectively.

3.4. Quantifying the Contributions of Climate Change and VR to ET Change on the LP

To evaluate the dynamic change in ET associated with VR and climate change over
the LP region, the main leading modes of long-term variability were revealed using EOF
analysis. We only presented the first EOF modes (EOF1) for analysis, because EOF1
explained more than 25% of the total ET variances, while the second EOF and third EOF
modes explained less than 15% and 9% of the variance, respectively. The EOF1 modes of GE
for LC2000RCP45 and LC2015RCP45 reflected consistent spatial patterns, showing opposite
GE variations between the northern LP and zonal region extending from the central-western
area to the east over the LP (Figure 8a,b). Combined with the EOF1 spatial pattern and
temporal coefficients, GE exhibited an increasing trend before 2040 in the central-western
and central-eastern area, while GE had a decreasing trend most of the time after 2040,
in which LC2015RCP45 had a more pronounced change than LC2000RCP45. The EOF1
modes of CET for LC2000RCP45 and LC2015RCP45 showed consistent negative values
in their respective spatial patterns, and the time coefficients featured downward trends
(Figure 8c,d), indicating that CET increased during 2021–2100, with a more pronounced
increase in LC2015RCP45. For TET, the spatial pattern of variability showed a positive
value in the whole LP region (Figure 8e,f), which reflected an increasing trend of TET
during 2021–2100 by combining with the upward trends exhibited in the time coefficients.
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The spatial patterns of ET variabilities under the RCP8.5 scenario were noticeably
different from those under the RCP4.5 scenario (Figure 9). The EOF1 mode of GE reflected
consistent variations over the northwestern LP, and opposite variations over the rest of the
LP in LC2000RCP85 and LC2015RCP85 (Figure 9a,b). The time coefficients demonstrated
the temporal behavior of this mode, characterized by an upward trend before 2060 and
a downward trend after 2060, indicating that GE had an increasing trend before 2060
and a decreasing trend after 2060 in the southeastern LP, while the northwestern LP
showed opposite trends. The spatial patterns of EOF1 for CET were different from those
obtained from GE and showed consistent negative values in the whole LP (Figure 9c,d),
and their time coefficients had downward trends during 2021–2100, reflecting general
increasing trends of CET in LC2000RCP85 and LC2015RCP85. Notably, higher variabilities
were detected in the southeastern LP under LC2000RCP85. For TET, both LC2000RCP85
and LC2015RCP85 had similar spatial patterns and time coefficients as CET, suggesting
increased TET from 2021 to the end of the 21st century (Figure 9e,f).

Summarizing the results of the EOF analysis, we note that there were no clear differ-
ences in spatial patterns obtained from different land cover conditions under the same
climate scenario, while the spatial pattern had noticeable differences under different climate
scenarios with the same land cover conditions, indicating that the leading EOF modes of
ET in LP were clearly climate-dependent.

To confirm the findings from the EOF analysis, we further calculated the contributions
of VR and climate change on ET variation through four groups of simulations. Table 1
shows the unique effect of VR on ET in different stages during 2021–2100 on the LP. VR
had a negative effect on GE, leading to a decrease in the area-averaged annual GE ranging
from −5.9 to −3.6 mm under RCP4.5, while VR had a positive effect on CET, causing an
increase in the area-averaged annual CET ranging from 1.3 to 4.7 mm. Under RCP8.5, the
negative effect on GE and positive effect on CET intensified during 2021–2080. Since the
negative effects on GE were larger than the positive effects on CET under both RCP4.5 and
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RCP8.5, the area-averaged annual TET showed a weak decrease, with magnitudes ranging
from −3.7 to −1.2 mm. Regardless of vegetation cover in 2000 or 2015, climate change from
RCP4.5 to RCP8.5 enhanced the area-averaged annual GE during the 2021–2080 period,
with increased magnitudes ranging from 3.6 to 10.0 mm (Table 2). The area-averaged annual
CET also had positive responses to climate change except for the period of 2041–2060, with
increased magnitudes ranging from 5.0 to 68.4 mm. As a result, the area-averaged annual
TET under the two different land cover conditions evidently increased, with magnitudes
ranging from 0.1 to 65.3 mm.
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Table 1. Quantified contribution of VR to ET in different stages during 2021−2100 on the LP.

2021–2040 2041–2060 2061–2080 2081–2100

RCP4.5 GE −4.7 −4.5 −4.7 −5.9
CET 2.4 1.3 2.6 4.7
TET −2.3 −3.2 −2.1 −1.2

RCP8.5 GE −5.5 −4.7 −4.8 −3.6
CET 3.0 2.4 2.7 −0.1
TET −2.5 -2.3 −2.1 −3.7

The quantitative contribution was calculated as differences in simulated area-averaged annual ET between
vegetation cover conditions of 2000 and 2015 under the same climate scenario (unit: mm).
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Table 2. Quantified contribution of climate change to ET in different stages during 2021−2100 on the LP.

2021–2040 2041–2060 2061–2080 2081–2100

Vegetation
cover of 2000 GE 10.0 3.8 7.3 −3.1

CET 5.0 −3.7 12.2 68.4
TET 15.0 0.1 19.5 65.3

Vegetation
cover of 2015 GE 9.2 3.6 7.2 −0.8

CET 5.6 −2.6 12.3 63.6
TET 14.8 1.0 19.5 62.8

The quantitative contribution was calculated as differences in simulated area-averaged annual ET between
scenarios RCP8.5 and RCP4.5 under the same vegetation cover conditions (unit: mm).

4. Discussion

ET is difficult to monitor at a regional scale due to complex underlying surfaces and
large observation costs; thus, we adopted GLEAM-ET products to describe the dynamic
changes in ET on the LP, and the spatial characteristics matched with the existing reports
well [56,57]. Moreover, a significant increasing trend of TET was detected on the LP
during 1980–2018, and the gradients were in line with the results (ranging from 1.34 to
3.45 mm/year) from previous studies at different spatial scales [45,58].

To quantify the influences of VR on ET changes at the regional scale on the LP, sensitiv-
ity simulations were conducted using realistic land use data rather than plausible scenarios.
We found that the CET was enhanced under vegetation coverage change from 2000 to 2015,
which was particularly evident in the southwestern and eastern LP, where the grassland
and forestland clearly increased. This finding is well supported by many previous studies,
where forested ecosystems are generally observed to have higher canopy transpiration than
crop ecosystems, because forests have deeper roots and longer transpiration periods [46,59].
Another widely recognized reason is increased canopy interception, which contributes
more to evaporative flux [60,61].

A significant reduction in GE was found over regions with increased LAI of grass
and forest. The reduction probably occurred because an increased canopy cover features
more shadows and decreases the evaporative demand. There are two main driving factor
variations involving decreased evaporative demand. On the one hand, increased canopy
cover impedes radiation transmission to the ground surface, leading to a decrease in
available heat for evaporation [62–64]. In this regard, Raz-Yaseef et al. [65] reported that
GE fluxes measured in sun-exposed areas were on average double those in shaded areas.
On the other hand, more precipitation was intercepted by increased canopy cover; thus,
GE was decreased due to decreased water availability because precipitation is regarded
as an important factor driving evaporation in water-limited areas [19,66]. Therefore, a
larger reduction in GE relative to increased CET resulted in weak variation in TET at the
annual scale due to the offset between the positive contribution and negative contribution
of VR to TET. Notably, the TET increase of approximately 1.00 mm existed in most of the
LP during the summer period. This widespread increase is mostly the result of improved
water availability to satisfy the evaporative demand, because the precipitation on the
LP is mainly concentrated in the summer [17,67]; thus, the soil moisture is recharged by
precipitation in this period.

Based on four groups of simulations under future climate and land cover conditions,
annual ET had increasing trends on the LP with varied magnitude under RCP4.5 and
RCP8.5 scenarios. These findings were consistent with a previous study [68], in which the
significantly increasing trends are predicted in southeastern LP under RCP4.5 and RCP8.5
scenarios using the 28 general circulation models. We found that climate change exerted a
greater impact on TET than vegetation cover change, which matched previous studies well.
For example, Peel et al. (2010) studied relationships between forestation and catchment
evapotranspiration from over 200 paired catchments around the world and found that
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non-forested catchments generally have higher actual ET than forested catchments and
suggested that the leading factor of ET varied in climate types and depended on the
availability of energy and water [19]. Li et al. [24] quantitatively separated the effects of
climate change and land cover change on ET in China during the period of 2001–2013
and concluded that the influences of climate change were greater than those of land cover
change on ET. Gao et al. [58] used the Budyko Framework to simulate the actual ET in
161 subbasins from 1990 to 2014 on the LP and found that the increase in regional ET was
mainly due to the increase in regional precipitation. The LP region has become wetter
since the implementation of the Green for Grain Project, with a significant increasing
precipitation trend at a rate of 4.46 mm/year during 1998–2014 [69], which is beneficial to
the water availability for VR and further increases the ET on the LP.

Some inconsistent results can also be found in regions of the LP, showing that vege-
tation greening was the dominant driving factor of ET increase in most LP region [45,46].
These conclusions were obtained from a remote sensing-based ET calculation model and
partial correlation analysis between ET and some driving factors; however, due to the
limited consideration of the biogeophysical mechanism in ET partitioning, the model had
uncertainties in estimating ET components [57]. Additionally, the controlled factor was
identified based on correlations between independent climatic variables and ET. While the
reality is that these variables are not totally independent, their interactions may also play
important roles in the ET trends.

Although the impacts of VR and climate change on ET were identified by combining
GLEAM-ET dataset with CLM, some uncertainties remain. As reference data for validating
the ET simulation of CLM, GLEAM-ET was used with a set of algorithms that used satellite
forcing data, and the ET components were calculated using the Priestley–Taylor method,
which does not incorporate parameterization of stomatal and aerodynamic resistance.
Although GLEAM-ET has been validated against eddy covariance towers worldwide, that
datasets were closer to the flux tower measurements at grassland system followed by the
forest and cropland dominated regions [70]; however, cropland covers approximately 38%
of the land area on the LP [57], where the uncertainties existed in the process of CLM
validation, but we did not have a better choice at the regional scale. The understanding of
spatiotemporal pattern of ET were obtained using grid-based evaluation statistics, which is
more or less subjective, because it precludes spatial analysis; thus, distribution-based field
significance are more meaningful [71]. In the sensitivity simulations, the Qian ATM forcing
data were used repeatedly to force the CLM, and the vegetation cover conditions of 2000
and 2015 were used for model inputs to assess the ET responses, while the magnitude of
vegetation growth might not be large enough to cause significant changes in ET, leading
to biased results. Additionally, the relative contributions of VR and climate change were
identified through scenario simulation under predicted future climate conditions, while
current land surface models commonly underestimate the ratio of plant transpiration to
total ET [72], which might contribute to the uncertainty in ET prediction under future
climate scenarios.

5. Conclusions

Along with the implementation of VR, vegetation coverage clearly increases on the
LP, inevitably causing TET change. This change involves not only the magnitudes of
TET, but also the directions of TET components. In this study, we have quantified the
contributions of VR and climate change to TET by analyzing a GLEAM-ET dataset and
conducting sensitivity simulations with the CLM. Although GE and CET had larger re-
sponses to VR in the southeastern LP, where the LAI of forest and grass clearly increased,
the TET had weak change due to the balance between the negative response of GE and
positive response of CET. We also found the TET, GE, and CET were especially sensitive to
climate change relative to VR, implying that the relative contribution of VR to regional ET
may be overestimated in the LP by previous studies, because considering climate factors
separately to assess the relative contributions of climate change to ET may mask actual
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signals. Although there were some uncertainties regarding the data inputs and model
parametrization, our results highlight the importance of evaluating ET response to VR
under various climate conditions with the interactions among climate factors. Moreover, to
ensure the sustainability of vegetation restoration on the LP, reducing evaporative water
loss and maintaining soil water availability are required. For this purpose, policymakers
should pay more attention to land cover management and take positive steps to slow
climate warming.
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