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Characteristics of Terrestrial Water Storage and Its Dominant
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Abstract: As the “Water Tower of Asia” and “The Third Pole” of the world, the Qinghai–Tibet Plateau
(QTP) shows great sensitivity to global climate change, and the change in its terrestrial water storage
has become a focus of attention globally. Differences in multi-source data and different calculation
methods have caused great uncertainty in the accurate estimation of terrestrial water storage. In this
study, the Yarlung Zangbo River Basin (YZRB), located in the southeast of the QTP, was selected
as the study area, with the aim of investigating the spatio-temporal variation characteristics of
terrestrial water storage change (TWSC). Gravity Recovery and Climate Experiment (GRACE) data
from 2003 to 2017, combined with the fifth-generation reanalysis product of the European Centre for
Medium-Range Weather Forecasts (ERA5) data and Global Land Data Assimilation System (GLDAS)
data, were adopted for the performance evaluation of TWSC estimation. Based on ERA5 and GLDAS,
the terrestrial water balance method (PER) and the summation method (SS) were used to estimate
terrestrial water storage, obtaining four sets of TWSC, which were compared with TWSC derived
from GRACE. The results show that the TWSC estimated by the SS method based on GLDAS is
most consistent with the results of GRACE. The time-lag effect was identified in the TWSC estimated
by the PER method based on ERA5 and GLDAS, respectively, with 2-month and 3-month lags.
Therefore, based on the GLDAS, the SS method was used to further explore the long-term temporal
and spatial evolution of TWSC in the YZRB. During the period of 1948–2017, TWSC showed a
significantly increasing trend; however, an abrupt change in TWSC was detected around 2002. That
is, TWSC showed a significantly increasing trend before 2002 (slope = 0.0236 mm/month, p < 0.01)
but a significantly decreasing trend (slope = −0.397 mm/month, p < 0.01) after 2002. Additional
attribution analysis on the abrupt change in TWSC before and after 2002 was conducted, indicating
that, compared with the snow water equivalent, the soil moisture dominated the long-term variation
of TWSC. In terms of spatial distribution, TWSC showed a large spatial heterogeneity, mainly in
the middle reaches with a high intensity of human activities and the Parlung Zangbo River Basin,
distributed with great glaciers. The results obtained in this study can provide reliable data support
and technical means for exploring the spatio-temporal evolution mechanism of terrestrial water
storage in data-scarce alpine regions.

Keywords: climate change; TWSC; GRACE; ERA5; GLDAS; Qinghai–Tibet Plateau; Yarlung Zangbo
River Basin

1. Introduction

Terrestrial water storage refers to all forms of water stored at or below the surface, in-
cluding surface water, groundwater, soil moisture, glaciers, lakes, forest canopy intercepted
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water, and biomass water, and is of great importance for the terrestrial and global water
cycles [1]. Defined as the spatiotemporal evolution of terrestrial water storage, terrestrial
water storage change (TWSC) is a crucial indicator of the impact of climate change on the
hydrological system [2]. Due to its significant impacts on hydrological and climatic systems,
TWSC has been widely used to represent the spatial and temporal evolution characteristics
of water balance at global and regional scales [3]. A large number of studies have revealed
that TWSC plays an irreplaceable role in detecting the melting of glaciers and snow [4],
characterizing the degradation of permafrost and the increase in the thickness of active
layers [5], describing the changes in soil moisture and groundwater [6–8], and assessing
extreme events such as droughts and floods [9,10]. In particular, the response of TWSC to
climate change in alpine regions has attracted increasing attention in recent years [11].

As the highest and largest plateau in the world, the Qinghai–Tibet Plateau (QTP),
known as the world’s “Third Pole”, is located in southwest China, covering an area of
about 2.5 million km2 with an average altitude over 4000 m [12]. In addition, the QTP has
the third largest glacier area (about 91,822 km2) in the world and the greatest number and
area of lakes in China (with a total area of more than 4.7 × 104 km2) [13], where about
75% of the region is covered by permafrost [14]. Melt water from the QTP provides for the
permanent flow of Asia’s major rivers, eventually affecting the livelihood of over 1.3 billion
people and various ecosystems fed by river water that originates in this region, so it is also
called the “Asian Water Tower” [15]. As one of the most sensitive areas to global climate
change, the terrestrial water storage and its changes in the QTP are directly related to the
water resource utilization and water security in downstream areas. In recent decades, the
global temperature has shown an increasing trend, especially in the QTP where the average
temperature has increased by about 0.35 ◦C per decade over the past 50 years, twice as
fast as the global average [16], and the feedback of the QTP to global warming has become
more obvious [17]. Such significant temperature rising in the QTP has led to a series of
imbalances such as accelerating glacier melting and enhancing precipitation [18], and the
water cycle process in the QTP has undergone a dramatic transformation. The shrinking
glaciers have led to a decrease in solid water storage in the QTP [19]. In contrast to the
changes in the glaciers, more than two-thirds of the lakes in the QTP are expanding, and
the overall volume and area of the lakes are showing a significant increase [20]. Runoff
in the QTP also shows different degrees of increase, which in turn leads to an increased
risk of flooding in the QTP and its surrounding areas. TWSC has significant implications
for glacier retreating, snow melting, and permafrost degrading, which further reflects the
condition of the water cycle. Therefore, the study of TWSC in the QTP is closely related to
the water security of China and surrounding countries, and will enhance the understanding
of the water cycle and the evolution of water resources in data-scarce areas [21], as well
as provide a reference for the scientific and rational development and utilization of water
resources in the QTP.

As a result of high elevation, complex terrain, and inaccessibility, direct meteorological
observations are either sparse or nonexistent in many remote parts of QTP, posing a great
challenge for investigations of ecohydrological response to climate change [22]. The Gravity
Recovery and Climate Experiment (GRACE) satellite that launched in March 2002 has an
unprecedented ability to monitor high-precision hydrological signals [23], opening up a
new way to obtain TWSC in the QTP. Based on GRACE data, previous studies reveal that
TWSC showed a decreasing trend in southern QTP but an increasing trend in north QTP
after 2000 [24,25]. Additional investigations suggest that precipitation increases and lake
area expansion increased TWSC in the inner QTP during 2002–2016 [26], but temperature
increases and glacial retreat decreased TWSC in southern QTP [27]. Few studies have,
however, systematically compared and evaluated the TWSC derived from GRACE with
those estimated based on different datasets and different methods. In addition, the time
series of TWSC derived from GRACE is short, less than 20 years, which makes it difficult
to provide a comprehensive and profound analysis of the enhanced water cycle in the
QTP over the past decades in the context of global warming. The Yarlung Zangbo River
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Basin (YZRB) is the most important river for understanding the hydrological cycle in the
QTP, because it is not only a source of precipitation in the QTP, but also an important
moisture transportation channel from the Indian Ocean to the inner region of the QTP [28].
Therefore, the terrestrial water storage of the YZRB plays a crucial role in the formation
and development of the water cycle and climate change in the QTP. Therefore, in this study,
the YZRB was selected to represent a typical, data-scarce alpine region in the QTP, and
multiple widely used datasets including GRACE, Global Land Data Assimilation System
(GLDAS), and the fifth-generation reanalysis product of the European Centre for Medium
Range Weather Forecasts (ERA5) combined with the terrestrial water balance method
(PER) and the summation method (SS) were adopted to investigate the long-term variation
characteristics of TWSC.

In summary, the primary objectives of this study are as follows. Firstly, the four sets
of TWSC from 2003 to 2017 are systematically compared and analyzed with the results
from GRACE at the temporal and spatial scales. Secondly, long-term (1948–2017) variation
characteristics of TWSC in the YZRB are explored. Thirdly, the time-lag effect of monthly
TWSC estimations and possible dominant factors of TWSC before and after 2002 are
discussed. The results of this study will contribute to understanding the irreplaceable role
of TWSC in the terrestrial water cycle and provide reliable information for ecohydrological
processes in data-scarce alpine regions.

2. Materials and Methods
2.1. Study Area

The YZRB is located at 27–32◦N and 82–97◦E, in the southeast of the QTP and the
northern foothills of the Himalayas (Figure 1), with a basin area of about 240,000 km2 and a
main stream length of more than 2000 km [29]. The topography of the YZRB is high in the
west and low in the east, with large vertical differences in altitude [30]. The YZRB is rich in
water resources [31], and the condition of the water resources in the basin is closely related
to the water security of Tibet, India, Bangladesh, and other countries in the downstream
area. The upstream area of the YZRB has an average altitude of 4600 m above sea level
and is mainly distributed with alpine valleys and other landforms [32]; the midstream
region is mainly the southern Tibetan valley, which has a warm and semi-arid climate and
is an area with a high intensity of human activities [33]; the downstream area includes a
highland temperate humid and semi-humid climate zone and a mountainous subtropical
humid climate zone with a relatively warm and humid climate [34]. The Yarlung Zangbo
River is one of the highest rivers in the world, and due to its special topographic conditions
and altitude, the basin presents the characteristics of being sensitive and vulnerable to
climate change [35]. Especially in recent decades, the permafrost in the YZRB has been
melting, and the active layer has become thicker [36]. At the same time, the glaciers
have retreated significantly [37]. All these changes have had a substantial impact on the
ecological environment and water resource protection in the basin. Therefore, accurate
estimation of TWSC in the YZRB can help enhance the understanding of the mechanisms
of hydrology and ecosystem changes in response to human activities as well as climate
change at the background of global warming.

2.2. Data

The two datasets used for TWSC estimation in this study are the fifth-generation
reanalysis product of the European Centre for Medium-Range Weather Forecasts (ERA5)
data and the Global Land Surface Data Assimilation (GLDAS) data. Total precipitation,
evapotranspiration, total runoff, soil moisture, and snow water equivalent from these
two datasets were used to estimate TWSC, respectively, and the estimated TWSC was
then compared with the TWSC derived from GRACE. In addition, before comparisons
with GRACE-derived TWSC, the relevant mean of each grid was removed from the TWSC
obtained based on ERA5 and GLDAS so that they could be compared with GRACE-
derived TWSC.
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Figure 1. Location of the Yarlung Zangbo River Basin (YZRB) (a) and distribution of permafrost in 
the YZRB (b) obtained from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/zh-
hans/, accessed on 12 January 2020), which was based on the new map of permafrost distribution 
on the Qinghai–Tibet Plateau (QTP) (Zou, Zhao, and Sheng, 2017) [38]. 
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vations of global mass flux that have contributed significantly to our understanding of 
large-scale changes in polar ice, ground water storage, and ocean mass distribution [39–
41]. In particular, GRACE has been widely used for monitoring terrestrial water storage 
with excellent performance. Currently, the Center for Space Research (CSR) at the Univer-
sity of Texas, the German Research Centre for Geosciences (GFZ), and the Jet Propulsion 
Laboratory (JPL) are providing a more mature GRACE product [42]. The GRACE mascon 
product from JPL RL06M Version 2.0 [43] for the years 2003–2017 

Figure 1. Location of the Yarlung Zangbo River Basin (YZRB) (a) and distribution of permafrost in the
YZRB (b) obtained from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/zh-hans/
(accessed on 12 January 2020)), which was based on the new map of permafrost distribution on the
Qinghai–Tibet Plateau (QTP) (Zou, Zhao, and Sheng, 2017) [38].

2.2.1. GRACE Data

The GRACE gravity satellite is a two-satellite system developed by the National
Aeronautics and Space Administration (NASA) in cooperation with the German Aerospace
Center (DLR) and was successfully launched in March 2002. Since the launch of satellite, the
Gravity Recovery and Climate Experiment (GRACE) has provided pioneering observations
of global mass flux that have contributed significantly to our understanding of large-
scale changes in polar ice, ground water storage, and ocean mass distribution [39–41]. In
particular, GRACE has been widely used for monitoring terrestrial water storage with
excellent performance. Currently, the Center for Space Research (CSR) at the University
of Texas, the German Research Centre for Geosciences (GFZ), and the Jet Propulsion
Laboratory (JPL) are providing a more mature GRACE product [42]. The GRACE mascon
product from JPL RL06M Version 2.0 [43] for the years 2003–2017 (https://grace.jpl.
nasa.gov/data/get-data/jpl_global_mascons/ (accessed on 3 May 2020)) with a spatial
resolution of 0.5◦ × 0.5◦ was used. In this study, the unit of GRACE-derived TWSC is
converted to millimeters.

2.2.2. ERA5 Reanalysis Data

The ERA5-Land monthly averaged data used in this study are the latest fifth-generation
global atmospheric reanalysis data (ERA5) provided by ECMWF (https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form (accessed
on 11 May 2020)) [44], which have improved spatial resolution to 0.1◦ × 0.1◦ compared to
the previous version, and their accuracy has also improved compared to ERA-interim.

http://data.tpdc.ac.cn/zh-hans/
https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/
https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
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2.2.3. GLDAS Data

The Global Land Data Assimilation System was jointly developed by the Goddard
Space Flight Center (GSFC) of the National Aeronautics and Space Administration (NASA)
and the National Environmental Prediction Center (NCEP) of the National Oceanic and
Atmospheric Administration (NOAA), which can provide users with multiple data prod-
ucts (https://disc.gsfc.nasa.gov/datasets (accessed on 12 May 2020)) [45]. Currently, the
GLDAS provides a large number of land surface data products in combination with
four land surface models: Mosaic, NCEP, OSU, Air Force, and Office of Hydrology
(NOAH), the Community Land Model (CLM), and the Variable Infiltration Capacity
(VIC). These high-quality global land surface data products have been widely used in
analysis of TWSC [46], the monitoring of droughts [47], and assessments of climate
and hydrological change [48]. Compared to other GLDAS products, the NOAH has a
higher spatial resolution and a longer time span. Therefore, the GLDAS_NOAH025_M 2.0
and GLDAS_NOAH025_M 2.1 products (https://disc.gsfc.nasa.gov/datasets?keywords=
GLDAS&page=1&temporalResolution=1%20month&spatialResolution=0.25%20%C2%B0
%20x%200.25%20%C2%B0 (accessed on 2 July 2020)) were used in this study to estimate
the TWSC.

2.3. Methods

The terrestrial water balance method and the summation method were used to esti-
mate the TWSC of the YZRB based on ERA5 and GLDAS, respectively. By generating four
sets of TWSC estimation, a quantitative performance evaluation on different datasets and
different methods for terrestrial water storage estimation in the YZRB was implemented,
by taking the TWSC derived from GRACE as the validation data. Given that the spatial
resolution of GRACE-derived TWSC is 0.5◦ × 0.5◦, the TWSC estimated from ERA5 and
GLDAS was interpolated to 0.5◦ × 0.5◦ based on the bilinear interpolation method to
compare it with TWSC derived from GRACE.

2.3.1. The Terrestrial Water Balance Method

The terrestrial water balance method (hereafter called PER) means that, for any given re-
gion, the monthly TWSC can be estimated by the following terrestrial water balance equation:

∂S(t)
∂(t)

= P(t)− E(t)− R(t) (1)

where S(t) is the terrestrial water storage in time t, P(t) (mm) is the total precipitation,
E(t) (mm) is the evapotranspiration, and R(t) (mm) is the total runoff (surface runoff and
groundwater runoff) in this region [49].

2.3.2. The Summation Method

TWSC can also be expressed in terms of changes in its major constituents, and nu-
merous studies have shown that the TWSC estimated from changes in soil moisture and
snow water equivalent is in good agreement with the TWSC inferred from GRACE at
both global and basin scales [50,51]. The following equation is an approximation of TWSC
by the summation method (hereafter called SS) using changes in soil moisture and snow
water equivalent:

∂S(t)
∂(t)

=
∂ [So(t) + Sn(t)]

∂(t)
(2)

where So(t) (mm) and Sn(t) (mm) are the soil moisture and snow water equivalent in a
given region and at time t (month), respectively. The reasons for neglecting groundwater
and other components are explained in the Appendix A (Figure A1).

https://disc.gsfc.nasa.gov/datasets
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&temporalResolution=1%20month&spatialResolution=0.25%20%C2%B0%20x%200.25%20%C2%B0
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&temporalResolution=1%20month&spatialResolution=0.25%20%C2%B0%20x%200.25%20%C2%B0
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1&temporalResolution=1%20month&spatialResolution=0.25%20%C2%B0%20x%200.25%20%C2%B0
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2.3.3. Evaluation Metrics

In order to accurately assess the spatial and temporal variability characteristics of
TWSC, the following indicators were used in this study. A linear regression model was
used to detect temporal variation trends of TWSC and can be expressed as follows [52]:

y = ax + b (3)

where y represents the TWSC, x represents time, a represents the slope, and b represents
the intercept. a > 0 indicates an increasing trend of TWSC, while a < 0 indicates a decreas-
ing trend.

The Pearson correlation coefficient was applied to analyze the correlation between
different variables:

Rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(4)

where xi and yi are two series of paired data, n is the number of data pairs, and x and y are
the average values of each set of data, respectively. Rxy represents the consistency between
the two variables, ranging from −1 to 1. Rxy > 0 means the two have a positive correlation,
Rxy < 0 means the two have a negative correlation, and a larger absolute value of Rxy
means a greater correlation between the two series of paired data [53]. The significance
level for the linear trend and correlation coefficient was 0.05 in this study.

Additionally, it is not enough to describe only the characteristics of basin-averaged
TWSC, and grid-based calculation has great potential for describing the spatial differences
of TWSC [54]. In order to reflect the spatial heterogeneity of TWSC more accurately, the
linear trends of TWSC and correlation coefficients during 2003–2017 were further calculated
in each grid.

Non-parametric statistics are usually much less affected by the presence of outliers
and other forms of non-normality. The Mann–Kendall test is a non-parametric test recom-
mended by the World Meteorological Organization that can objectively reflect the trends of
time series and has been widely used in the analysis of climatological and hydrological
time series data [55,56]. It is resistant to the influence of extremes and performs well with
skewed variables and can handle missing values [57]. For time series data Xt = (x1, x2, . . . ,
xn), the statistic Zc is calculated as follows:

Zc =


s−1√
D(s)

s > 0

0 s = 0
s+1√
D(s)

s < 0

(5)

s =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi), 1 < i < j < n (6)

β = median
( xj − xi

j− i

)
(7)

where xi and xj are the sequential data values, n is the length of the time series, D(s)
represents the variance of s, a positive value of β indicates an “upward trend”, and a
negative value of β indicates a “downward trend”. When |Zc| > Z(1−α/2) is satisfied,
where α is the significance level, there is a statistically significant trend. In this study,
the Mann–Kendall test was used to detect the trend of long-term (1948–2017) variation
characteristics of TWSC and its components at a significance level of 0.01.

It has been indicated that wavelet analysis can be used to reveal the break point,
change, and distribution of periodic variation in the different time scales of the hydrological
time series [58]. Therefore, the Morlet wavelet and the wavelet variance were used to reflect
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the long-term variation characteristics of TWSC and identify abrupt change in this study.
For the wavelet function ψ(t) ∈ L2(R), the continuous wavelet format is defined as:

ψa,b(t) = |a|−1/2ψ

(
a− b

a

)
a, b ∈ R, a 6= 0 (8)

For the discrete series x(k∆t), (k = 1, 2, . . . , N), the wavelet transform coefficient can
be expressed as follows:

W f (a, b) = |a|−1/2∆t
N

∑
k=1

f (k∆t)ψ
(

k∆t− b
a

)
(9)

The wavelet variance Var(a) can be calculated as follows [59]:

Var(a) =
∫ ∞

−∞

∣∣∣W f (a, b)
∣∣∣2db (10)

where a is the scale parameter, b is a parameter for horizontal shift, ψa,b(t) is the mother
wavelet, Wf (a, b) is the wavelet transform coefficient, and ∆t is the sample time interval.

3. Results
3.1. Performance Evaluation of Different TWSC Estimations
3.1.1. Comparative Analysis of Temporal Characteristics of TWSC

Figure 2 shows the monthly variation trend (a) and changing magnitude (b) of TWSC
from 2003 to 2017 estimated by ERA5 and GLDAS with the PER method and the SS method,
which were compared with the TWSC derived from GRACE. As shown in Figure 2a,
the TWSC of the YZRB derived from GRACE decreased at a rate of 0.9 mm/month
during 2003–2017, which is equivalent to 246 million ton/year. The results of ERA5-
PER and ERA5-SS decreased at a rate of 0.013 mm/month and increased at a rate of
0.043 mm/month, respectively, while the results of GLDAS-PER and GLDAS-SS increased
at a rate of 0.0035 mm/month and decreased at 0.397 mm/month, respectively. It can be
seen that there is a large variability in TWSC estimated by different datasets and different
methods, among which the trend of GLDAS-SS is most consistent with the results derived
from GRACE.
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As shown in Figure 2b, the variation amplitudes of ERA5-PER and ERA5-SS are
−44.77~77.15 mm and −50.04~71.81 mm, respectively, while those of GLDAS-PER and
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GLDAS-SS are −62.22~82.97 mm and −69.54~113.36 mm, all of which are somewhat
different from the TWSC amplitude from GRACE (−159.23~208.19 mm). The variation
amplitude of GLDAS-SS is much closer to that of GRACE compared to the other three sets
of TWSC. In addition, we further calculated the correlation coefficients between four sets of
TWSC and GRACE-derived TWSC, which are −0.034 (ERA5-PER), 0.36 (ERA5-SS), −0.12
(GLDAS-PER), and 0.75 (GLDAS-SS). It can be seen that the monthly variation of TWSC
estimated by the SS method correlates better with GRACE than that of PER. In summary,
GLDAS-SS is more consistent with the GRACE-derived TWSC in terms of monthly-scale
variation trends and amplitudes.

To further evaluate the performance of TWSC estimations based on ERA5 and GLDAS
with PER and SS methods, the multi-year monthly average variation of TWSC from
2003–2017 was compared with the TWSC derived from GRACE. As shown in Figure 3a,
GLDAS-SS shows the most similar monthly variation pattern to GRACE in terms of the
range of variation and the months in which the peaks and valleys occur. GRACE reaches
its maximum and minimum values in September and January with values of 114.09 and
−15.81 mm, respectively. GLDAS-SS reaches the maximum and minimum values of 64.01
and −33.50 mm in August and February, respectively. Moreover, GRACE-derived TWSC
shows a significant time-lag of about 2 months compared to TWSC estimated by the PER
method. As shown in Figure 3b, the correlation coefficients between the two estimations of
TWSC based on ERA5 and TWSC derived from GRACE are −0.028 and 0.73, respectively,
while the correlation coefficients between the two estimations of TWSC based on GLDAS
and TWSC derived from GRACE are −0.16 and 0.95, respectively. Obviously, compared to
the PER method, the multi-year monthly average variation of TWSC estimated by the SS
method displays a better correlation with that of TWSC derived from GRACE.
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With the combination of results indicated by the monthly variation trend and am-
plitude, GLDAS-SS is most consistent with TWSC derived from GRACE in terms of the
temporal characteristics.
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3.1.2. Comparative Analysis on Spatial Characteristics of TWSC

Figure 4 shows the spatial distribution of the correlation coefficients between four
TWSC estimations and GRACE-derived TWSC. The correlation coefficients of ERA5-PER
and ERA5-SS are lower in the downstream Nyang River basin and higher in the upstream
and midstream regions, with maximum values of 0.37 and 0.67, respectively. Different from
results obtained by ERA5, the correlation coefficient between GLDAS-PER and GRACE is
much lower over the whole basin, especially in the upstream, the lowest value being −0.31,
and only slightly high in areas below Nyingchi, with a maximum value of 0.21. Although
the TWSC estimation based on GLDAS using the PER method shows poor performance
in the YZRB, the correlation coefficient of GLDAS-SS is relatively higher in most parts
of the basin, with more than 61.3% of the area higher than 0.5 and a maximum value of
0.82, while the areas with lower correlation coefficients are mainly concentrated in the
downstream Nyang River basin. In addition, the TWSC estimated by the SS method
performed better than the PER method both based on ERA5 and GLDAS. It is noteworthy
that areas with poor correlations are mainly concentrated in the downstream Nyang River
basin, where the largest glacier of Parlung Zangbo is distributed [60]. The elevation
variation of snowline height in this region exceeds 2000 m [61], which is influenced by the
special altitude and topography, causing a large uncertainty of remotely sensed monitoring
and data assimilation. Therefore, it is difficult for the TWSC estimated by GLDAS to
accurately reflect the terrestrial water storage in this region. Consistent with the results of
the comparative analysis on temporal variation characteristics, the TWSC estimated by the
SS method based on GLDAS shows the best spatial correlation with the results derived
from GRACE.
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Performance evaluation of TWSC estimations based on ERA5 and GLDAS with PER
and SS methods indicates that TWSC estimated by the SS method is more consistent than
the PER method in both temporal and spatial patterns with TWSC derived from GRACE.
With regard to the effect of different data sources from ERA5 and GLDAS, TWSC estimated
by the SS method based on GLDAS is most consistent with the results from GRACE.
Therefore, the SS method based on GLDAS is more suitable for the estimation of TWSC in
the YZRB, which provides an important reference for the accurate description of terrestrial
water storage change in alpine regions.

3.2. Long-Term Variations of TWSC in the YZRB from 1948 to 2017
3.2.1. Temporal Variation Characteristics

As shown in Figure 5, TWSC in the YZRB showed a significantly increasing trend
(p < 0.01) during 1948–2017, but an abrupt change to a decreasing trend occurred in 2002.
Specifically, TWSC in the YZRB showed a significantly increasing trend with a rate of
0.0236 mm/month before 2002 (p < 0.01) and a significantly decreasing trend with a rate of
0.397 mm/month after 2002 (p < 0.01). This is consistent with the results of Liu et al. [62]
in a study of the dry and wet transition characteristics of the YZRB; the YZRB showed an
overall wetting trend from 1982 to 2015, but the basin showed a significant aridity trend
after the turn of the 21st century.
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Figure 5. Monthly variation of TWSC in the YZRB from 1948 to 2017. The vertical dashed line represents the dividing year
of 2002.

To further validate the time when the abrupt change in TWSC occurred, wavelet
analysis was adopted to explore the long-term periodic variation of TWSC in the YZRB
during 1948–2017. As shown in Figure 6a, there are more complex periodic oscillations
in TWSC as the time scale decreases. In terms of large-scale cycles, corresponding to the
upper part of the time-frequency distribution chart, there is a large-scale oscillation cycle
of TWSC of about 42 years, but given that the total length of the time series is 70 years,
a large-scale cycle of about 42 years should not be taken into consideration. As to the
mesoscale cycle, corresponding to the middle part of the wavelet coefficient contour plot,
a mesoscale oscillation cycle of about 24 years is shown, with about three peaks and valleys.
For the small-scale cycle, corresponding to the lower part of the wavelet coefficient contour
plot, a small-scale oscillation cycle of about 5 years during 1948–1975 and about 8 years
during 1976–2017 is shown. In addition, the wavelet variance map shown in Figure 6b
indicates that the dominant cycle of the annual variation of terrestrial water storage during
1948–2017 is 35 years. Nevertheless, TWSC presents opposite values before and after 2002 at
different time scales, further demonstrating that TWSC experienced mutation around 2002.
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Figure 6. Wavelet analysis results of TWSC in the YZRB from 1948 to 2017. Time–frequency distribution of the real part
(a) of the Morlet wavelet transform coefficients (red represents a high value of TWSC, and blue represents a low value of
TWSC). Wavelet variance map (b) (the year corresponding to the peak value is regarded as the main cycle).

3.2.2. Spatial Variation Characteristics

As shown in Figure 7a, TWSC of the YZRB showed an increasing trend from upstream
to downstream during 1948–2017, with a minimum value of 10.26 mm in the western
part of the upper YZRB and a maximum value of 38.36 mm in the southeastern part of
the downstream. The terrestrial water storage in the middle reaches remained basically
unchanged with a slightly increasing tendency. By combining the temporal variation
characteristics of TWSC (Figure 6), the significantly increasing trend of TWSC in the
YZRB was mainly ascribed to the increase in terrestrial water storage in the middle and
lower reaches. A “dry gets wetter, wet gets drier” paradigm was identified, which is in
contrast with the widely accepted “dry gets drier, wet gets wetter” paradigm. As shown in
Figure 7b, only 18.96% of the total basin area showed an increasing trend, while 81.04%
of the basin exhibited a decreasing trend, mainly distributed in wet regions, including
the “One River and Two Tributaries” regions (the middle reaches of the Yarlung Zangbo
River and its two longest tributaries, the Lhase River and the Nianchu River) and the
southeastern downstream regions. In addition, the initial “dry gets drier, wet gets wetter”
paradigm has been challenged by many other studies. For example, it has been found that
only 10.8% of the global land area shows a robust “dry gets drier, wet gets wetter” pattern,
compared to 9.5% of global land area with the opposite pattern, i.e., “dry gets wetter, and
wet gets drier” [63]. Consistent with the pattern of “wet gets drier”, increases in aridity are
also found in humid tropical Africa, Indonesia, and coastal regions of South America [64].
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In order to explicitly explore the spatial variation characteristics of TWSC from 1948
to 2017, the spatial distribution of the multi-year average TWSC and its trend in the YZRB
before and after 2002 were further studied. As shown in Figure 8a, the terrestrial water
storage in the upstream area of the YZRB decreased during 1948–2002, while the terrestrial
water storage in the middle and lower reaches of the YZRB increased; however, Figure 8b
illustrates that most of the middle and lower reaches experienced a decreasing trend of
TWSC during 1948–2002, indicating a transition from wet to dry in the YZRB, especially in
the humid southeastern downstream regions. Due to the continuously decreasing trend
of TWSC in the midstream and southeastern downstream regions during 1948–2002, the
negative values of TWSC in most areas of the YZRB occurred after 2002 (Figure 8c), causing
a more serious threat of drought. Fortunately, the trend of drying was greatly alleviated
after 2002. As shown in Figure 8d, TWSC showed an increasing trend in most regions of
the YZRB except for the southeastern part of the downstream, which is mainly attributed
to the considerable water consumption from the greening of vegetation [65].
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It is necessary to emphasize that there is an obvious transition from wet to dry
indicated by the changes in terrestrial water storage occurring in the middle reaches from
1948 to 2017. The most obvious land-use changes were observed in the middle reaches
of the YZRB, where dense populations and cities led to more human activities [66]. Cuo
et al. further revealed that human activities induced 2-fold residential area and 5-fold
tree nursery area expansions during 1979–2015 at the expense of cropland, dense forest,
and grassland [67], which consumed more water and could result in a serious challenge
for water resources in the YZRB. In addition, as the primary type of human activities
on the QTP, grazing is believed to have caused severe grassland degradation or even
desertification [68], which was responsible for the drying trend in the middle reaches.

4. Discussion
4.1. Time-Lag Effect of Monthly TWSC Estimations

The time-lag effect has been demonstrated in many previous studies on TWSC es-
timation [69,70] and cannot be neglected when improving the estimation accuracy for
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TWSC. Similarly, as shown in Figure 3a, GRACE-derived TWSC also showed a significant
time-lag correlation with TWSC estimated by the PER method based on ERA5 and GLDAS.
Given that TWSC estimated by the SS method performed better than the PER method in
both temporal and spatial patterns, the differences in the time-lag correlation between the
monthly TWSC estimated by the PER method and GRACE-derived TWSC from 2003 to
2017 were further investigated.

Figure 9 shows the analysis results of the time-lag effect of TWSC estimated by the PER
method based on ERA5. Based on the ERA5, the correlation coefficient between the TWSC
estimated by the PER method with zero time lag and GRACE-derived TWSC is−0.03, while
the correlation coefficients are 0.11, 0.18, and 0.15 with 1-month, 2-month, and 3-month
lags, respectively. Apparently, the correlation coefficient of TWSC reaches a maximum
value of 0.18 at a time-lag of 2 months, which is still smaller than that of 0.36 estimated
by the SS method, indicating that the PER method has limitations in estimating TWSC in
the YZRB. As shown in Figure 9b, the amplitude of the correlation coefficient estimated
by the PER method based on ERA5 is closest to that estimated by the SS method at a lag
of 2 months, which is consistent with the time lag in the study of Zhou et al. [71]. The
basin-averaged values of the correlation coefficients are −0.01, 0.14, 0.19, and 0.16 with
zero, 1-month, 2-month, and 3-month lags, respectively, with the highest values at 2-month
lag, which are all lower than the basin-averaged value of 0.33 for the TWSC estimated by
the SS method.
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Figure 9. Time-lag effect of TWSC (a) and range of correlation coefficients (b) estimated by the PER method based on ERA5.
ERA5-PER represents the correlation coefficient between TWSC estimated by the PER method based on ERA5 and results
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correlation coefficient between TWSC estimated by the PER method based on ERA5 with a lag of 3 months and results from
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The time-lag effect of monthly TWSC estimated by the PER method could be attributed
to the time consumed from precipitation to runoff, soil moisture, and groundwater [72].
For example, infiltration and recharge to groundwater tend to cause a delay in TWSC. In
addition, the time-lagged response of TWSC is dependent on prevailing climatic conditions,
an abundance of surface water bodies and vegetation density, topographical factors, and
many others [73]. It is interesting to note that hydrologic variables always peak earlier than
TWSC; for example, monthly TWSC performs a good correlation with precipitation with a
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time lag of about 2 months [74]. Therefore, it is the time-lag effect of the PER method that
leads to the lack of agreement in estimating TWSC.

In a similar way, based on GLDAS, the time-lag effect of TWSC estimated by the
PER method was analyzed. As shown in Figure 10a, the correlation coefficient between
the TWSC estimated by the PER method with zero lag and the GRACE-derived TWSC is
−0.12, while the correlation coefficients are 0.12, 0.24, and 0.29 with 1-month, 2-month,
and 3-month lags, respectively. Different from the results based on ERA5, the correlation
coefficient reaches a maximum value of 0.29 at the 3-month lag of TWSC, but it is still
much lower than that of 0.75 estimated by the SS method. As shown in Figure 10b, the
amplitude of the correlation coefficient calculated by the PER method based on GLDAS is
closest to that estimated by the SS method based on GLDAS with a time lag of 3 months.
The basin-averaged values of the correlation coefficients are −0.10, 0.08, 0.15, and 0.19 with
zero, 1-month, 2-month, and 3-month lags, respectively, with a maximum value of 0.19
at the 3-month lag, which is still lower than that estimated by the SS method based on
GLDAS with a value of 0.53. In addition, it is crucial to emphasize that the correlation
between the TWSC estimated based on GLDAS and the GRACE-derived TWSC performs
better than that based on ERA5, according to Figures 9 and 10.
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Figure 10. Time-lag effect of TWSC (a) and range of correlation coefficients (b) estimated by the PER method based
on GLDAS. GLDAS-PER represents the correlation coefficient between TWSC estimated by the PER method based on
GLDAS and results from GRACE; GLDAS-PER-1 represents the correlation coefficient between TWSC estimated by the
PER method based on GLDAS with a lag of 1 month and results from GRACE; GLDAS-PER-2 represents the correlation
coefficient between TWSC estimated by the PER method based on GLDAS with a lag of 2 months and results from GRACE;
GLDAS-PER-3 represents the correlation coefficient between TWSC estimated by the PER method based on GLDAS with a
lag of 3 months and results from GRACE; GLDAS-SS represents the correlation coefficient between TWSC estimated by the
SS method based on GLDAS and results from GRACE.

As indicated in Figures 10b and 11b, the amplitude of the time-lagged correlation
coefficients calculated at each one based on the grid is obvious, which can further reveal
the spatial heterogeneity of TWSC in the YZRB caused by its significant elevation variation.
With a wide range of elevations from 147 m to over 7000 m above sea level, TWSC responds
differently to hydrological and climatic conditions at various elevations. Considerable
investigations have confirmed that elevation-dependent warming results in vegetation,
glaciers, and snow cover, presenting distinctive properties at different altitudes [75,76],
which in turn leads to a significant impact on the spatial distribution of TWSC. For example,
in the YZRB, when the altitude is higher than 3250 m, the NDVI begins to decline gradually,
and the NDVI gradually becomes stable as the elevation approaches 6000 m [77]. In
addition, the elevation dependence of the warming rate has a significant implication for



Remote Sens. 2021, 13, 2356 15 of 22

QTP water resources and environmental changes, since most glaciers and snow surfaces are
located 5000 m above sea level [78]. All these findings account for the spatial heterogeneity
of TWSC due to its significant elevation variation.
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4.2. Possible Dominant Factors of TWSC

The TWSC of GLDAS-SS is most consistent with the GRACE-derived TWSC in the
YZRB and indicates a long-term variation of TWSC from 1948 to 2017. In addition, two crit-
ical hydrological variables in alpine regions, soil moisture and snow water equivalent, are
available through the SS method, which enables a more accurate attribution analysis of
TWSC and makes up for the limitations of the short time series and insufficient spatial data
in previous studies.

Since TWSC showed an opposite trend before and after 2002, and to investigate possi-
ble dominant factors of TWSC, the year of 2002 was taken as the turning point. As shown in
Figure 11, the variation patterns of the soil moisture change and the snow water equivalent
change around 2002 were consistent with that of TWSC, further implying the important role
of glaciers, snow, and permafrost in alpine region water storage [79]. Specifically, the soil
moisture showed a significantly increasing trend with a rate of 0.0144 mm/month during
1948–2002 (p < 0.01) and a significantly decreasing trend with a rate of 0.394 mm/month
during 2003–2017 (p < 0.01). The snow water equivalent showed a significantly increasing
trend with a rate of 0.0092 mm/month during 1948–2002 (p < 0.01) and a significantly
decreasing trend with a rate of 0.0024 mm/month during 2003–2017 (p < 0.01). Based on
the method developed by Su et al., calculating the contribution of different components to
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the changes in terrestrial water storage on the QTP [80], the contributions of the changes
in soil moisture and snow water equivalent to TWSC before and after 2002 was quanti-
fied in this study. During 1948–2002, the contributions of changes in soil moisture and
snow water equivalent to TWSC were 61% and 39%, respectively, while a much more
significant domination of soil moisture was identified during 2003–2017; that is, the contri-
butions of changes in soil moisture and snow water equivalent to TWSC were 99% and
1%, respectively.

A more significant contribution of soil moisture change to TWSC after 2002 could
be attributed to the degradation of permafrost and melting of snow resulting from rapid
warming since the beginning of the 21st century. Climate warming has increased the
temperature of permafrost over the QTP, leading to the melting of soil ice in the layers
overlying the permafrost as well as the thickening of the active layer [81]. The influence
of seasonally frozen ground has been more pronounced than that of permafrost [82].
During the warm season, the stored solid water from seasonally frozen ground can be
released, but when the cold season comes, water transforms from liquid to solid stored in
soil, further resulting in more significant seasonal changes in soil moisture. Additionally,
the increase in seasonally frozen ground will enhance infiltration and the groundwater
reservoir capability, thus increasing discharge from soil moisture [83], which in turn causes
a more remarkable effect on TWSC. Furthermore, it has been confirmed that the effect of
elevation-dependent warming is present at relatively low-elevation ranges but absent when
the elevation continues to rise [84]. With the melting of snow and ice at lower altitudes,
the snowline gradually retreats over the QTP [85]. In addition, there is less impact on the
melting of most glaciers and snow located at elevations above 4800 m [86], accounting
for the sharp decrease in the contribution of snow water equivalent changes to the TWSC
during 2003–2017 in the YZRB.

The spatial analysis of TWSC further confirms the dominant role of soil moisture,
especially during 2003–2017. As shown in Figure 12, the spatial distribution of soil moisture
is more consistent with that of TWSC. After 2002, the areas where TWSC and soil moisture
decreased were gradually expanding from upstream to downstream, with the most obvious
changes in the middle reaches. The areas with reduced TWSC and soil moisture increased
by 16.21% and 36.71%, respectively, mainly distributed in the “One River and Two Trib-
utaries” area with a high intensity of human activities, which once again confirmed the
important impact of human activities on terrestrial water storage. TWSC and soil moisture
in most of the midstream remained unchanged during 1948–2002 but decreased during
2003–2017. The areas where soil moisture decreased during 1948–2002 and 2003–2017 were
mainly distributed in the upper reaches, and the areas where soil moisture increased were
mainly concentrated in the lower reaches. This may be the result of the relatively high
density of vegetation cover in the downstream area due to the relatively low elevation
and high temperature, which promotes the water-holding capacity of the soil in the down-
stream area [87]. The areas where the snow water equivalent decrease during 1948–2002
were mainly concentrated in the upper reaches, and most of the middle and lower reaches
mainly showed an increasing trend. In addition, increased snow water equivalent miti-
gated the drying tendency caused by decreased soil moisture in the eastern part of the
upstream and Parlung Zangbo region before 2002. The overall spatial distribution of snow
water equivalent in most areas of the YZRB during 2003–2017 was similar to that during
1948–2002, except for the downstream Parlung Zangbo glacier region, which showed a
significantly decreasing trend. In contrast to the significantly decreasing trend, both soil
moisture and TWSC showed an increasing trend in the Parlung Zangbo glacier region
during 2003–2017, further implying the dominant role of soil moisture.
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5. Conclusions

In this study, monthly data of ERA5 and GLDAS from 2003 to 2017 were used to
estimate TWSC in the YZRB, with the PER method and the SS method. Based on the
TWSC derived from GRACE, the performance assessment and time-lag effect of different
data sources and methods over the YZRB were conducted, and the SS method based on
GLDAS was used to further investigate the spatial and temporal characteristics of terrestrial
water storage in the YZRB from 1948 to 2017 and its dominant factors. Conclusions are
summarized as follows:

1. The results of the spatial and temporal variations of the four sets of TWSC estimated
by combining two datasets and two methods revealed that a 2-month lag and a
3-month time lag exist between the GRACE-derived TWSC and the TWSC estimated
by the PER method based on ERA5 and GLDAS, respectively. In addition, the TWSC
based on the SS method and GLDAS is most consistent with the results of GRACE,
which was further adopted for investigation of the long-term variation characteristics
of TWSC in the YZRB by using the Mann–Kendall nonparametric test and wavelet
analysis, indicating that an abrupt change in TWSC from increasing to decreasing
occurred around 2002, and the dominant cycle of TWSC during 1948–2017 was
35 years.

2. During 1948–2017, the change in soil moisture played a dominant role in TWSC over
the YZRB, especially after 2002. TWSC, soil moisture, and snow water equivalent
changes all showed opposite trends around 2002, i.e., an increasing trend before
2002 and a decreasing trend after 2002. In terms of spatial distribution, TWSC, soil
moisture, and snow water equivalent changes all show obvious spatial heterogeneity,
mainly reflected in the “One River and Two Tributaries” area, with a high intensity of
human activities, and the Parlung Zangbo region, where glaciers are concentrated.

3. The elevation-dependent warming caused by the complex topography of the YZRB
not only resulted in the spatial heterogeneity of TWSC, mainly through affecting the
distribution of vegetation, glaciers, and snow, but also led to a rapid reduction in the
contribution of snow water equivalent change to TWSC after 2002.
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Despite the fact that the SS method based on GLDAS data exhibits the best overall
agreement with GRACE, groundwater is not taken into account in the SS method. Therefore,
the neglect of groundwater information could have contributed to the lack of agreement
between the estimates and GRACE. In the future, considering the uneven distributions of
groundwater might improve estimation accuracy. The findings in this study can provide an
important reference for investigations of the ecohydrological cycle over the YZRB and will
be crucial for evaluating the sustainability of water resources of data-scarce alpine regions.

Author Contributions: Conceptualization, L.L.; methodology, L.L. and X.W.; software, X.W.; vali-
dation, X.W. and L.L.; formal analysis, L.L. and X.W.; investigation, Q.N. and X.W.; resources, L.L.;
data curation, X.W. and H.L.; writing—original draft preparation, L.L and X.W.; writing—review and
editing, L.L. and H.L.; visualization, Q.N., X.W. and H.L.; supervision, L.L.; project administration,
L.L. and Z.X.; funding acquisition, L.L. and Z.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was jointly supported by the National Natural Science Foundation of China
(51961145104, 52079138, and 91647202), the 2115 Talent Development Program of China Agricultural
University (00109019), and National Training Program of Innovation and Entrepreneurship for
Undergraduates (2018bj105).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Thanks for GRACE data provided by Jet Propulsion Laboratory, ERA5 reanal-
ysis data provided by the European Centre for Medium Range Weather Forecasts, and GLDAS
data provided by the National Aeronautics and Space Administration and National Oceanic and
Atmospheric Administration.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Two sensitivity analyses were designed. One (a) is considering changes in ground-
water, surface water, and plant canopy interception and the other (b) is only considering
change in groundwater. The results of the sensitivity analysis confirm that the performance
of (a) and (b) is similar to the results that only soil moisture and snow water equivalent
are included by (c), and the basin-averaged values of the correlation coefficient have not
been improved as illustrated in (d). The comparison of the results is shown in Figure A1.
Furthermore, the changes in snow and permafrost are more obvious in the YZRB, so the
changes in snow water equivalent and soil moisture deserve more attention. Therefore, it
is reasonable to ignore groundwater and other components.
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