
remote sensing  

Article

Fusion of China ZY-1 02D Hyperspectral Data and Multispectral
Data: Which Methods Should Be Used?

Han Lu 1,2,3,†, Danyu Qiao 1,2,3,†, Yongxin Li 4, Shuang Wu 1,2,3 and Lei Deng 1,2,3,*

����������
�������

Citation: Lu, H.; Qiao, D.; Li, Y.; Wu,

S.; Deng, L. Fusion of China ZY-1 02D

Hyperspectral Data and Multispectral

Data: Which Methods Should Be

Used? Remote Sens. 2021, 13, 2354.

https://doi.org/10.3390/rs13122354

Academic Editors: Consuelo

Gonzalo-Martín, Mario

Lillo-Saavedra and Angel M.

Garcia-Pedrero

Received: 12 May 2021

Accepted: 14 June 2021

Published: 16 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China;
2200901010@cnu.edu.cn (H.L.); 2190902135@cnu.edu.cn (D.Q.); 2200902139@cnu.edu.cn (S.W.)

2 College of Geospatial Information Science and Technology, Capital Normal University, Beijing 100048, China
3 Key Laboratory of 3D Information Acquisition and Application, Capital Normal University,

Beijing 100048, China
4 Logistics Support Department, Capital Normal University, Beijing 100048, China; yongxin@cnu.edu.cn
* Correspondence: denglei@cnu.edu.cn
† Co-first author.

Abstract: ZY-1 02D is China’s first civil hyperspectral (HS) operational satellite, developed indepen-
dently and successfully launched in 2019. It can collect HS data with a spatial resolution of 30 m,
166 spectral bands, a spectral range of 400~2500 nm, and a swath width of 60 km. Its competitive
advantages over other on-orbit or planned satellites are its high spectral resolution and large swath
width. Unfortunately, the relatively low spatial resolution may limit its applications. As a result,
fusing ZY-1 02D HS data with high-spatial-resolution multispectral (MS) data is required to improve
spatial resolution while maintaining spectral fidelity. This paper conducted a comprehensive eval-
uation study on the fusion of ZY-1 02D HS data with ZY-1 02D MS data (10-m spatial resolution),
based on visual interpretation and quantitative metrics. Datasets from Hebei, China, were used in
this experiment, and the performances of six common data fusion methods, namely Gram-Schmidt
(GS), High Pass Filter (HPF), Nearest-Neighbor Diffusion (NND), Modified Intensity-Hue-Saturation
(IHS), Wavelet Transform (Wavelet), and Color Normalized Sharping (Brovey), were compared. The
experimental results show that: (1) HPF and GS methods are better suited for the fusion of ZY-1
02D HS Data and MS Data, (2) IHS and Brovey methods can well improve the spatial resolution of
ZY-1 02D HS data but introduce spectral distortion, and (3) Wavelet and NND results have high
spectral fidelity but poor spatial detail representation. The findings of this study could serve as a
good reference for the practical application of ZY-1 02D HS data fusion.

Keywords: ZY-1 02D; hyperspectral remote sensing; multispectral remote sensing; data fusion

1. Introduction

The ZY-1 02D Satellite, also known as a 5-m optical satellite, is the first operational
civil hyperspectral (HS) satellite, independently developed and successfully operated by
China as the China–Brazil Earth Resources Satellite. It was launched on 12 September
2019, and one of the three main payloads is an advanced HS imager developed by the
Shanghai Institute of Technical Physics (SITP), Chinese Academy of Sciences. The ZY-
1 02D HS imager has 166 spectral bands ranging from 400 nm to 2500 nm, a spatial
resolution of 30 m, and a swath width of 60 km, allowing it to provide detailed spectral
information about ground features. Compared with other on-orbit or planned satellites (e.g.,
Environmental Mapping and Analysis Program, Precursore Iperspettrale della Missione
Applicativa, and DLR Earth Sensing Imaging Spectrometer), the spectral resolution and
the swath width of the ZY-1 02D are more advantageous. Unfortunately, due to the
unavoidable trade-offs between spectral resolution, spatial resolution and signal-to-noise
ratio [1,2], the ZY-1 02D HS data cannot directly make full use of its advantages in some
specific applications [3–7]. In this case, a simple and feasible solution that improves spatial

Remote Sens. 2021, 13, 2354. https://doi.org/10.3390/rs13122354 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4574-7381
https://doi.org/10.3390/rs13122354
https://doi.org/10.3390/rs13122354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13122354
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13122354?type=check_update&version=2


Remote Sens. 2021, 13, 2354 2 of 19

resolution while preserving spectral fidelity is required. Nowadays, data fusion has become
an important data processing method for achieving the aforementioned goal, as it can
fuse HS data with MS data to combine the benefits of both [8]. Given the availability of
ZY-1 02D MS data and the benefits of imaging under the same conditions as HS data, this
paper focuses on fusing ZY-1 02D HS data with ZY-1 02D MS data to fully excavate and
effectively use its internal information [9,10].

In recent years, with the development of high-precision quantitative remote sensing
applications, a large amount of remote sensing data with both high spatial resolution
and high spectral resolution has become urgently needed [11–14]. To address this issue,
domestic and international researchers have conducted a lot of research in the hopes of
improving spatial resolution and enriching information while preserving the spectral
fidelity of the original image [15]. Data fusion technology can synthesize the effective
information of various image data, eliminate the redundancy and contradictions between
multiple sources of information, and produce a composite image with improved inter-
pretability [16,17]. So far, several mature image fusion methods have been developed,
including the Gram-Schmidt (GS) transform [18], Intensity-Hue-Saturation (IHS) [19],
High-Pass Filter (HPF) [20], Nearest-Neighbor Diffusion (NND) [21], Wavelet Transform
(Wavelet) [22], Principal Component Analysis (PCA) [23], Color Normalized Spectral
Sharpening (CNSS) [24] and Color Normalized Sharping (Brovey) [25], etc. To evaluate
the quality of the fused result, statistical indicators (mean, standard deviation, and mean
gradient, etc.) or ground object classification accuracy, and target extraction accuracy are
typically used [26–29]. Among the numerous studies, Huang et al. [30] compared the
performance of HPF, IHS and super-resolution Bayesian (Pansharp) in the image fusion
application of Mapping Satellite-1 (TH-1) and found that HPF is the best. Sun et al. [31]
made a performance comparison of five different fusion methods to find a suitable method
for GaoFen-2 (GF-2), and the results show that the fused images transformed by HCS
and GS have good performance in both visual interpretation analysis and ground object
classification. Du et al. [32] used four methods including Pansharp, GS and Wavelet to
carry out data fusion on GaoFen-1 (GF-1), finding that the GS method could effectively
improve the spatial resolution and enrich the texture information. Huang et al. [33] fused
the ZiYuan-3 (ZY-3) satellite data with a variety of commonly used image fusion methods
and evaluated the fusion results from both qualitative and quantitative aspects. Obviously,
it can be seen that these fusion methods have good performance in high-spatial-resolution
satellite data fusion. In addition, there have also been some studies considering the use
of multi-source data fusion to explore the best fusion method for different data, such as
Ren et al. [34], who conducted a comprehensive evaluation study on the fusion results of
GF-5 HS data with three MS data (namely GF-1, GF-2 and Sentinel-2A), and the results
showed that LANARAS, Adaptive Gram-Schmidt (GSA), and modulation transfer function
(MTF)-generalized Laplacian pyramid (GLP) methods were more suitable for fusing GF-5
with GF-1 data, while MTF-GLP and GSA methods were recommended for fusing GF-5
with GF-2 data, and GSA and smoothing filtered-based intensity modulation (SFIM) could
be used to fuse GF-5 with S2A data. Ghimire et al. [35] also created an optimal image
fusion and quality evaluation strategy for various satellite image data (GF-1, GF-2, GF-4,
Landsat-8 OLI, and MODIS).

The preceding studies point us in the right direction for data fusion. It can be found
that different fusion methods have different fusion performance when applied to remote
sensing data. This disparity can be attributed to the characteristics of remote sensing data
as well as the fusion method. As a result, in practice, it is critical to select the appropriate
fusion method according to the image characteristics and application purpose [36]. Given
the short launch time of the ZY-1 02D satellite, there are currently few related research and
results regarding image fusion of ZY-1 02D data. Because the fusion methods suitable for
existing satellite data are not necessarily suitable for the ZY-1 02D, it is critical to investigate
its suitable fusion methods, and this is of great significance for future application and
research using ZY-1 02D data. Furthermore, when compared to multi-source remote
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sensing data, ZY-1 02D provides HS and MS data under the same imaging conditions,
reducing the uncertainty caused by input data. The fusion results of ZY-1 02D will have
more application value. For these reasons, we will look into image fusion on ZY-1 02D HS
and ZY-1 02D MS data. There are numerous fusion methods available for us to use in this
research [37–42], but many of them are not user-friendly in terms of operability, computing
resource requirements, and professional requirements. Taking into account the needs of
users in practical applications, the focus of this research is to identify suitable methods for
ZY-1 02D data among the existing well-known methods.

The objective of this paper is to find appropriate methods for fusing ZY-1 02D HS and
ZY-1 02D MS data from among some well-known methods. To meet the main objective,
we test six common image fusion methods (i.e., GS, HPF, IHS, Wavelet, NND, and Brovey)
and use a comprehensive evaluation framework to evaluate their performance, including
aspects of their visual interpretation and quantitative metrics. This study will serve as a
reference for the choice of fusion methods for the ZY-1 02D data, thereby further broadening
its application in a variety of fields.

2. Materials and Methods
2.1. ZY-1 02D Data

At 11:26 a.m. on 12 September 2019, the ZY-1 02D satellite was launched into the
planned orbit by a Long March-4B carrier rocket from the Taiyuan Satellite Launch Center
in China’s Shanxi Province. It is currently in a solar synchronous orbit 778 km above the
earth, with a five-year expected lifespan. The two sensors on board enable it to effectively
acquire 8-band MS data with a width of 115 km and 166-band HS data with a width of
60 km. Specifically, the spatial resolution of the MS data is 10 m, the HS data is 30 m, and
the spectral resolution of the HS reaches 10 nm and 20 nm in the visible-near infrared
(VIS-NIR) and short-wave infrared (SWI) ranges. The main parameters of the ZY-1 02D
HS and MS sensors are shown in Table 1. Figure 1 shows the spectral response function of
MS sensor.
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Table 1. Parameters of ZY-1 02D hyperspectral and multispectral sensors.

Sensors Bands Spectral Range/nm Spatial Resolution/m Spectral Resolution/nm Swath Width/km

MS B02 452~521 10 115
B03 522~607
B04 635~694
B05 776~895
B06 416~452
B07 591~633
B08 708~752
B09 871~1047

HS VIS-NIR 396~1039 30 10 60
SWI 1056~2501 20

For the experiment, the ZY-1 02D HS image and MS image covering Anxin County,
Baoding City, Hebei Province, China were used (Figure 2). They were collected on 7 October
2020. There are several common surface types in the area, mainly artificial buildings,
farmland, vegetation, and water.
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2.2. Data Preprocessing

The preprocessing of the data was divided into two sections: (1) MS data preprocess-
ing, and (2) HS data preprocessing. MS data preprocessing included image mosaicking,
image clipping and image registration. First, the two MS images were mosaicked into one
image, and then the part that overlapped with the HS image was clipped out (the size of
the clipped image was 7670 × 8291 pixels). Then, the automatic registration tool in ENVI
(i.e., Image Registration Workflow) was used to register it with the HS image (RMS Error:
0.31), and the processed MS image was used as input data for the fusion experiment. HS
data preprocessing included radiometric calibration, atmospheric correction, and band ex-
traction. Radiation calibration was used to covert the gray value (digital number, DN) into
top of atmosphere (TOA) reflectance. FLAASH model was used for atmospheric correction.
The atmospheric model was set to mid-latitude summer, and the aerosol model parameters
were set to city. Since the spectral range of the HS image (396~2501 nm) was wider than
that of the MS (452–1047 nm), a subset of the data spanning the range 452~1047 nm was
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extracted from the HS data, and the bands were grouped to match specific MS bands
(Table 2), and the processed HS image was used as the input data of the fusion experiment.
All of the preceding procedures were carried out using the ENVI 5.3 software.

Table 2. Correspondence between the eight MS bands and seventy-five HS bands.

Spectral Range/nm Bands of MS (HS)

452~521 B02 (4~12)
522~607 B03 (13~18)
635~694 B04 (22~33)
776~895 B05 (40~55)
416~452 B06 (1~3)
591~633 B07 (19~21)
708~752 B08 (34~39)

871~1047 B09 (56~75)

2.3. Fusion Method

In this experiment, six commonly used fusion methods were compared, namely GS,
HPF, NND, IHS, Wavelet, and Brovey. The methodological flowchart is shown in Figure 3.
In the fusion experiment, 8 MS bands and their corresponding 75 HS bands (as shown in
Table 2) were input into different algorithms, respectively.
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2.3.1. Gram-Schmidt (GS)

GS transform can remove redundant information by converting an HS image to
orthogonal space. The transformed components are orthogonal in the orthogonal space,
and the degree of information retention varies little between them. Compared with PCA
transform, this method avoids the problem of information over-concentration [43,44]. Its
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advantage is that the process is simple, there are no restrictions on the number of input
bands, and the spectral information of the original low-spatial-resolution image can be
well preserved. During the experiment, the HS data was input as a low-resolution image,
and the MS data were input as a high-resolution image (the following methods also used
the same setting). The resampling method was set to nearest neighbor. This method was
implemented in ENVI 5.3.

2.3.2. High-Pass Filter (HPF)

The HPF fusion method extracts structural detail information from the high-spatial-
resolution image using a high-pass filter operator and then superimposes the detail in-
formation on the low-spatial-resolution image to achieve a combination of the two [45].
The advantages of this method include a simple algorithm, a small amount of calculation,
and no limit on the number of input bands. The keral size and weighting factor were
set to 5 × 5 and the minimum value, respectively, while the other parameters remained
unchanged. This method was implemented in ERDAS IMAGINE 2014.

2.3.3. Nearest-Neighbor Diffusion (NND)

NND was proposed by the Rochester Institute of Technology (RIT) in the United States,
which uses the Nearest-Neighbor Diffusion pan-sharpening algorithm for fusion [21]. The
principle is to first perform down-sampling processing on the high-spatial-resolution image
to make the spatial resolution consistent with the low-spatial-resolution image data; then,
the spectral band contribution vector is calculated via linear regression, obtaining the near-
est super-pixel difference factor of each pixel in the original high-spatial-resolution image;
and finally, the linear mixed model is used to obtain the fused image. It is characterized by
fast operation speed and high spectral fidelity. This method was implemented in ENVI 5.3.

2.3.4. Modified Intensity-Hue-Saturation (IHS)

IHS is a color representation system that employs intensity, hue, and saturation. When
using this method for image fusion, it is primarily divided into the following three steps:
(1) Resampling the low-spatial-resolution image to match the spatial resolution of the high-
spatial-resolution image, then converting it from RGB space to IHS space; (2) histogram
matching the high-resolution image and the I component of the low-resolution image, then
replacing the I component of the low-resolution image with the new luminance component;
(3) inverse transformation of the above result and its restoration to RGB space. This
method has been widely used because of its high spatial detail enhancement capabilities.
Compared with the traditional IHS, modified IHS overcomes the limitation of three input
bands by fusing multi-band data via multiple iterations. In the B03 band, for an example, a
combination of 13-14-15 and 16-17-18 is used for two iterations of fusion to produce a fused
result of 13-18. The resampling method was set to nearest neighbor, and the ratio celling
was set to 2.0. Because there is no ZY-1 02D in the sensor options, the band information
(including center wavelength, wavelength, etc.) was customized according to the provided
data file. This method was implemented in ERDAS IMAGINE 2014.

2.3.5. Wavelet Transform (Wavelet)

Wavelet transform is a spatial signal decomposition and reconstruction fusion tech-
nology. Its basic principle is to perform wavelet forward transformation on a low-spatial-
resolution image and a high-resolution image to obtain high-frequency information from
the high-resolution image and low-frequency information from the low-resolution image,
respectively, and then generate a fused image using inverse wavelet transformation [46].
The spectral transform and resampling method were set to single band and nearest neigh-
bor, respectively. This method was implemented in ERDAS IMAGINE 2014.
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2.3.6. Color Normalized Sharping (Brovey)

The Brovey fusion method first normalizes the high-spectral-resolution data, before
multiplying it by the high-spatial-resolution image to obtain the fusion result. Each band in
the RGB image is multiplied by the ratio of the high-resolution data to the RGB data, and
the RGB image is then resampled to the high-resolution pixel size. The resampling method
was set to nearest neighbor. This method was implemented in ERDAS IMAGINE 2014.

2.4. Quality Evaluation Methods

We evaluate the quality of fusion results using two criteria: qualitative evaluation (i.e.,
visual interpretation) and quantitative evaluation (i.e., statistical metrics).

2.4.1. Qualitative Evaluation

Visual interpretation is the method used in qualitative evaluation, and it refers to
the observer’s subjective evaluation of the fusion result with respect to both the overall
effect and the local effect via visual perception. Qualitative evaluation has become an
indispensable part of the quality evaluation of remote sensing fusion images due to its
quick and simple advantages.

2.4.2. Quantitative Evaluation

The use of various remote sensing image statistical metrics to evaluate the quality of
the fusion results is referred to as quantitative evaluation. The advantages and disadvan-
tages of various fusion methods can be discovered through statistics and analysis of the
aforementioned metrics. In this experiment, five statistical metrics (i.e., mean, standard
deviation, entropy, mean gradient, and correlation coefficient) were selected to quantita-
tively evaluate the fused results from the four aspects of brightness, clarity, information
content, and spectral fidelity (Figure 4). The calculations of the five metrics are performed
as follows.
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The gray mean value is primarily used to describe the average brightness of the image.
When the gray mean value of the fused image is close to that of the original multispectral
image, it indicates that the fusion effect is good. It is defined as

Mean =
1

M × N ∑M
i=1 ∑N

j=1 I(i, j) (1)
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where M and N are the total number of rows and columns of the image, i and j are the pixel
positions, I(i, j) indicates the gray value of the pixel located in the i-th row and j-th column
of the image.

The standard deviation is frequently used to describe the uniformity of image grayscale.
The larger the standard deviation, the more dispersed the grayscale distribution of the
image and the higher the image contrast. It is defined as

Std =

√
1

M × N ∑M−1
i=0 ∑N−1

j=0 (I(i, j)− I)2 (2)

where I represents the gray mean value of the image.
The entropy is an important indicator for measuring the richness of image information

because it reflects the average information content in the image. It is defined as

Entropy =− ∑ P(xi) log(2, p(xi)) (3)

where xi represents the random variable, and P(xi) is the output probability function.
The mean gradient refers to the obvious difference in the gray scale near the border

or both sides of the shadow line of the image, indicating that the gray scale change rate is
high, and the magnitude of this change rate can be used to express the clarity of the image.
It can sensitively reflect the rate at which the image expresses the contrast of small details
and characterize the relative clarity and texture of the image. The larger the mean gradient,
the clearer the image is. It is defined as

G =
1

(M − 1)(N − 1)

M

∑
i=1

N

∑
j=1

√√√√ ((
∂Z(xi ,yj)

∂xi
)

2
+ (

∂Z(xi ,yj)
∂yj

)
2
)

2
(4)

where
∂Z(xi ,yj)

∂xi
represents the gradient in the horizontal direction, and

∂Z(xi ,yj)
∂yj

represents
the gradient in the vertical direction.

The correlation coefficient indicates how similar the images were before and after
fusion. A high correlation coefficient indicates that the fused image is close to the original
image and has good spectral fidelity. It is defined as

C =

M
∑

i=1

N
∑

j=1

[
R(i, j)−

−
FR

][
F(i, j)−

−
F
]

√
M
∑

i=1

N
∑

j=1

[
R(i, j)−

−
FR

]2 M
∑

i=1

N
∑

j=1

[
F(i, j)−

−
F
]2

(5)

In addition to the statistical metrics listed above, the spectral curve of typical ground
objects can also be used to evaluate the quality of the fusion results [47]. In this experiment,
the spectral curves of typical ground objects (vegetation, water, and artificial building) are
extracted, and a comparison is drawn between the original HS image and the fused image,
respectively, to quantify the benefits and drawbacks of the fusion methods.

3. Results
3.1. Qualitative Evaluation

Figure 5 shows false-color images of the original HS image, the six fused results (R:
954 nm; G: 765 nm; B: 482 nm), and the original MS image (R: B09; G: B08; B: B02). There
are some color differences between different fused images and the original HS image from
the perspective of the entire image, but they all retain the main spectral characteristics of
the original HS image. The colors of the HPF and Wavelet images are the closest to the
original HS image, and the tone of the two is lighter than that of the original HS image,
with almost no difference between the HPF and the Wavelet images. When compared
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to the original HS image, the color of the NND and GS images is more orange, and the
contrast between adjacent objects in the two is not as clear, indicating that the NND and
GS fusion methods perform worse than the above two methods. The IHS image and the
original HS image have a distinct spectral difference, which is reflected in the darker tone
of the IHS image as well as the spectral distortion phenomenon. Nevertheless, IHS images
possess clarity. The color deviation between the Brovey image and the original HS image is
the greatest, indicating that the Brovey image has significant spectral distortion.
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To further evaluate the visual interpretation effect of the fused images, especially the
enhancement effect of the spatial details, Figures 6 and 7 show the detail of several typical
ground objects, namely artificial buildings, farmland, vegetation and water.

When the edge and texture differences between the original HS image and fused
image are compared, it can be found that, with the exception of the Wavelet image, the
clarity of the other five fused images is higher than that of the original HS image, indicating
that the above five fusion methods are able to improve the spatial resolution of the original
HS image, thereby improving the accuracy and reliability of the visual interpretation. The
IHS image has the best clarity and good spatial sharpening effect. The boundaries between
building, road, and farmland are the clearest, and the outlines of vegetation and artificial
fences in the water are the most visible, indicating that the IHS fusion method improves
the spatial details of the original image the most. Unfortunately, the IHS image contains
some spectral distortions, resulting in significant color differences between the IHS image
and the original HS image. HPF and GS fusion methods are second only to IHS in terms
of spatial detail enhancement. Specifically, the contours of aquatic vegetation are more
visible in the HPF fused image, and the details of some buildings and farmland features are
blurred. The detailed spatial information of the Brovey fused image is slightly lost, which
is reflected in the fact that the artificial fence edge in the water is difficult to identify, and
its spectral distortion is more pronounced. The spatial resolutions of the NND and Wavelet
fused images are low, and the visual interpretation effect is not optimal. Between them,
the Wavelet image has the closest color match to the original HS image, but the effect of its
spatial detail representation is poor, and there are some obvious distortions and unclear
texture features in the buildings.



Remote Sens. 2021, 13, 2354 10 of 19
Remote Sens. 2021, 13, 2354 10 of 19 
 

 

 
(a) Original hyperspectral 

  
(b) GS (c) HPF 

  
(d) IHS (e) NND 

  
(f) Wavelet (g) Brovey 

Figure 6. The details of farmland and artificial buildings. (a) ZY-1 02D original hyperspectral image; 
(b) GS image; (c) HPF image; (d) IHS image; (e) NND image; (f) Wavelet image; (g) Brovey image. 

Figure 6. The details of farmland and artificial buildings. (a) ZY-1 02D original hyperspectral image;
(b) GS image; (c) HPF image; (d) IHS image; (e) NND image; (f) Wavelet image; (g) Brovey image.



Remote Sens. 2021, 13, 2354 11 of 19
Remote Sens. 2021, 13, 2354 11 of 19 
 

 

 
(a) Original hyperspectral 

  
(b) GS (c) HPF 

  
(d) IHS (e) NND 

  
(f) Wavelet (g) Brovey 

Figure 7. The details of vegetation and water.(a) ZY-1 02D original hyperspectral image; (b) GS 
image; (c) HPF image; (d) IHS image; (e) NND image; (f) Wavelet image; (g) Brovey image. 

When the edge and texture differences between the original HS image and fused im-
age are compared, it can be found that, with the exception of the Wavelet image, the clarity 
of the other five fused images is higher than that of the original HS image, indicating that 
the above five fusion methods are able to improve the spatial resolution of the original HS 
image, thereby improving the accuracy and reliability of the visual interpretation. The IHS 
image has the best clarity and good spatial sharpening effect. The boundaries between 

Figure 7. The details of vegetation and water.(a) ZY-1 02D original hyperspectral image; (b) GS
image; (c) HPF image; (d) IHS image; (e) NND image; (f) Wavelet image; (g) Brovey image.

3.2. Quantitative Evaluation
3.2.1. Statistical Metrics

Considering a large number of HS bands, eight HS bands are quantitatively accounted
for this experiment, corresponding to the center wavelength positions of the eight MS
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bands. Table 3 shows the mean, standard deviation, entropy, mean gradient, and correlation
coefficient of the original HS image and six fused images.

Table 3. Quantitative evaluation statistics metrics.

Number of Bands
(Wavelength) Fusion Method Mean Standard Deviation Entropy Mean Gradient Correlation Coefficient

B02 (482 nm) Original HS 100.3648 12.7672 6.0404 26.8851 1.0000
GS 96.9338 19.6723 6.1241 47.8024 0.9027

HPF 103.5575 24.3926 6.0896 54.4626 0.9448
IHS 73.1858 24.1157 5.2708 49.4911 0.8613

NND 103.8201 14.2127 6.0183 29.0472 0.9237
Wavelet 102.7105 18.2765 6.1112 38.4877 0.9711
Brovey 29.6865 6.3760 4.9725 46.1580 0.7841

B03 (568 nm) Original HS 109.7536 14.0712 6.0792 30.4275 1.0000
GS 108.7666 21.017 6.0606 54.8879 0.8979

HPF 113.8481 25.3081 6.1309 58.9571 0.9479
IHS 104.0233 22.5063 6.0326 52.4368 0.8986

NND 111.2329 15.7797 6.0458 32.9132 0.9501
Wavelet 112.7678 19.1729 6.1322 41.9692 0.9682
Brovey 33.6375 6.7881 5.037 51.8042 0.7923

B04 (662 nm) Original HS 105.6488 15.0996 6.1017 32.1022 1.0000
GS 103.7238 22.5502 6.1283 55.0825 0.8966

HPF 108.9427 26.6834 6.1284 60.8555 0.9426
IHS 104.1239 23.5609 6.0404 54.7468 0.8995

NND 108.6382 16.4924 6.0502 33.9025 0.9411
Wavelet 111.4921 20.2655 6.1502 44.3468 0.9664
Brovey 32.2769 7.2767 5.0268 53.6661 0.7904

B05 (834 nm) Original HS 148.1834 10.9544 5.7649 24.2174 1.0000
GS 147.7579 17.8605 5.9226 56.4583 0.9281

HPF 148.4721 19.7851 6.0258 49.2987 0.9095
IHS 129.5685 23.5102 5.8911 56.8161 0.9252

NND 138.3355 14.0712 5.8797 30.2696 0.9403
Wavelet 156.0215 16.0169 5.8548 34.2237 0.9813
Brovey 48.5566 5.9984 4.9162 47.4623 0.8193

B06 (430 nm) Original HS 98.2831 11.9164 6.0626 25.3595 1.0000
GS 104.1284 15.3213 6.1055 41.8993 0.8887

HPF 101.6062 24.5561 6.0715 55.1704 0.9341
IHS 79.5842 22.2562 5.6839 44.5485 0.8834

NND 115.3039 19.2873 6.0474 45.6413 0.8802
Wavelet 99.2973 17.6968 6.0998 37.4642 0.9696
Brovey 33.4879 5.6296 5.0001 43.9359 0.7811

B07 (611 nm) Original HS 107.9341 14.5122 6.0967 31.1587 1.0000
GS 105.9264 22.2558 6.1283 54.5936 0.8972

HPF 110.5961 26.2106 6.1309 60.1416 0.9442
IHS 104.6792 22.3629 6.0433 55.7009 0.8985

NND 109.8163 15.9687 6.0527 33.1166 0.9502
Wavelet 112.5107 20.2215 6.1508 44.2971 0.9688
Brovey 32.2255 7.2689 5.0279 53.6364 0.8894

B08 (765 nm) Original HS 147.6844 11.2318 5.7661 24.9981 1.0000
GS 147.2125 17.7753 5.9252 57.0881 0.9289

HPF 139.327 21.3667 6.0161 53.9328 0.8806
IHS 116.0493 22.1731 6.0229 55.1546 0.6981

NND 127.7334 21.6202 5.9381 56.6921 0.8184
Wavelet 134.6255 20.4686 6.0776 45.9071 0.8207
Brovey 48.9651 6.0844 4.9028 56.1831 0.8106

B09 (954 nm) Original HS 154.8327 9.9505 5.7401 22.1483 1.0000
GS 153.1369 18.2631 5.8793 51.5527 0.9529

HPF 159.3981 18.0164 6.0258 47.0832 0.9775
IHS 130.1481 22.2889 5.8911 55.1831 0.9226

NND 146.2381 12.7801 5.8583 27.7978 0.9461
Wavelet 159.3499 15.8887 5.8548 36.2066 0.9832
Brovey 48.0108 6.1852 4.8995 46.1493 0.8071

By comparing the statistical metric values of the six fused images in Table 3 with the
original HS image, the following five results can be obtained.
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(1) The HPF and GS fused images (gray mean value of the HPF image: 101~160; GS:
96~154) had high brightness similarity with the original HS image (100~155); the
NND image (103~147) and Wavelet image (99~166) were second to them; the IHS
image (73~131) had some spectral distortion when compared to the original HS image;
the mean value of the Brovey image (29~49) was much lower than that of the original
HS image, the mean value between the two had the largest deviation, and the spectral
distortion of the Brovey image was the most significant.

(2) The standard deviations of HPF, IHS and GS fused images were relatively large.
Among them, the HPF image had the largest standard deviation in the visible light
(standard deviation of the HPF fused image: 23~27), and the IHS image had the
biggest standard deviations in the near-infrared and red edge bands (IHS image:
22~24), and the standard deviations of the three fused images were higher than
the original HS image, greatly improving the information richness of the original
HS image; the standard deviations of the NND and Wavelet images were slightly
lower than those of the above three fused images. The standard deviation of the
Wavelet image (16~21) was slightly higher than that of the NND (12~22); the standard
deviation of the Brovey image (6~8) was much lower than that of the original image,
indicating that the gray level of the fused image after Brovey transformation was not
sufficiently dispersed and the tone tended to be single.

(3) Except for the Brovey image, the entropy of the other five fused images was improved
when compared to the original HS image, and there was no significant difference in
the entropy of different fusion images (5–7). Among them, the entropy of the Wavelet
image was the highest, followed by the HPF and GS images. The information content
of the three was nearly identical, with the exception of the IHS, which was slightly
lower; the information content of Brovey fusion images was lower than that of the
original HS images.

(4) The mean gradient of the fused image was higher than that of the original HS image,
indicating that the six fusion methods were able to improve the original image’s
ability to represent spatial details. The mean gradients of HPF and IHS fused images
were larger, and their spatial detail information enhancement effects were the best, as
shown in Table 3. Between them, the mean gradient of HPF image was more visible
in the visible light band (mean gradient of HPF fusion image: 47~61). The IHS fusion
image outperformed the other two fusion methods in the red edge and near-infrared
bands (55~57); the mean gradient of GS and Brovey fused images were slightly lower
than the above two fused images. Between them, the mean gradient of Brovey image
(43~57) was slightly higher than GS image (41~58); the mean gradient of NND and
Wavelet fused was the lowest, indicating that the spatial resolution of these two fused
images was low.

(5) Similar to the visual interpretation result, the correlation coefficients of Wavelet, HPF
and NND were relatively large, indicating that they have excellent spectral fidelity
performance. Except for the red band, the correlation coefficients of Wavelet and HPF
fused images were all greater than 0.9; the correlation coefficient between the IHS
fusion image and the original image was second only to HPF and Wavelet, but it
performed poorly in the blue and red bands; and the Brovey fused image had the
lowest correlation coefficient, indicating that there was a large spectral difference
between it and the original HS image.

To summarize, the HPF image not only preserved the spectral characteristics of the
original HS image to a large extent, but also improved the spatial resolution of the HS
data, making it the best choice for ZY-1 02D HS data enhancement; although Wavelet and
NND fused images had a large amount of information and a high spectral fidelity, the
spatial detail representation effect of the two was not satisfactory; the IHS fused image
was clear and rich in texture information, but there was obvious spectral distortion; the
performance of the GS fusion image was at a medium level; the Brovey transform had
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a mediocre performance in spectral fidelity and spatial detail representation, and had a
serious spectral distortion problem, making it far inferior to the above five methods.

3.2.2. The Spectral Curves of Typical Ground Objects

To more intuitively evaluate the spectral fidelity of the different fused images, this
experiment takes typical objects (i.e., vegetation, artificial building, and water) as examples
to compare the differences between the six fused results and the original HS image. To
ensure that the results are representative, the spectral curves of the three objects are
averaged over three homogeneous areas with 5 × 5 pixels. As shown in Figure 8, the left
column is the three spectral curves of six fused images and HS image. In addition, the
spectral differences between the six fused images and the original HS image are also shown
(the right column of Figure 8), which is convenient for identifying the differences in the
spectral fidelity of the different fusion methods.
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Figure 8. Spectral curves of typical objects. Top: vegetation spectral curves of six fused images
and HS image (a), difference between fused images and HS image in vegetation spectral curve (d);
Middle: artificial building spectral curves of six fused images and HS image (b), difference between
fused images and HS image in building spectral curve (e); Bottom: water spectral curves of six fused
images and HS image (c), difference between fused images and HS image in water spectral curve (f).

By comparing the spectral curves of different fused images and the original HS image,
we can obtain similar results to those presented above. Overall, the HPF, Wavelet, NND
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and GS fused images possessed high spectral fidelity; while the IHS and Brovey fused
images exhibited significant spectral distortion. The spectral curves of the fused images
have roughly the same trend as the original HS image and fluctuate around the original
HS spectral curve with slight variations. In the spectral curves of vegetation, the difference
between the Wavelet and HPF fused image and the original HS image was the smallest,
indicating that the two fusion methods had the best spectral fidelity. Between them, the
Wavelet fused image was more prominent in the visible light band, while the HPF fused
image was more prominent in the visible light and near-infrared (NIR) bands; the spectral
fidelity of the NND and GS fused images were second, with a lager difference between
their spectral curves. In the spectral curves of the building, the Wavelet fused image had a
higher degree of overlap and a smaller difference with the original HS image; the spectral
curves of HPF and GS fused images basically fitted the original HS image after about
510 nm; and the performance of NND was quite different in the NIR band (approximately
765 nm). The curve in the second half of the spectral curve was very similar to that of the
original HS image, whereas the curve in the first half was quite different from the gray
value of the original HS image. This result is consistent with the color deviation of the
building in the visual interpretation effect. In the spectral curves of water, the NND and
the original HS image were highly overlapped; the difference between Wavelet and GS
was slightly larger; the change trend of the HPF fused image was the same as the original
image, but compared to the above fused methods, there was a larger difference between
HPF and the original HS, which is slightly different from the high correlation coefficient
obtained for the HPF method in the metric statistical results. This may have been caused by
the small amount of water in the entire image. Similar to the visual interpretation results,
the IHS and Brovey fused images were significantly different from the original HS image
with respect to the spectral curves of the three ground objects. There were obvious spectral
distortions in the two fused images, particularly the Brovey image, which had the lowest
spectral fidelity.

In conclusion, the HPF, Wavelet, NND, and GS fusion methods performed well, and
different fusion methods performed differently when confronted with different ground
objects. HPF and Wavelet had the best spectral fidelity in the vegetation and building
areas, respectively, while NND had the best spectral fidelity in the water area. It can be
found that the HPF, Wavelet, NND and GS fusion methods have good performance, and
different fusion methods have different performance when facing different ground objects.
Specifically, HPF and Wavelet have the best spectral fidelity in vegetation and building
areas, and NND has the best spectral fidelity in the water area.

4. Discussion
4.1. Performance of Fusion Methods

In this paper, six well-known fusion methods were successfully used to enhance the
spatial resolution and the information of ZY-1 02D data. Compared to the original HS
data, the six fused images were clearer and easier to visually interpret. Furthermore, there
were also some noticeable differences among the six fused results. HPF, in particular,
demonstrated excellent performance with respect to both spectral fidelity and spatial
resolution enhancement. The reason for this could be that the HPF injects the spatial details
of the MS data into the HS data via a high-pass filter and has a low-pass filter to maintain
the spectral separation of HS data. This result was also discovered in the fusion experiment
of Mapping Satellite-1 by Huang et al. [30]. The difference is that the research object of
this study is HS data with high spectral resolution, which are better suited to narrow-band
spectroscopy research. Aside from HPF, Wavelet and NND exhibited high robustness
in terms of spectral fidelity. Between them, the spatial resolution of the Wavelet fused
image was slightly lower, and the boundary between different features was not significant,
but it was always clearer than the original HS data. As concluded by Sun et al. [31] and
Du et al. [32], GS performs well when applied to remote sensing data. On the contrary, the
spectral fidelity performances of IHS and Brovey were slightly inferior, and there is still
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room for improvement in spatial resolution [48,49]. The spectral distortion of IHS is mainly
caused by the forced direct replacement of the I component [50], whereas the spectral
distortion of Brovey was affected by the simple multiplication of HS and MS [25]. It is
worth noting that these two methods are simple in terms of theory, simple to implement,
and quick to calculate, and so can be used for some low-demand applications.

4.2. Selection of Quantitative Metrics

The quality evaluation of the fused results in remote sensing data fusion research is
too complicated to establish a unified standard. Until now, it has been performed using a
combination of visual interpretation and quantitative metrics [51]. As a result, we used
the same method to evaluate the quality of six fused images. The five quantitative metrics
selected for this paper adhered to three principles: (1) they were able to evaluate the quality
of fused images with respect to different aspects (typically spatial resolution enhancement
capability and spectral fidelity); (2) they were able to distinguish the performance dif-
ferences of the six fusion methods; and (3) they were simple and easy to calculate. The
comparison results also demonstrate the applicability of the five metrics. In addition to
the common metrics listed above, many researchers have attempted to supplement the
quality evaluation system by improving or proposing new metrics [52–54]. There is still
a long way to go before we establish a unified evaluation standard. In practical applica-
tions, appropriate quantitative metrics should be selected based on geographic conditions,
application requirements, and data sources.

4.3. Limitations

The study was carried out on a single date in a single study area with four typical
surface types; it would be preferable if different study areas with more surface types in
different periods were used [55]. Because the spectral range of the HS image is wider
than that of the MS, this study only performed fusion processing on the HS data in the
452~1047 nm range. In subsequent research, we will fully exploit the advantages of the
wide spectral range to investigate suitable fusion methods for shortwave of infrared band,
as well as extending the practical application of ZY-1 02D data. In reality, the primary
purpose of data fusion is to prepare for remote sensing image applications such as image
classification [56], change detection [57], and so on. As a result, more research into the
application of fused images is required in the future to obtain better results and conclusions.

5. Conclusions

Six fusion methods, GS, HPF, IHS, NND, Wavelet, and Brovey, were used in this paper
to realize the fusion of ZY-1 02D HS data and MS data. The six fusion results were compared
and analyzed using a combination of qualitative and quantitative evaluation methods, and
the following conclusions were drawn: (1) Considering the three aspects of visual effect,
spectral fidelity, and spatial detail expression, the HPF method was the most suitable for the
fusion of ZY-1 02D HS data and MS data. In comparison to the original HS image, the HPF
fused image maintained its spectral characteristics while improving its spatial resolution,
enriching its information, and providing the best fusion performance. (2) Different fusion
methods perform differently for different datasets. In practice, appropriate data fusion
methods should be selected according to the data type and specific needs. Six commonly
used fusion methods were used in this study for fusion processing of ZY-1 02D satellite HS
and MS images, providing a significant reference for future ZY-1 02D data processing and
application-related research.

Author Contributions: H.L., D.Q. and L.D. designed and developed the research idea. H.L., D.Q.
and S.W. conducted the field data collection. H.L., D.Q., Y.L. and S.W. processed all remaining data.
H.L. and D.Q. performed the data analysis and wrote the manuscript. H.L., D.Q., Y.L., S.W. and L.D.
contributed to result and data interpretation, discussion, and revision of the manuscript. All authors
have read and agreed to the published version of the manuscript.



Remote Sens. 2021, 13, 2354 17 of 19

Funding: This research was funded by the landscape plant maintenance monitoring and intelligent
diagnosis model development of Capital Normal University (no. 21220030003).

Acknowledgments: The authors are very thankful for Zou Hanyue, Fan Tianxing and Chen Yong
for their valuable support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Zhang, L.; Shen, H. Progress and future of remote sensing data fusion. J. Remote Sens. 2016, 20, 1050–1061.
2. Xie, Q.; Zhou, M.; Zhao, Q.; Meng, D.; Zuo, W.; Xu, Z. Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net. In

Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; pp. 1585–1594.

3. Ma, Y.; Zhang, Y.; Mei, X.; Dai, X.; Ma, J. Multifeature-Based Discriminative Label Consistent K-SVD for Hyperspectral Image
Classification. IEEE J. Stars. 2019, 12, 4995–5008. [CrossRef]

4. Qu, Y.; Qi, H.; Ayhan, B.; Kwan, C.; Kidd, R. DOES multispectral/hyperspectral pansharpening improve the performance of
anomaly detection? In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort
Worth, TX, USA, 23–28 July 2017; pp. 6130–6133.

5. Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote
Sens. 2017, 55, 844–853. [CrossRef]

6. Ferraris, V.; Dobigeon, N.; Qi, W.; Chabert, M. Robust Fusion of Multi-Band Images with Different Spatial and Spectral Resolutions
for Change Detection. IEEE Trans. Comput. Imaging 2017, 3, 175–186. [CrossRef]

7. Gómez-Chova, L.; Tuia, D.; Moser, G.; Camps-Valls, G. Multimodal classification of remote sensing images: A review and future
directions. Proc. IEEE 2015, 103, 1560–1584. [CrossRef]

8. Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in Spectral-Spatial Classification of Hyperspectral
Images. Proc. IEEE 2013, 101, 652–675. [CrossRef]

9. Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32, 75–89. [CrossRef]
10. Pandit, V.R.; Bhiwani, R.J. Image Fusion in Remote Sensing Applications: A Review. Int. J. Comput. Appl. 2015, 120, 22–32.
11. Huang, B.; Zhao, Y. Research Status and Prospect of Spatiotemporal Fusion of Multi-source Satellite Remote Sensing Imagery.

Acta Geod. Cartogr. Sin. 2017, 46, 1492–1499.
12. Wang, H.; Peng, J.; Wu, W. Remote Sensing Image Fusion Using Wavelet Packet Transform. J. Image Graph. 2002, 9, 68–73.
13. Zhou, F.; Hang, R.; Liu, Q.; Yuan, X. Pyramid Fully Convolutional Network for Hyperspectral and Multispectral Image Fusion.

IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2019, 12, 1–10. [CrossRef]
14. Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and Multispectral Data Fusion: A comparative review of the recent

literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [CrossRef]
15. Shao, Y.; Zhu, C.; Zhang, X.; Shen, Q. Comparison of diffirent fusion methods and their performance evaluation to high spatial

resolution remote sensing data of GF. Bulletin Surv. Mapp. 2019, 5, 5–10.
16. Wang, G.; Li, Y.; Zeng, Y.; Jin, L. Comparison and analysis is of pixel level image fusion algorithms application to ALOS data. Sci.

Surv. Mapp. 2008, 33, 121–124.
17. Kaczynski, R.; Donnay, J.P.; Muller, F. Satellite image maps of Warsaw in the scale 1:25,000. Earsel Adv. Remote Sens. 1995, 4,

100–103.
18. Aiazzi, B.; Baronti, S.; Selva, M. Improving Component Substitution Pansharpening Through Multivariate Regression of MS

+Pan Data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [CrossRef]
19. Tu, T.; Huang, P.S.; Hung, C.; Chang, C. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS

imagery. IEEE Geosci. Remote Sens. 2004, 1, 309–312. [CrossRef]
20. Metwalli, M.R.; Nasr, A.H.; Allah, O.S.F.; El-Rabaie, S. Image fusion based on principal component analysis and high-pass filter.

In Proceedings of the 2009 International Conference on Computer Engineering & Systems, Cairo, Egypt, 14–16 December 2009;
pp. 63–70.

21. Sun, W.; Chen, B.; Messinger, D.W. Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images. Opt. Eng.
2013, 53, 13107. [CrossRef]

22. Zhou, J.; Civco, D.L.; Silander, J.A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J.
Remote Sens. 1998, 19, 743–757. [CrossRef]

23. Shah, V.P.; Younan, N.H.; King, R.L. An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and
Contourlets. IEEE Trans. Geosci. Remote 2008, 46, 1323–1335. [CrossRef]

24. Klonus, S.; Ehlers, M. Image Fusion Using the Ehlers Spectral Characteristics Preserving Algorithm. GISci. Remote Sens. 2007, 44,
93–116. [CrossRef]

25. Tu, T.; Lee, Y.C.; Chang, C.P.; Huang, P.S. Adjustable intensity-hue-saturation and Brovey transform fusion technique for
IKONOS/QuickBird imagery. Opt. Eng. 2005, 44, 116201. [CrossRef]

http://doi.org/10.1109/JSTARS.2019.2949621
http://doi.org/10.1109/TGRS.2016.2616355
http://doi.org/10.1109/TCI.2017.2692645
http://doi.org/10.1109/JPROC.2015.2449668
http://doi.org/10.1109/JPROC.2012.2197589
http://doi.org/10.1016/j.inffus.2016.03.003
http://doi.org/10.1109/JSTARS.2019.2910990
http://doi.org/10.1109/MGRS.2016.2637824
http://doi.org/10.1109/TGRS.2007.901007
http://doi.org/10.1109/LGRS.2004.834804
http://doi.org/10.1117/1.OE.53.1.013107
http://doi.org/10.1080/014311698215973
http://doi.org/10.1109/TGRS.2008.916211
http://doi.org/10.2747/1548-1603.44.2.93
http://doi.org/10.1117/1.2124871


Remote Sens. 2021, 13, 2354 18 of 19

26. Zeng, Y.; Huang, W.; Liu, M.; Zhang, H.; Zou, B. Fusion of satellite images in urban area: Assessing the quality of resulting
images. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4.

27. Teo, T.; Fu, Y. Spatiotemporal Fusion of Formosat-2 and Landsat-8 Satellite Images: A Comparison of “Super Resolution-Then-
Blend” and “Blend-Then-Super Resolution” Approaches. Remote Sens. 2021, 13, 606. [CrossRef]

28. Amarsaikhan, D.; Saandar, M.; Ganzorig, M.; Blotevogel, H.H.; Egshiglen, E.; Gantuyal, R.; Nergui, B.; Enkhjargal, D. Comparison
of multisource image fusion methods and land cover classification. Int. J. Remote Sens. 2012, 33, 2532–2550. [CrossRef]

29. Karathanassi, V.; Kolokousis, P.; Ioannidou, S. A comparison study on fusion methods using evaluation indicators. Int. J. Remote
Sens. 2007, 28, 2309–2341. [CrossRef]

30. Huang, H.; Feng, Y.; Zhang, M.; Li, M. Research on Fusion of Mapping Satellite-1 Imagery and Its Evaluation. Bulletin Surv. Mapp.
2013, 430, 6–9.

31. Sun, P.; Dong, Y.; Chen, W.; Ma, J.; Zou, Y.; Wang, J.; Chen, H. Research on fusion of GF-2 imagery and quality evaluation. Remote
Sens. Land Resour. 2016, 28, 108–113.

32. Du, Y.; Zhang, X.; Mao, Z.; Chen, J. Performances of conventional fusion methods evaluated for inland water body observation
using GF-1 image. Acta Oceanol. Sin. 2019, 38, 172–179. [CrossRef]

33. Huang, X.; Wen, D.; Xie, J.; Zhang, L. Quality Assessment of Panchromatic and Multispectral Image Fusion for the ZY-3 Satellite:
From an Information Extraction Perspective. IEEE Geosci. Remote Sens. 2014, 11, 753–757. [CrossRef]

34. Ren, K.; Sun, W.; Meng, X.; Yang, G.; Du, Q. Fusing China GF-5 Hyperspectral Data with GF-1, GF-2 and Sentinel-2A Multispectral
Data: Which Methods Should Be Used? Remote Sens. 2020, 12, 882. [CrossRef]

35. Ghimire, P.; Lei, D.; Juan, N. Effect of Image Fusion on Vegetation Index Quality—A Comparative Study from Gaofen-1, Gaofen-2,
Gaofen-4, Landsat-8 OLI and MODIS Imagery. Remote Sens. 2020, 12, 1550. [CrossRef]

36. Li, L.; She, M.; Luo, H. Comparison on fusion algorithms of ZY-3 panchromatic and multi-spectral images. Trans. Chin. Soc. Agric.
Eng. 2014, 30, 157–165.

37. Liu, Z.; Zheng, Y.; Han, X. Unsupervised Multispectral and Hyperspectral Image Fusion with Deep Spatial and Spectral Priors; Springer
International Publishing: Cham, Switzerland, 2021; Volume 12628, pp. 31–45.

38. Dian, R.; Li, S.; Kang, X. Regularizing Hyperspectral and Multispectral Image Fusion by CNN Denoiser. IEEE Trans. Neural Netw.
Learn. Syst. 2021, 32, 1124–1135. [CrossRef]

39. Shao, Z.; Cai, J. Remote Sensing Image Fusion With Deep Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2018, 11, 1656–1669. [CrossRef]

40. Kwan, C.; Choi, J.H.; Chan, S.; Jin, Z.; Budavari, B. Resolution enhancement for hyperspectral images: A super-resolution and
fusion approach. In Proceedings of the ICASSP 2017–2017 IEEE International Conference on Acoustics, Speech and Signal, New
Orleans, LA, USA, 5–9 March 2017; pp. 6180–6184.

41. Loncan, L.; de Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.;
Simoes, M.; et al. Hyperspectral Pansharpening: A Review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [CrossRef]

42. Lillo Saavedra, M.; Gonzalo, C. Spectral or spatial quality for fused satellite imagery? A trade-off solution using the waveletà
trous algorithm. Int. J. Remote Sens. 2007, 27, 1453–1464. [CrossRef]
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