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Abstract: Urban green infrastructures (UGI) can effectively reduce surface runoff, thereby alleviating
the pressure of urban waterlogging. Due to the shortage of land resources in metropolitan areas,
it is necessary to understand how to utilize the limited UGI area to maximize the waterlogging
mitigation function. Less attention, however, has been paid to investigating the threshold level of
waterlogging mitigation capacity. Additionally, various studies mainly focused on the individual
effects of UGI factors on waterlogging but neglected the interactive effects between these factors.
To overcome this limitation, two waterlogging high-risk coastal cities—Guangzhou and Shenzhen,
are selected to examine the effectiveness and stability of UGI in alleviating urban waterlogging.
The results indicate that the impact of green infrastructure on urban waterlogging largely depends on
its area and biophysical parameter. Healthier or denser vegetation (superior ecological environment)
can more effectively intercept and store rainwater runoff. This suggests that while increasing the
area of UGI, more attention should be paid to the biophysical parameter of vegetation. Hence,
the mitigation effect of green infrastructure would be improved from the “size” and “health”.
The interaction of composition and spatial configuration greatly enhances their individual effects on
waterlogging. This result underscores the importance of the interactive enhancement effect between
UGI composition and spatial configuration. Therefore, it is particularly important to optimize the
UGI composition and spatial pattern under limited land resource conditions. Lastly, the effect
of green infrastructure on waterlogging presents a threshold phenomenon. The excessive area
proportions of UGI within the watershed unit or an oversized UGI patch may lead to a waste
of its mitigation effect. Therefore, the area proportion of UGI and its mitigation effect should be
considered comprehensively when planning UGI. It is recommended to control the proportion of
green infrastructure at the watershed scale (24.4% and 72.1% for Guangzhou and Shenzhen) as well
as the area of green infrastructure patches (1.9 ha and 2.8 ha for Guangzhou and Shenzhen) within
the threshold level to maximize its mitigation effect. Given the growing concerns of global warming
and continued rapid urbanization, these findings provide practical urban waterlogging prevention
strategies toward practical implementations.

Keywords: urban waterlogging; green infrastructure; composition and spatial configuration; geo-
graphical detector model; nonlinear relationship

1. Introduction

Urban waterlogging is caused by surface runoff exceeding the local drainage capacity
of a city due to short-term heavy rainfall [1–3]. With the acceleration of globalization, the
natural surface within the city has undergone drastic changes [4,5]. This phenomenon
leads to numerous social-environmental-ecological problems [6–9]. The driving factors and
spatial variability of waterlogging have been extensively studied [10,11]. Specifically, the
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man-made land covers destroy the original urban hydrological cycle, which impedes the
natural infiltration of rainwater and reduces the storage capacity of the underlying urban
surface. These phenomena have led to the frequent occurrence of urban waterlogging
events [12–14]. The Intergovernmental Panel on Climate Change (IPCC) fifth assessment
report states that the intensity and frequency of extreme precipitation events have increased
significantly [15]. Therefore, in the context of climate change and intense human activi-
ties, it will undoubtedly lead to the frequent occurrence of urban waterlogging disasters,
posing a growing threat to human well-being. For example, in 2017, 104 cities in China
suffered from urban waterlogging disasters, affecting 2.18 million people and causing
direct economic losses of $2.47 billion [16]. From 21 to 22 July 2012, Beijing suffered the
strongest rainstorm and waterlogging disaster in 61 years (460 mm maximum precipi-
tation). The torrential rain triggered flash floods, resulting in 79 deaths, 10,660 houses
collapsing, and $1875 billion in losses. Coincidentally, as the youngest city in China, in
April 2019, a sudden, instantaneous heavy precipitation (maximum half an hour rainfall,
73.4 mm) caused 11 deaths in Shenzhen. Consequently, strengthening the ability to prevent
waterlogging disasters has become an important issue of sustainable urban development
and the UN’s 2030 Sustainable Development Goals (SDGs).

The importance of mitigating the risk of urban waterlogging has been widely rec-
ognized by society. This requires understanding the mechanisms of urban waterlogging
first. Considerable studies have shown that urban waterlogging events are caused by
environmental factors and human activities [17–20]. In terms of environmental factors,
urban waterlogging is mainly affected by meteorological conditions and urban microtopog-
raphy. In the context of global warming, the frequency and intensity of extreme rainstorms
have increased [20–22]. Moreover, the phenomenon that the precipitation in many cities
is significantly higher than that in the surrounding suburbs has become more prominent
in recent years, known as the “urban rain island” effect. If the “rain island effect” occurs
concentratedly in the rainy season, which is more likely to cause waterlogging disasters.
In urban microtopography, the area with higher elevation is less prone to waterlogging.
On the contrary, low-lying areas tend to accumulate surface runoff, which is why tunnels
and underpasses are prone to waterlogging [10,21,23]. Among anthropogenic factors,
drainage facilities and land cover composition have a significant impact on urban water-
logging. However, some studies have pointed out that the drainage facilities in developing
countries generally suffer low design standards and inadequate management, which makes
it difficult to play an active role in the face of heavy rainstorms [10,21]. In terms of land
cover composition, numerous studies have shown that the impact of land use is particularly
significant compared to other factors [24–26], which has gradually become the major cause
of the increasing severity of urban waterlogging disasters.

At present, the Municipal Administration builds underground drainage pipelines
and pumping stations to speed up rainwater drainage, thereby reducing the flow of
surface runoff. However, this approach only accelerates the discharge rate of surface
runoff but cannot reduce the total surface runoff. Surface runoff transfer to other regions
in a short period may bring more pressure on the local drainage systems. Furthermore,
drainage facilities block the recharge channel for groundwater, leading to a constant
decline of groundwater level, threatening urban geological safety [27,28]. Compare with
drainage pipelines to accelerate rainwater drainage, the concept of “sponge cities” or “low-
impact development methods” has proposed to reduce the total amount of surface runoff.
These methods aim to increase the permeable surface (such as green infrastructure) in cities,
thereby counteracting the increase of surface runoff [29,30]. Therefore, understanding how
urban green infrastructure can alleviate urban waterlogging is of great significance for
urban sustainable living environment planning and management.

Urban green infrastructures (UGI) mainly refer to natural vegetation or artificial vege-
tation, such as urban parks, grassland, wetland, forest, and unmanaged green areas [31–34].
A considerable number of studies have pointed out the extensive ecological services of
UGI, such as reducing stormwater runoff [35,36], regulating local microclimates [37,38],
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and purifying rainwater [39,40]. In particular, UGI increased the permeability to regu-
late surface runoff and peak flows. A proliferation of studies have shown that UGI, as
a permeable surface, can effectively absorb and store rainwater [41–43], and the canopy
and rhizome of vegetation can intercept surface runoff, thereby reducing the speed of
runoff collection [44,45]. For example, Yang et al. [43] used the improved soil and water
conservation service mode to evaluate the average accumulation of urban green space in
Yixing city, and their result indicated that the average water storage of urban green space
accounted for more than 88% of the annual rainfall. Liu et al. [45] show the effectiveness of
UGI in urban flooding reduction at a community scale. These studies all demonstrated that
UGI has a positive influence on waterlogging. Furthermore, some studies further examined
the impact of UGI composition and spatial pattern on waterlogging [46,47]. As for UGI
composition, Armson et al. [48] found that in a sample plot of 9 m2 (the land cover includes
grassland, trees, and asphalt), the grassland controlled almost all the surface runoff, and the
trees reduced 62% of runoff from asphalt. Richards et al. [49] pointed out that a vegetated
area of 7.5% to the catchment area would reduce surface runoff by more than 90%. For the
spatial pattern of UGI, a study indicated that the less fragmented urban green spaces
are more effective in reducing peak annual average river runoff [41]. In addition to the
UGI composition and spatial configuration, the morphology of UGI also had a substantial
influence on urban waterlogging mitigation. The study in Shanghai (China) confirmed
that the concave green space could effectively mitigate pluvial floods [36]. Similarly, Wen
et al. [50] demonstrated that a concave-shaped UGI would significantly reduce the surface
runoff and peak flood flows.

The above studies have demonstrated that the impact of UGI on urban waterlogging
is associated with various factors, such as UGI composition, spatial configuration, and mor-
phology. Considerable studies have examined the relationship between UGI’s factors and
waterlogging through regression coefficients or hydrologic models [41,45,51,52]. However,
previous studies mainly focused on the individual effects of UGI factors (composition or
spatial configuration) on urban waterlogging; instead, the interactive effects of these factors
remain unclear. The influence of UGI on urban waterlogging is not only affected by one
factor alone. Only analyzing the individual effect of a UGI factor on urban waterlogging
while ignoring the interactive effect may lead to biases, especially for the great heterogene-
ity urbanized area. From this perspective, some interesting questions emerge: How do the
interactions of these UGI factors affect urban waterlogging? Can the interaction between
different UGI factors further enhance their effects on waterlogging?

It is widely accepted that increasing the area of UGI may further increase its impact
on urban waterlogging, thereby reducing the risk of urban waterlogging. However, will
the risk of urban waterlogging continue to decrease as the area of UGI increases? In this
context, another research question arises: Is there a threshold level for the effect of UGI
on urban waterlogging? Less attention has been paid to investigating the threshold level
for the impact of UGI on urban waterlogging. Moreover, given the shortage of urban land
resources, it is unrealistic to reduce urban waterlogging by considerably increasing the
UGI area. If the effect of UGI has a threshold level, planning a larger area of UGI may
not provide a more significant mitigation effect. Therefore, it is necessary to understand
the threshold level of UGI affecting urban waterlogging so that the limited UGI resource
can be used to minimize the negative influence of urban waterlogging. Additionally, it
is worth noting that many studies just involved a single city or region, which present
inconsistent results among the studies [41,44]. These inconsistent results are not sufficient
to fully examine the effect of UGI on waterlogging, which makes it difficult to apply in UGI
planning and urban management. This highlights the urgency of conducting cross-regional
comparative studies to further verify the universal effect of UGI on urban waterlogging.

Therefore, this study aims to shed some light on the above two research gaps by taking
two waterlogging high-risk Chinese cities for a comparative study to address the following
questions: (1) How does the interaction effect of UGI’s factors affect urban waterlogging?
Which UGI factors are the dominant factors affecting urban waterlogging? (2) Is there a
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threshold level for the impact of UGI on urban waterlogging? Answering these questions
can help us improve our understanding of the potential mitigation effect of UGI on urban
waterlogging and furnish concrete references for UGI design.

2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area

Two major cities in the Guangdong–Hong Kong–Macao Greater Bay Metropolitan
Region, Guangzhou and Shenzhen cities, are selected for this study (Figure 1). Guangzhou
City (112◦57′ to 114◦30′E, 22◦26′ to 23◦56′N) is located in the downstream of the Pearl River
Basin, the central and southern part of Guangdong Province, with an area of 7434.40 km2.
Shenzhen City (113◦45′ to 114◦37′E, 22◦26 to 22◦51′N), with an area of 1997.47 km2, is
located on the eastern bank of the Pearl River Estuary. The average annual precipitation
of Guangzhou and Shenzhen are 1720.6 mm and 1933.3 mm, respectively, belonging to
subtropical monsoon climate [53,54]. The two cities are among the four national cities in
mainland China, with a permanent resident population of 15.31 million (Guangzhou) and
13.44 million (Shenzhen), respectively, which together account for 47% of Guangdong’s
GDP in 2019 ($756 billion; http://www.stats.gov.cn/; access on 8 January 2021).
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Figure 1. The location of the Guangzhou central urban districts and Shenzhen city.

With the substantial increase of extreme rainfall events, the urban waterlogging events
frequently occur in these two low-lying coastal cities [2]. For example, on 22 May 2020,
four people were killed in extraordinarily heavy rainfall in Guangzhou, with an average
hourly rain intensity exceeding 80 mm, and the maximum precipitation in 3 hours at
288.5 mm. From 29–30 August 2018, a heavy rainstorm occurred in Shenzhen for two
consecutive days (269 mm average cumulative precipitation, 97 mm maximum hourly
precipitation), the first-ever recorded in local meteorological history. This event resulted in
approximately 150 waterlogging events, 10 local riverbank collapses, and 37 landslides.
Given the densely populated area and the serious risk of urban waterlogging disaster in
this region, selecting these two cities to investigate the effect of UGI on urban waterlogging
has a certain practical significance. Guangzhou Water Authority has only recorded the
urban waterlogging events in the central urban districts (Liwan, Yuexiu, Tianhe, Haizhu,

http://www.stats.gov.cn/
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Baiyun, and Huangpu district). Hence, we select these central urban districts of Guangzhou
(1559.82 km2) and Shenzhen city as our study sites.

2.1.2. Dataset

In this study, we concentrate on the period from 2009 to 2015. The data include
urban waterlogging records, UAV images, Landsat-8 Operational Land Imager imagery,
DEM, precipitation, and drainage facilities (Table 1). As mentioned in previous studies,
the waterlogging records obtained from Guangzhou and Shenzhen Water Authority only
contain location information [10,55]. Therefore, we utilized ArcGIS Pro to locate the
spatial location of urban waterlogging events. Finally, we collected 423 and 353 records in
Guangzhou and Shenzhen from 2009 and 2015. The composition and spatial configuration
of UGI were obtained from UAV aerial images (spatial resolution 0.5 m). The cloud-free
Landsat-8 OLI imageries (path/row: 122-44, 121-44) were utilized in this study to calculate
the biophysical parameter of UGI. Subsequently, we utilized DEM (spatial resolution 5 m,
vertical accuracy 0.1 m) to generate auxiliary variables, including elevation and slope.
Lastly, other auxiliary variables, such as precipitation and drainage density, were also
collected. Local water authorities only recorded urban waterlogging events in this period
(without a specific year). Therefore, we only selected remote sensing images, DEM data,
drainage network, river network, and precipitation data in this period.

Table 1. List of the data sources.

Data Format Time Detail Source

Waterlogging locations Shapefile 2009–2015 Point Guangzhou Water Resources Bureau
Shenzhen Water Resources Bureau

Landsat-8 OLI imagery GeoTIFF 2013 30 m
(122-44, 121-44) The USGS-EarthExplorer

UAV images Raster 2012 0.5 m
Land Resources Technology Center of

Guangdong Province
Shenzhen Planning and Natural

Resources Bureau

Digital Elevation Model Raster 2012 5 m
(accuracy 0.1 m)

Drainage network Shapefile 2012 Line
River network Shapefile 2012 Line

Precipitation Raster 2009–2015 1 km Geographical Information Monitoring
Cloud Platform

2.2. Integrated Framework

The integrated framework was developed to analyze the interactive effects of UGI
factors on waterlogging and quantify the threshold level (Figure 2). Urban waterlogging
is a systemic problem. The occurrence of waterlogging is related to the destruction of
the hydrological cycle in the watershed unit [55–57]. When the rainwater is unbalanced,
rainfall or rainwater inflow exceeds the drainage capacity, urban waterlogging events will
eventually occur. The watershed unit reflects the hydrological characteristics of an area,
which has more natural and ecological significance. It is not appropriate to analyze urban
waterlogging from the perspective of a point or a raster grid (buffer zone), as it ignores
the hydrodynamics of the surface. Therefore, we investigated the effect of UGI at the
watershed level.

First, the density of waterlogging per unit area within each watershed unit was calcu-
lated based on the waterlogging record. Several metrics were utilized to measure green
infrastructure composition and spatial configuration (area proportion, biophysical parame-
ter, and spatial configuration). Second, other auxiliary variables, including elevation, slope,
precipitation, and drainage density, were adopted as control variables. Then, the urban
waterlogging density was regarded as a dependent variable, while the UGI composition
and spatial configuration were considered explanatory variables. Fourth, the correlation
between urban waterlogging density and explanatory variables was examined through
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partial correlation analysis. Fifth, the interaction effect of UGI’ factors on waterlogging we
examined through the geographical detector model. Lastly, we quantified the threshold
level of UGI affecting urban waterlogging using the logarithmic fitting method.
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2.3. Watershed Unit

According to the method proposed by Yu et al. [55] and successfully applied in
Zhang et al. [10], the DEM, urban river and drainage network, and the hydrological
analysis module of ArcGIS pro were utilized to divide the watershed units through the
D8 algorithm. Although the D8 algorithm is more efficient at the urban scale than other
algorithms, including D-Infinity and MFD. Due to the flat topography of the Pearl River
Basin, the extracted watershed boundaries need to be modified using urban rivers and
drainage networks [57,58]. Finally, we divided the Guangzhou central urban district and
Shenzhen into 351 and 276 watershed units (Figure 3).
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2.4. Measuring Green Infrastructure Composition and Spatial Configuration

In this study, we mapped the green infrastructure of Guangzhou central urban district
and Shenzhen using 0.5 m aerial images. These images were obtained from the Geographi-
cal Situation Survey Project (GSSP) in 2012. The flight missions were conducted with DB-2S
and IFAUAV-3 platform, and the image forward overlap and image side overlap were set
as 83% and 57%. The images and POS information were then imported into Pix4D Mapper
to create the stitching project. After performing automatic aerial triangulation, the images
were corrected by acquiring ground control point (GCP) data and a third-order polynomial
model. Finally, the horizontal RMSE values were 0.763 m and 0.871 m in Guangzhou and
Shenzhen, sufficient for green infrastructure extraction.

According to the field research, the woodland, grassland, garden, and cultivated land
were defined as UGI in this study. We extracted the green infrastructure through an object-
oriented classification method using the eCognition Developer software. The classification
accuracy assessment was computed from ground-truthing analysis by randomly selecting
over 100 points for each city. Ultimately, the overall accuracy of classification was 85.8%,
81.2%, and the kappa coefficient was 0.78, 0.75, for Guangzhou and Shenzhen, respectively
(Figure 4). Subsequently, the area proportion of UGI within different watershed units
was calculated.

Remote Sens. 2021, 13, x 8 of 25 
 

 

 
Figure 4. (a), (b) The land cover maps and (c), (d) UGI maps for (a), (c) Guangzhou central urban 
district and (b), (d) Shenzhen. 

The UGI area proportion refers to the area ratio of green infrastructure in a water-
shed unit, however, it could not reflect the biophysical parameter of UGI. Under the same 
green infrastructure coverage ratio, different vegetation growth statuses or densities have 
different effects on urban waterlogging. For example, dense vegetation may be more 
conducive to reducing surface runoff, while sparse vegetation may be less effective. Bi-
ophysical parameters should represent these vegetation gradients. Therefore, we used 
the enhanced vegetation index (EVI) to describe the biophysical parameter of UGI (Fig-
ure 5), which derived from the multispectral optical band (blue and red) and 
near-infrared (NIR) band of the Landsat-8 OLI images (Equation (1)). 𝐸𝑉𝐼 = 2.5 × 𝜌 − 𝜌𝜌 + 6.0 × 𝜌 − 7.5 × 𝜌 + 1 (1)

 
Figure 5. The EVI for (a) Guangzhou central urban district and (b) Shenzhen. 

The spatial pattern of land cover features can be described by landscape pattern 
metrics [59]. In recent decades, the landscape pattern metrics have achieved unprece-
dented development, plenty of indicators have been developed to reveal the characteris-
tics of landscape spatial patterns [60,61]. In this study, three landscape metrics were se-
lected to reflect the spatial configuration characteristics of UGI, including (1) landscape 

Figure 4. (a,b) The land cover maps and (c,d) UGI maps for (a,c) Guangzhou central urban district and (b,d) Shenzhen.

The UGI area proportion refers to the area ratio of green infrastructure in a watershed
unit, however, it could not reflect the biophysical parameter of UGI. Under the same green
infrastructure coverage ratio, different vegetation growth statuses or densities have differ-
ent effects on urban waterlogging. For example, dense vegetation may be more conducive
to reducing surface runoff, while sparse vegetation may be less effective. Biophysical
parameters should represent these vegetation gradients. Therefore, we used the enhanced
vegetation index (EVI) to describe the biophysical parameter of UGI (Figure 5), which
derived from the multispectral optical band (blue and red) and near-infrared (NIR) band of
the Landsat-8 OLI images (Equation (1)).

EVI = 2.5× ρNIR − ρRED
ρNIR + 6.0× ρRED − 7.5× ρBLUE + 1

(1)
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The spatial pattern of land cover features can be described by landscape pattern
metrics [59]. In recent decades, the landscape pattern metrics have achieved unprece-
dented development, plenty of indicators have been developed to reveal the character-
istics of landscape spatial patterns [60,61]. In this study, three landscape metrics were
selected to reflect the spatial configuration characteristics of UGI, including (1) landscape
fragmentation—mean patch size (MPS) and landscape division index (LDI); (2) landscape
aggregation—aggregation index (AI). The equation and description of these UGI metrics
were shown in Table 2 and were calculated through Fragstats 4.2.

Table 2. List of landscape pattern metrics.

Landscape Metrics Equation * Description

MPS
n
∑

i=1

Ai
n Reflects the average patch size of UGI.

LDI 1−
n
∑

i=1

(
Ai
S

)2 Reflects the degree of fragmentation of
green infrastructure.

AI
[

gi
max → gi

]
Measures the spatial distribution pattern

of green infrastructure.
* Ai: patch i area, S: total area, n: number of patches, gi: number of adjacent patches.

2.5. Control Variables

Urban waterlogging is the result of the combination of environmental conditions
and human activities. In addition to the significant influence of land cover composition
(UGI) on urban waterlogging, the urban microtopography, rainfall, and drainage facilities
also have a non-negligible impact on urban waterlogging [10,21]. In order to accurately
quantify the effect of UGI on urban waterlogging, it is essential to exclude the influence of
other relevant variables on waterlogging. Therefore, the topography (elevation and slope),
average precipitation, and drainage density are adopted as control variables to avoid
these distractions (Figure 6). Firstly, the topographic variables of elevation and slope were
calculated from the DEM data through ArcGIS Pro. Then, as the urban waterlogging record
does not include the specific years, this study used the average cumulative precipitation
(Pre) reflecting the spatial distribution difference of rainfall during this period. Lastly, we
calculated the drainage network density (DD) by line density module in ArcGIS pro to
reflect the drainage capacity.
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2.6. Statistical Analyses
2.6.1. UGI and Waterlogging Clusters Extraction

In this study, the spatial autocorrelation analysis Getis-G statistic was adopted to inves-
tigate the spatial distribution pattern of UGI and urban waterlogging events. The Getis-G
statistic allows us to detect whether the elements (green infrastructure and waterlogging
event) are clustered, discrete, or randomly distributed, which has been widely applied
in geography and economy [38,62]. This allows to identify the spatial agglomeration
effect with statistical significance (99%, 95%, 90% confidence level). In this study, the
proportion of UGI and waterlogging density within each watershed unit was used as input
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attributes to distinguish the spatial agglomeration effect (hot spots or cold spots) of UGI
and waterlogging. The calculation formula is as follows:

G =
∑n

i=1 ∑n
j=1 ωi,j ∗ xixj

∑n
i=1 ∑n

j=1 xixj
, ∀j 6= i (2)

where ωi,j is the spatial weight matrix; xi and xj are the attribute values of the i and j
variables, respectively. The Getis-G statistic will return five values: General G observed
value, General G expected value, Z-test, and p-value. A positive Z-test indicates a high
value of the attribute (UGI proportion and waterlogging density) spatial clustering (hot
spots), which means that the density of urban waterlogging or the area proportion of UGI
in the region is relatively large. Conversely, a negative Z-test indicates a low value (UGI
proportion and waterlogging density) of spatial clustering (cold spots), which implies that
the density of urban waterlogging or the area proportion of UGI in the region is relatively
low. There were six main cluster types, and the specific meanings were as follows:

The waterlogging or UGI hot spots at 99%, 95%, 90% confidence level: The density
of urban waterlogging events or the area proportion of UGI in the watershed unit and its
adjacent watersheds are significantly higher than the average level, indicating that urban
waterlogging events or UGI distribution are concentrated in a place.

The waterlogging or UGI cold spots at 99%, 95%, 90% confidence level: The density
of urban waterlogging events or the area proportion of UGI in the watershed unit and
its surrounding units are relatively lower than the average level, which implies urban
waterlogging events and UGI distribution are much fewer in the region.

2.6.2. Partial Correlation Analysis

The partial correlation analysis was first used to reveal the binary correlation of
waterlogging and UGI. As urban waterlogging is a systemic problem, the relationship
between UGI and urban waterlogging is affected by multiple variables [10,17,21]. For ex-
ample, improving the condition of green infrastructure or increasing drainage facilities
can both reduce the risk of urban waterlogging. Therefore, to accurately measure green
infrastructure’s effect on urban waterlogging, the partial correlation analysis with control
variables was utilized to examine the correlation and stability between UGI factors and
urban waterlogging density. The partial correlation can effectively prevent the correlation
between two variables from being contaminated by other correlations. In this case, any
influencing factors that have potential effects on urban waterlogging were regarded as
control variables for partial correlation analysis. Hence, the elevation, slope, precipitation,
and drainage density were adopted as control variables to examine UGI composition and
spatial configuration for its partial correlation with urban waterlogging.

2.6.3. Geographical Detector Model

Spatial heterogeneity is a major characteristic of spatial data. The geographical de-
tector model is a spatial statistic tool based on stratified spatial heterogeneity, which has
been widely used to investigate spatial heterogeneity and driving forces of geographical
phenomena [63–65]. The geographical detector model can be divided into four parts accord-
ing to their specific analytical functions: factor detector, risk detector, ecological detector,
and interactive detector [66]. As the main purpose of this study, the factor detector and
interactive detector were employed to reveal which green infrastructure factor has a more
important impact on urban waterlogging and how these factors interact with each other.

The explanatory power of different factors to the dependent variable can be expressed
by the PD value (power determinant) calculated by the factor detector. It compares the
total variance of the factor in different subregions with the total variance of the factor in the
whole study area to assess the impact of the green infrastructure factor on waterlogging:

PD = 1− ∑L
h=1 Nhσ2

h
Nσ2

= 1− SSW
SST

(3)
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where N is the number of units across the region; Nh indicates the number of units in
stratum h, h = 1, 2, . . . , L; σ2 and σ2

h represent the global variance in the entire study area
and variance in stratum h; SSW and SST refer to the total variance within stratum and
across the region. The value of PD ranges from 0 to 1. When PD = 1, the UGI factor fully
explains the spatial distribution of urban waterlogging; when PD = 0, the UGI factor has
no relationship with the variation of waterlogging.

The interaction detector is used to detect whether the combined effect of two individ-
ual factors on a dependent variable is significantly greater or less than the individual effect
of a single factor [63]. It is determined by comparing the sum of the PD values of the two
factors with the PD values of the two-factor interaction. The interaction detector divides
the interactions between two factors into seven categories, as shown in Table 3.

Table 3. Types of interaction between two factors.

Interaction Description

Nonlinear weaken PD (A ∩ B) < Min[PD (A), PD (B)]
Unitary weaken Min[PD (A), PD (B)] < PD (A ∩ B) < Max[PD (A), PD (B)]

Binary enhancement PD (A ∩ B) > Max[PD (A), PD (B)]
Independent PD (A ∩ B) = PD (A) + PD (B)

Nonlinear enhancement PD (A ∩ B) > PD (A) + PD (B)

2.6.4. Thresholds Level of UGI Affecting Waterlogging

First, we plot the relationship between waterlogging density and UGI factors to further
analyze this complex linking. As shown in Figure 7, we notice that waterlogging density
varies with the UGI factors but gradually approaches a stable level. This indicates that
urban waterlogging density no longer decreases or increases with the UGI factor when
the UGI factor reaches a certain range. For example, the UGI area proportion exceeds a
certain range, the decreasing trend of urban waterlogging is gradually gentle (Figure 7a).
Therefore, we can consider this value range reached by the UGI factor as the threshold
value. Second, we notice that the relationship between waterlogging density and the UGI
factor is similar to a logarithmic function. The logarithmic fitting is adapted to reflect the
nonlinearity, which can be expressed as:

y = a ln(x) + b (4)

where y represents the waterlogging density, x is the UGI indicator, a and b are coefficients.
Third, we calculate the derivative of the logarithmic fitting expressions to obtain the
variation rate of waterlogging density (Figure 7b). According to the variation rate of
waterlogging density, we find that at the beginning, the decreasing rate of waterlogging
density is very large, but with the increase of UGI indicators, the decline rate gradually
tends to be flat. Therefore, we further calculated the unit decline rate of urban waterlogging
density for each UGI indicator. When the unit decline rate is less than 0.01, we consider
that the urban waterlogging density remains relatively stable, which no longer decreases
significantly with the driver. On this basis, we regard the inflection point when the unit
decline rate reaches 0.01. Accordingly, the value of the UGI indicators corresponding to
the inflection point is considered the threshold value, which is defined as the limits of the
impact of each UGI factor on urban waterlogging. For example, the area proportion of
UGI corresponding to the inflection point is 24.4% (Figure 7b). This means that when the
proportion of UGI exceeds 24.4%, the waterlogging density will not decrease significantly
with the increase of the green area. Therefore, the threshold level of the UGI area proportion
affecting urban waterlogging is 24.4%. Finally, the logarithmic fitting and derivation are
implemented in the R package of “basicTrendline” [67].
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3. Results
3.1. Spatial Patterns of UGI and Urban Waterlogging
3.1.1. Spatial Pattern of UGI between Two Cities

As shown in Table 4, within Guangzhou central urban districts, the UGI accounts for
33.92% of the total area, 21.41%, 4.73%, 2.26%, and 5.52%, woodland, grassland, cultivated
land, and garden, respectively. For Shenzhen city, the proportion of UGI is much greater
than that of Guangzhou, accounting for 45.86% of the city. The woodland, grassland,
cultivated land, and garden account for 27.78%, 7.82%, 2.75%, and 7.51%, respectively.
Regarding spatial configuration, the MPS and AI values are greater in Shenzhen city,
indicating the clustered and continuous distribution of UGI. In contrast, Guangzhou’s MPS
and AI values are relatively small, while the LDI value is large, indicating a more scattered
and fragmented distribution of UGI in Guangzhou.

Table 4. Spatial pattern of UGI in Guangzhou and Shenzhen.

Composition City
Guangzhou Shenzhen

Woodland 21.41% 27.78%
Grassland 4.73% 7.82%

Cultivated land 2.26% 2.75%
Garden 5.52% 7.51%

Spatial configuration Range Mean Median S.D. Range Mean Median S.D.

MPS 0.01–3.72 0.77 0.34 1.4 0.29–4.32 1.52 1.21 0.95
LDI 0.04–0.87 0.51 0.59 0.23 0.006–0.63 0.21 0.17 0.15
AI 67.94–99.53 91.47 88.52 2.81 65.17–97.98 95.77 94.33 4.26

The cluster effect of UGI between the two cities is shown in Figure 8. The hot spots
of UGI (highlighted as red) in Guangzhou are mainly concentrated in the northwest part
where the land cover features are dominated by woodland. In contrast, the cold spots
of UGI were concentrated in the Liwan, Yuexiu, and Haizhu districts (southwest part of
Guangzhou’s central urban districts). These three districts are part of the historical urban
area of Guangzhou and possess a high abundance of impervious surfaces. In Shenzhen,
the UGI hot spots were mainly distributed in the Dapeng district, where the Dapeng
Peninsula National Geopark is located. Compare with Guangzhou, Shenzhen’s UGI cold
spots presents a multicentric distribution pattern, mainly distributed in each urban district
(Futian, Luohu, Baoan, Longgang District).
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3.1.2. Urban Waterlogging Spatial Agglomeration Effect between Two Cities

The Getis-G statistic shows that the area covered by waterlogging hot spots in
Guangzhou is approximately 17.35%, while the area covered by waterlogging cold spots is
about 22.19% (Table 5). In Shenzhen, around 23.68% of Shenzhen was covered by urban
waterlogging hot spots, and 29.52% by cold spots. Both indicate that urban waterlogging
in Guangzhou and Shenzhen has a significant clustering effect.

In Guangzhou, the waterlogging hot spots (highlighted as red) are concentrated in the
southwestern part, which has a relatively high proportion of impervious surface (Figure 9).
In contrast, the waterlogging cold spots (highlighted as blue) are mainly distributed in the
northwestern part with a relatively high UGI abundance. As for Shenzhen, the waterlog-
ging hot spots are sparsely distributed in the urban sub-centres (Futian, Luohu, Longhua,
Longgang District), while the urban waterlogging cold spots are mainly clustered in the
eastern Dapeng district with better natural conditions. Although both cities show the
agglomeration effect of urban waterlogging, the spatial clustering effect is more prominent
in Guangzhou; instead, the hot spots and cold spots in Shenzhen present a more dispersed
distribution pattern. This phenomenon may be due to the differences in the spatial dis-
tribution patterns of UGI between the two cities. Furthermore, a comparison between
Figures 8 and 9 reveals that the aggregation effects of UGI and urban waterlogging exhibit
a coupling trend. For example, the hot spots of the UGI correspond to the cold spots of
urban waterlogging and vice versa.
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Figure 8. The UGI spatial agglomeration map for (a) Guangzhou and (b) Shenzhen.
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Figure 9. The waterlogging spatial agglomeration map for (a) Guangzhou and (b) Shenzhen.
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Table 5. Descriptive statistics of urban waterlogging hot spots and cold spots.

City Area Percentage (%)
General G Z-Score p-Value

Hot Spots Cold Spots

Guangzhou 17.35 22.19 0.00008 18.33 0.00
Shenzhen 23.68 29.52 0.00002 12.94 0.00

3.2. Impacts of UGI on Urban Waterlogging
3.2.1. Partial Correlations between UGI and Waterlogging

As shown in Table 6, we found that the UGI area proportion and EVI both presented a
significant negative correlation with waterlogging in two cities (p < 0.01). This suggests that
UGI such as woodland and grassland play a crucial role in regulating rainfall and reducing
surface runoff or that the waterlogging density decreases with the increase of the UGI area
proportion or EVI. From the perspective of landscape fragmentation, the MPS shows a
negative correlation, while LDI experiences a positive correlation. This result indicates
that a UGI with a large mean area or low fragmentation is less prone to waterlogging.
As for landscape aggregation, the AI of green infrastructure has a negative effect on
waterlogging, which implies that the clustered distribution UGI is also conducive to
the mitigation of urban waterlogging. The correlation results suggest that optimizing
the spatial arrangement of green infrastructure also matters, which positively alleviates
urban waterlogging.

Table 6. Partial correlation coefficients between UGI and waterlogging.

UGI Factors City Guangzhou Shenzhen

Composition

EVI −0.338 ** −0.445 **
UGI −0.471 ** −0.617 **

Woodland −0.428 ** −0.536 **
Grassland −0.344 ** −0.468 **

Garden −0.232 ** −0.359 **
Cultivate land −0.131 −0.238 *

Spatial configuration
MPS −0.351 ** −0.502 **
LDI 0.337 ** 0.407 **
AI −0.278 −0.354 **

* Coefficient significant at p < 0.05, ** Coefficient significant at p < 0.01.

3.2.2. Individual and Interactive Effects of UGI Factors on Urban Waterlogging

The factor detector examined the relative importance (individual effect) of UGI factors
on urban waterlogging. As shown in Figure 10, the PD values for all influencing factors
ranged from 0.05 to 0.42. First, the UGI compositions (area proportion and EVI) in both
cities show the strongest impact on waterlogging, which both have an explanatory power
of over 30%. The result indicates that the proportion of UGI and EVI has an almost equally
important effect in alleviating urban waterlogging. However, the individual effect of
UGI spatial configuration on waterlogging is relatively small. The PD values for MPS
in Guangzhou and Shenzhen are 0.142 and 0.171, respectively, while the other spatial
conformation indices (LDI and AI) are even smaller. It hints that urban waterlogging is
mainly affected by UGI area proportion and EVI, rather than the spatial configuration.
Under the background of rapid urbanization and continuous expansion of impervious
surfaces, the importance of properly regulating the UGI area proportion and EVI to alleviate
the risk of urban waterlogging is highlighted. Second, we notice that the PD value of UGI
factors in Shenzhen is generally higher than in Guangzhou. This indicates that the single
effect of UGI factors on waterlogging density in Shenzhen is greater than that in Guangzhou.
Although there are slight differences in PD values between cities, all confirm that UGI area
proportion has the greatest impact on urban waterlogging.
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However, it is difficult to further reveal the mechanism of UGI on urban waterlogging
through the individual effect. Therefore, the interaction detector was utilized to quantify
the interactive effects of UGI factors on waterlogging. As shown in Table 7, the interaction
detector calculated the interaction between five factors on urban waterlogging. The results
indicate that the interaction of UGI factors greatly enhances their individual effects on wa-
terlogging. In these 10 pairs of interactions, all the factors have strong binary enhancement,
and some even show a non-linear enhancement. The largest interaction in Guangzhou
and Shenzhen is UGI area proportion interacting with EVI, followed by EVI interacting
with MPS. This illustrates the importance of the interaction between the UGI area and
its biophysical parameter (reflect vegetation healthy and density). Neither the size of the
UGI nor its biophysical parameter can be ignored. Appropriate UGI area combined with
good vegetation cover (EVI) will further improve the mitigation of urban waterlogging.
Regarding the spatial configuration of Guangzhou, although AI has a relatively lower
PD value than UGI area proportion from the single factor detector results, the interactive
effect of UGI area proportion and AI factor get 261.61% enhancement compared with the
single effect. Additionally, the results of the single factor detector results in Shenzhen
show that the impact of LDI is not very important for urban waterlogging. However, the
interactive effect of UGI area proportion and LDI accounts for around 274.58% enhance-
ment. Furthermore, the interactive effect of EVI and MPS obtains over 233% and 195%
enhancement for Guangzhou and Shenzhen, respectively. These results underscore the
importance of the combination of UGI composition (area proportion and EVI) and spatial
configuration. Based on a certain percentage of UGI, the interaction of UGI composition
and configuration can further enhance its impact on urban waterlogging, which has im-
portant implications for the metropolis with a shortage of urban land resources. Lastly,
similar to individual effects, most PD values of the Shenzhen interactive effect are higher
than those of Guangzhou. This means that there is some variation in the ability of UGI
to influence urban waterlogging under different urban backgrounds. Considering the
vegetation conditions in Shenzhen (high cover), it can be inferred that UGI can affect urban
waterlogging to a greater extent in cities with better vegetation conditions.
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Table 7. Partial correlation coefficients between UGI and waterlogging.

Guangzhou City Shenzhen City
Factor Interactive PD Enhancement Factor Interactive PD Enhancement

PD (UGI ∩ EVI) 0.525 Binary PD (UGI ∩ EVI) 0.557 Binary
PD (UGI ∩MPS) 0.446 Binary PD (UGI ∩MPS) 0.483 Binary
PD (UGI ∩ LDI) 0.424 Binary PD (UGI ∩ LDI) 0.442 Binary
PD (UGI ∩ AI) 0.405 Binary PD (UGI ∩ AI) 0.439 Binary

PD (EVI ∩MPS) 0.474 Nonlinear PD (EVI ∩MPS) 0.505 Nonlinear
PD (EVI ∩ LDI) 0.362 Binary PD (EVI ∩ LDI) 0.407 Binary
PD (EVI ∩ AI) 0.311 Binary PD (EVI ∩ AI) 0.374 Binary

PD (MPS ∩ LDI) 0.252 Binary PD (MPS ∩ LDI) 0.308 Nonlinear
PD (MPS ∩ AI) 0.267 Nonlinear PD (MPS ∩ AI) 0.289 Nonlinear
PD (LDI ∩ AI) 0.238 Nonlinear PD (LDI ∩ AI) 0.231 Nonlinear

3.3. Threshold Level of UGI Affecting Waterlogging

Next, we aimed to better demonstrate the impact of UGI on the urban waterlogging
magnitude. According to the relative importance of UGI factors on urban waterlogging,
the relationship between UGI factors (UGI area proportion, EVI, MPS) and waterlogging
density was plotted (Figure 11). As for UGI area proportion (Figure 11a,g), the nonlinear
fitting curve (red line) indicates that as the proportion of green infrastructure increases, the
decreasing trend of urban waterlogging gradually becomes more gentle. In Guangzhou, the
downward trend of urban waterlogging density is significant when the area proportion is
below 15%. However, when the area proportion exceeds 20%, the decreasing rate gradually
slows down, and the waterlogging density remains relatively stable. Similarly, we also
found that when the proportion of UGI in Shenzhen exceeds 60%, the decreasing trend
of urban waterlogging density is also not obvious. This means that if the area of green
infrastructure in the watershed exceeds the threshold, continuing to increase the proportion
of green infrastructure may not significantly improve its mitigation effect. By deriving the
function (Figure 11d,j), we find that when the UGI proportion exceeds 24.4% and 72.1%,
the decline rate of urban waterlogging gradually approaches zero. This suggests that urban
waterlogging barely declines as the proportion of green space increases. Correspondingly,
we can consider that 24.4% and 72.1% of UGI area proportion are the threshold values for
Guangzhou and Shenzhen. It hints that the area proportion of UGI within a watershed
unit needs to be maintained at a certain level to effectively exert its waterlogging mitiga-
tion effect. If the green infrastructure proportion exceeds the threshold, the mitigation
effect is no longer enhanced, which indicates the saturation effect of urban waterlogging
mitigation. Therefore, the area proportion of UGI within watersheds should be weighed
comprehensively regarding the benefits of the urban waterlogging mitigation effect.

As for the biophysical parameter, the EVI also presents a strong logarithmic correlation
with waterlogging both in Guangzhou and Shenzhen (Figure 11b,h). The EVI thresholds in
Guangzhou and Shenzhen are 0.36 and 0.43 when calculating the derivatives. When the
EVI is less than the threshold value, the waterlogging density and the derivative values
in Guangzhou and Shenzhen decrease significantly. At the same time, the EVI exceeds
the threshold, the decline rate decreases gradually and insignificantly. This result also
suggests that vegetation also has a saturation effect in the interception and infiltration of
surface runoff.
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Figure 11. The relationship between UGI variables and waterlogging for (a–f) Guangzhou and (g–l)
Shenzhen. The red line indicates the nonlinear fitting curve and the derivative curve, and the blue
dashed line represents the threshold value.

Regarding the effect of spatial configuration, it can be found that a similar phe-
nomenon also exists in the relationship between spatial configuration (MPS) and waterlog-
ging (Figure 11c,i). In detail, the threshold value of MPS is 1.9 ha (Guangzhou) and 2.8 ha
(Shenzhen). The threshold of MPS indicates that each green patch needs to maintain a cer-
tain area to achieve the optimal mitigation effect. This means that in addition to controlling
the area proportion of UGI within a watershed unit, the size of green infrastructure patches
also needs to be weighed.

4. Discussion
4.1. Spatial Variations of Urban Waterlogging

As shown in Figure 9, the urban waterlogging events in Guangzhou and Shenzhen
have an obvious cluster effect. The waterlogging hotspots are mainly located in areas with
a high proportion of impervious surfaces and low vegetation abundance, which couples
with the spatial distribution of UGI hotspots (Figure 8). It hints that urban waterlogging
hot spots tend to correspond to cold spots for green infrastructure. Since implementing the
“open-door” policy and economic reforms in 1978, many cities in China have experienced
rapid urbanization. The selected study areas, Guangzhou and Shenzhen, are representative
of rapid urbanization in China. During this process, the underlying surface inside cities has
changed dramatically, particularly the southwestern part of Guangzhou and the central and
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western parts of Shenzhen (with a high proportion of impervious surfaces). Accordingly,
increase the risk of urban waterlogging in these regions. However, it is worth noting that
the northeastern part of Guangzhou and the eastern part of Shenzhen are less affected by
urban expansion, mainly because the urban expansion is strictly restricted in these areas as
there are national forest parks. Therefore, the vegetation abundance is relatively high in
these areas, which has become the hotspot for green infrastructure distribution. Despite
the relatively high average annual rainfall and the low density of the drainage network in
these areas (Figure 6), the occurrence of urban waterlogging much lower than that of the
city center, becoming the waterlogging cold spots. This phenomenon indirectly confirms
the positive effect of green infrastructure on urban waterlogging. Moreover, some studies
have pointed out that the influence of drainage facilities on urban waterlogging is not as
great as commonly believed [10,23,25,68]. The more important impact is the land cover
composition, as our study further confirms. This further explains why urban waterlogging
events are less frequent in the suburbs (with ample green areas).

Moreover, the spatial agglomeration effect of urban waterlogging and green infras-
tructure also provides corresponding enlightenment for waterlogging prevention and
reduction. Local authorities can develop local mitigation strategies for waterlogging
hotspot regions, such as increasing the green area or optimize the spatial configuration of
UGI. Simultaneously, urban development in these areas needs to pay more attention to the
proportion of impervious surface area, which avoids further encroachment of impervious
surfaces on scarce green areas. In the event of heavy rainfall, these measures can help
reduce or even prevent urban waterlogging. Furthermore, with the advent of multisource
big data (population mobility data, traffic travel data, population density), the emergency
management department can provide early warning to these hotspot regions to minimize
the negative impact of waterlogging, such as the evacuation of the elderly or closing the
underground parking lot. This will help accurately assess the risk of urban waterlogging
and improve early warning and emergency response.

4.2. The Mitigation Effect of UGI on Waterlogging

UGI is often recommended for regulating surface runoff, purifying rainwater, and
reducing negative environmental impacts [68–71]. Our results demonstrated that UGI
has a considerable effect on urban waterlogging, even after controlling the impact of
urban topography, precipitation, and drainage facilities. This result is consistent with
previous studies, which confirmed the role of UGI in mitigating urban waterlogging
risk [43,45,47]. However, our results further expand our understanding of the mechanism
of green infrastructure alleviating urban waterlogging.

Firstly, we found that choosing the most representative and important UGI metric is
crucial in this study. Focusing on the different behavior of various UGI metrics to influence
the urban waterlogging magnitude, the results of cross-site evaluation suggest that the
area proportion of UGI to be the most dominant factor influencing urban waterlogging.
The larger the area of a UGI, the more considerable effect it has in regulating urban water-
logging magnitude. This finding is also consistent with Yao et al. [42] and Yang et al. [43].
However, this study further reveals the relative contribution of different UGI compositions.
For the area proportion of UGI, woodland and grassland have the greatest impact on
urban waterlogging, which provides implications to urban planners on the importance of
preserving woodlands and grasslands in cities.

Additionally, it is interesting to note that the impact of green infrastructure on urban
waterlogging also depends on its vegetation status (biophysical parameter). Our result
demonstrated that the influence of biophysical parameters (EVI) could not be ignored
or simply equated with area proportion. However, most previous studies ignore the
influence of biophysical parameters (EVI), which only analyze the effects of different sizes
of green infrastructure on urban waterlogging [41–45]. For example, Armson’s study
confirmed that when the green patch area reached 9 m2, it could effectively reduce the
surface runoff [48]. Coincidentally, Kim et al. [41] pointed out that the larger the green
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space area, the greater its effect on average runoff. However, ignoring the biophysical
parameters of UGI will inevitably lead to some deviation. This is mainly because densely
vegetated plots and sparsely vegetated plots have completely different effects on urban
waterlogging for the same area. Our discoveries further deepen our understanding of the
mechanism of UGI alleviating urban waterlogging, which helps implement more effective
UGI planning strategies to mitigate urban waterlogging. For the same UGI area, healthier
or denser vegetation (superior ecological environment with high EVI value) can more
effectively intercept and store rainwater runoff, thereby contributing to the mitigation of
urban waterlogging. Therefore, while increasing the area of UGI, it is also necessary to
improve the vegetation conditions (biophysical parameter) of UGI.

Traditionally, urban planners increased the area of UGI to create a more pleasant
human settlement [32,45,49]. However, with the rapid urbanization, the land use pressure
within cities has increased significantly, showing that impervious surfaces continue to
encroach on green infrastructure. Therefore, it is particularly important to optimize the
spatial configuration of UGI under limited land resource conditions. Previous studies have
also noted the impact of the spatial configuration of UGI on urban waterlogging [41,44,48].
Our study also confirmed the effect of spatial configuration on waterlogging. The mitiga-
tion effect of UGI on waterlogging can be increased or decreased through different spatial
arrangements while keeping the green infrastructure area constant, which has important
implications for the metropolis that lack land resources for UGI construction. For example,
for most city centers, after experienced rapid urbanization, there are not enough land re-
sources for UGI construction. Therefore, it is necessary to carry out a spatial reorganization
of existing green infrastructure to make it clustered distributed with less fragmentation.

Considerable studies have mainly focused on the individual effect of UGI factors
on urban waterlogging [41,44], while neglecting the interactive effect of UGI factors on
urban waterlogging. However, our results show that the interaction of UGI factors greatly
enhances its impact on urban waterlogging. This will undoubtedly further enhance our
scientific knowledge in mitigating waterlogging. For example, the UGI area combined with
EVI or spatial configuration will further improve the mitigation of urban waterlogging.
These results underscore the importance of the combination of UGI composition and
spatial configuration, as the individual effect is not sufficient. This suggests that our
proposed method can reveal in more detail how the interaction of UGI composition and
spatial configuration affects urban waterlogging. Additionally, this finding refreshes our
perception of the importance of the interaction of landscape patterns. In previous studies,
the importance of the UGI spatial configuration is often overlooked [41,44,48], mainly due
to the spatial configuration having a relatively small individual effect. The interaction effect
has led to a renewed awareness of the importance of the UGI landscape patterns for urban
waterlogging mitigation. The interaction between spatial configuration and composition
can more significantly improve its mitigation capacity of UGI. Therefore, we cannot ignore
the role of the spatial configuration due to its relatively small individual effect. This also
provides valuable and practical references for the urban planner to optimize the spatial
configuration of UGI in urban centers.

4.3. Threshold Level of Waterlogging Mitigation Effect

It is well known that increasing the area proportion of UGI helps alleviate urban
waterlogging. Most previous studies have only confirmed that increasing the area of green
infrastructure can more effectively alleviate urban waterlogging [41–45,50]. However, this
result cannot be practically applied to guide UGI planning, as the land use pressure within
the urban centers is too large to increase the green area greatly. Compared with previous
studies, our results find that there is a threshold level for the waterlogging mitigation effect
(Figure 11). The impact of green infrastructure on urban waterlogging is not a simple linear
relationship. As the area proportion of UGI within the watershed exceeds the threshold, the
waterlogging density will not continue to decline as the UGI area increases. This provides
a new perspective on urban waterlogging mitigation strategies—blindly increasing the
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area of green infrastructure may not bring much improvement to urban waterlogging
mitigation. The excessive proportions of UGI within the watershed unit may lead to a
waste of its mitigation effect. Therefore, the area proportion of UGI and its mitigation effect
should be considered comprehensively when planning UGI. Moreover, we can infer that
under the same area of UGI, replacing a single large-area UGI (exceeding the threshold)
with several small green infrastructure patches may provide a more significant mitigation
effect for urban waterlogging. At present, some local governments have built a single
enormous green area in urban new districts. However, these actions may lead to a great
waste of their mitigation effects. It is recommended to control the area proportion of UGI
within the threshold value to mitigate urban waterlogging more effectively.

Furthermore, it is necessary to point out that the threshold values of MPS indicate that
green infrastructure patches need to be maintained in a certain area. Green infrastructure
patches that are too small or too large may not be effective in alleviating urban waterlogging.
This means that when replacing a single large-area UGI, it is not advisable to use too small
and fragmented patches. At the same time, the biophysical parameters also need to be
weighed. In general, this provides practical implementations for urban green infrastructure
planning: the proportion of green infrastructure at the watershed scale and the green
infrastructure area at the patch scale are recommended not to exceed the threshold.

These results provide considerable implications for UGI management and planning.
At present, if UGI in an urban center is occupied by artificial land cover, the loss of UGI area
is generally filled by the land resources at the urban fringe (with low land use pressure).
However, the UGI area remains relatively balanced at the city level. It is a net loss of the
UGI area in the urban center, which undoubtedly negatively affects the management of
urban waterlogging. Additionally, the vegetation abundance, biophysical parameter, and
spatial configuration of UGI are not consistent during spatial replacement, which further
leads to the relative loss of the urban waterlogging mitigation effect. Even if the area
of UGI in the entire city remains relatively balanced, this may further worsen the urban
waterlogging status. Therefore, despite the great pressure on land use and development in
the urban center, it is still necessary to retain an appropriate area of UGI.

4.4. Limitations and Uncertainties

This study provides a potentially valuable idea for investigating the interaction effect
and threshold level of UGI on urban waterlogging. However, this study has its limitations
and they should be considered in future work. Firstly, the complex relationship between
UGI and waterlogging was analyzed in two cities using only the historical record of urban
waterlogging. Although we explicitly demonstrate the effect of UGI composition and
spatial configuration, we may not apply this across all regions. The mitigation effect of
various UGI factors may strongly dependent on the urban background. Revealing the role
of UGI in urban waterlogging in other regions may help us confirm the universality of
our findings. Secondly, the urban waterlogging data did not record the size (water depth,
area), duration, and the specific year of each event. We only analyzed the waterlogging
mitigation effect from the whole period, which inevitably brings some uncertainty to
the results. Thirdly, only several commonly used UGI metrics were used in this study.
Other three-dimensional metrics, such as green volume, were not taken into account.
Consequently, in future research, the mitigation effect of UGI can reveal further insights
from the perspective of the mitigation intensity and mitigation scale. It is suggested to
explore the differences in the mitigation intensity of different compositions and spatial
patterns of green infrastructure on urban waterlogging and the scale of this mitigation
effect. Moreover, with sufficient data, we can introduce three-dimensional indicators of
green infrastructure, as well as the water depth and duration of waterlogging events to
investigate the effect of UGI on urban waterlogging more comprehensively.
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5. Conclusions

In the context of the UN’s 2030 Sustainable Development Goals, two highly urbanized
coastal cities were selected for a cross-regional study to investigate the interaction effect
and threshold level of UGI on urban waterlogging. The results support three conclusions.

Firstly, the area proportion and EVI of UGI both have a non-negligible effect in alle-
viating urban waterlogging. The impact of green infrastructure on urban waterlogging
largely depends on its area and vegetation status. Healthier or denser vegetation (supe-
rior ecological environment) can more effectively intercept and store rainwater runoff.
This finding provides practical insights into UGI planning, i.e., while increasing the area
of UGI, more attention should also be paid to the biophysical parameter of vegetation,
thereby improving the mitigation effect of green infrastructure from the “size” and “health”.
Secondly, the interaction of UGI factors greatly enhances their individual effects on water-
logging. The UGI composition (area percentage and biophysical parameter) and the spatial
configuration can effectively alleviate urban waterlogging. This result offers insights into
the importance of the interactive enhancement effect between UGI composition and spatial
configuration. Under limited area for green infrastructure, it is more necessary to optimize
the UGI composition and spatial configuration. Lastly, the impact of UGI on waterlogging
presents a threshold phenomenon. Blindly increasing the area of green infrastructure may
not greatly improve the alleviation of urban waterlogging. Excessive proportions of UGI
within the watershed unit or an oversized UGI patch may lead to a waste of mitigation
effects. Therefore, it is necessary to control the UGI area (both in the watershed unit
and patch size) within a certain range to play a corresponding role in mitigating urban
waterlogging. Since the threshold values of some UGI indicators are different among cities,
the thresholds are disturbed by regional characteristics. Therefore, the UGI-based water-
logging prevention strategies should be adapted to local conditions. Given the growing
concerns of global warming and continued rapid urbanization, we believe that our findings
provide useful enlightenment for local authorities in urban waterlogging prevention, green
infrastructure management, and sustainable development.
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