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Abstract: Grain yield is increasingly affected by climate factors such as drought and heat. To develop
resilient and high-yielding cultivars, high-throughput phenotyping (HTP) techniques are essential
for precise decisions in wheat breeding. The ability of unmanned aerial vehicle (UAV)-based multi-
spectral imaging and ensemble learning methods to increase the accuracy of grain yield prediction in
practical breeding work is evaluated in this study. For this, 211 winter wheat genotypes were planted
under full and limited irrigation treatments, and multispectral data were collected at heading, flower-
ing, early grain filling (EGF), and mid-grain filling (MGF) stages. Twenty multispectral vegetation
indices (VIs) were estimated, and VIs with heritability greater than 0.5 were selected to evaluate
the models across the growth stages under both irrigation treatments. A framework for ensemble
learning was developed by combining multiple base models such as random forest (RF), support
vector machine (SVM), Gaussian process (GP), and ridge regression (RR). The R2 values between
VIs and grain yield for individual base models were ranged from 0.468 to 0.580 and 0.537 to 0.598
for grain yield prediction in full and limited irrigation treatments across growth stages, respectively.
The prediction results of ensemble models were ranged from 0.491 to 0.616 and 0.560 to 0.616 under
full and limited irrigation treatments respectively, and were higher than that of the corresponding
base learners. Moreover, the grain yield prediction results were observed high at mid grain filling
stage under both full (R2 = 0.625) and limited (R2 = 0.628) irrigation treatments through ensemble
learning based stacking of four base learners. Further improvements in ensemble learning models
can accelerate the use of UAV-based multispectral data for accurate predictions of complex traits like
grain yield in wheat.

Keywords: ensemble learning; grain yield; remote sensing; multispectral vegetation indices; bread
wheat; unmanned aerial vehicle

1. Introduction

Bread wheat is an important food crop that meets the energy needs of more than 1/4th
of the world population [1]. Sustainable wheat production is largely determined by the
adaptivity of cultivars to various stress environments. Drought and heat stress are major
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detrimental factors that can cause up to 10% of yield reduction in wheat [2,3]. Drought
and heat stress causes early wilting and high rate of senescence by breaking down the
chloroplast tissues which lead to yield losses [3]. Due to frequent fluctuations in these
environmental stresses, the rate of genetic improvement is reported less than 1% in wheat.
This is the major challenge for wheat breeders to develop elite cultivars for future food
security. Wheat breeding programs usually perform early field assessments for candidate
selection under different growth conditions [4], and secondary traits such as biomass and
leaf area index (LAI) are exploited to predict grain yield before harvest [5]. These early
assessments greatly help the breeders to make decisions and shorten the evaluation time [6].
However, field-based phenotyping is considered a bottleneck in wheat breeding because it
is time-consuming, destructive, and has a high error probability [7,8]. In recent years, the
advances in high-throughput phenotyping platforms (HTPP) such as an unmanned aerial
vehicle (UAV) carrying multispectral sensors have provided a non-destructive and rapid
approach to collect data from multiple sites at low cost [9–13].

The UAV-based multispectral information is measured mainly in the form of vegeta-
tion indices (VIs), such as normalized difference vegetation index (NDVI), green normalized
difference vegetation index (GNDVI), and ratio vegetation index (RVI). This information
can be used to detect the biomass, leaf area index, and chlorophyll level of plants [14–16].
Previously, these VIs have been taken as secondary traits to predict grain yield with high
heritability [5,14]. In addition, it has been reported that the combination of different VIs
to assess the plant physiological traits could contribute to a higher prediction accuracy
compared with a single VI [17–20]. However, it is difficult for traditional models such as
linear regression to use multiple traits for grain yield prediction. Recently, some machine-
learning algorithms that can perform flexible nonlinear mappings between a large number
of VIs have been introduced to predict crop grain yield [21–23]. Previously, random for-
est (RF) [24], support vector machine (SVM) [25], Gaussian process (GP) [26], and ridge
regression (RR) [27] were evaluated by combining different spectral traits. These models
have greatly improved the prediction accuracy for many traits in various plants [28–31].
For example, RF was successfully applied to evaluate chlorophyll [32], biomass [28,29],
and LAI [33] in winter wheat. While SVM and RR showed high prediction accuracy and
robustness for predicting wheat and soybean yield [11,34]. The GP-based machine learning
models were exploited to estimate the LAI of forest [35] and nitrogen status in wheat [36].

Although several machine learning methods have achieved good prediction accuracy
for several traits, the integration of various algorithms to obtain higher model performance
is not explored. Some of the above models are traits- or species-specific, and the integration
of different algorithms can improve the ability to use various traits at the same time. This
helps the machine learning models to perform large-scale data analysis and predictions.
Recently, the ensemble learning method that integrates multiple base learners is attracting
great attention [37–39]. Stacking regression is an ensemble method that is proposed by
Wolpert in 1992 [40] and statistically principled by Breiman in 1995 [41]. It has been applied
to map composite [42], forest coverage [43], and PM2.5 monitoring [44]. In addition, in the
field of plant phenotyping, stacking regression was combined with hyperspectral data to
evaluate the photosynthetic capacity in tobacco and alfalfa yield [37]. To the best of our
knowledge, the stacking regression method has not been applied to predict grain yield in
wheat.

The main objectives of this study are as follows: (1) The ability of the UAV-based
multispectral imagery for grain yield prediction is evaluated; (2) the effect of the ensemble
learning method for improving grain yield prediction accuracy is investigated; and (3) the
effect of base learners on developing accurate ensemble learning models is analyzed.

2. Materials and Methods
2.1. Plant Materials and Field Trials

Based on a number of UAV-based vegetation indices, a panel of 211 elite winter
wheat genotypes was exploited to evaluate the ensemble learning models for grain yield
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prediction, where 186 accessions were collected from the Yellow and Huai Valleys Winter
Wheat Zone (YHVWWZ) of China and 25 from five other countries.

The experiment was conducted at Xinxiang (35◦18′N, 113◦52′E), Henan province of
China during the 2019–2020 cropping season (Figure 1). The genotypes were planted under
two irrigation treatments (i.e., full irrigation and limited irrigation) in randomized complete
blocks (RCBD) with two replications. A total of 844 plots were phenotype under both
irrigation treatments using UAV platform. Each plot consisted of six rows with a length of
3 m, a width of 1.4 m, and inter-row spacing of 0.2 m. The trials were planted on 26 October
2019 with a seeding rate of 270 seedings/m2 and harvested on 2 June 2020. Both irrigation
treatments irrigated equal water at the tillering stages, while the full irrigation treatment
also flooded in heading and early grain filling stages with 2250–2700 m3 ha−1 of water.
The fertilizer and management of both treatments were optimized equally. In addition, the
seasonal precipitation was 110.2 mm, and harvesting was done at full maturity using a
combine harvester.

Figure 1. Field location and experimental design.

2.2. UAV Platform and Flight Mission

A RedEge MX multispectral sensor (Micasense Parrot, Seattle, WA, USA) (https:
//wwwy.micasense.com/parrotsequoia) (Accessed: 30 November 2020) was mounted
on a DJI M210 (SZ DJI Technology Co., Shenzhen, China) for multispectral imagery. The
built-in GPS of the Camera provided the position and orientation of the images for data geo-
referencing. The RedEdge MX 4.0 can simultaneously collect images of five different bands
with GPS information at specific intervals and with the same resolution. The resolution
of blue, green, red, red-edge, and near-infrared bands was 32 nm, 27 nm, 14 nm, 12 nm,
and 57 nm (half maximum bandwidth), respectively. The detailed information of the band
wavelengths is listed in Table 1. Flights were conducted in clear and cloudless weather
conditions between 11:00 a.m. to 2:00 p.m. The UAV flew over the trial area in the fully
automatic flight mode set by the DJI GS Pro software (https://www.dji.com/cn/ground-
station-pro) (Accessed: 1 December 2020). Images for radiometric calibration of the RedEge
MX were captured on the flat ground before and after each flight through a calibrated
reflectance panel provided by Micasense. To obtain images with high resolution, the
forward and side image overlapping was set to 85% and 80%, respectively. The flight
altitude was maintained at 40 m for heading and flowering stages, and at 30 m for early
and mid grain filling stages. The ground resolution was around 3 cm for the images taken

https://wwwy.micasense.com/parrotsequoia
https://wwwy.micasense.com/parrotsequoia
https://www.dji.com/cn/ground-station-pro
https://www.dji.com/cn/ground-station-pro
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at the altitude of 40 m and 2.5 cm for the altitude of 30 m. The detailed information of the
UAV-based data acquisition is presented in Table 2.

Table 1. Specification of the multispectral camera used in this study.

Band Bandwidth Wavelength Definition Image Resolution

Blue 475 32 1.4 mp 1280 × 960
Green 560 27 1.4 mp 1280 × 960
Red 668 14 1.4 mp 1280 × 960

Red-edge 717 12 1.4 mp 1280 × 960
Near infrared 842 57 1.4 mp 1280 × 960

Table 2. Flight details of the unmanned aerial vehicle imagery system.

Growth Stage Zadok’s Stage Flight Altitude (m) Snap Shoot Interval (s) Ground Resolution (cm)

Heading ZS-56 40 1.5 3.0
Flowering ZS-65 40 1.5 3.0

Early grain filling ZS-73 30 1.5 2.5
Mid-grain filling ZS-85 30 1.5 2.5

ZS, Zadok’s stage.

In total, around 2000 to 2500 multispectral images were captured from each flight
to make mosaic images. Pix4D mapper (Version 1.4, Pix4d, Lausanne, Switzerland) was
exploited for orthomosaic generation after each aerial imagery of the experimental field.
Meanwhile, plot segmentation for each image was done through QGIS 3.1.0 (https://www.
qgis.org/) (Accessed: 30 November 2020). The polygon shapes with a specific ID were
designed as masks to extract the spectral data of each plot. The spectral information was
extracted using the computer vision algorithms provided by the ENVI software [5].

2.3. Vegetation Indices and Ground Data

As listed in Table 3, twenty vegetation indices were calculated as secondary traits
to predict the grain yield. Most of the VIs contain near-infrared and red bands that have
been used to quantify the biomass, pigment content, etc. in many crops. Grain yield was
estimated for each plot after it was harvested at full maturity.

Table 3. Introduction of the multispectral vegetation indices.

Vegetation Index Full Name Equation Reference

NDVI Normalized Difference Vegetation Index (NIR − R)/(NIR + R) [45]
SAVI Soil-Adjusted Vegetation Index (NIR − R)/(NIR + R + 0.5) × 1.5 [46]

OSAVI Optimized Soil-Adjusted Vegetation Index (NIR − R)/(NIR + R + 1.6) × 1.16 [47]
NRI Nitrogen Reflectance Index (G − R)/(G + R) [48]

GDNVI Green Normalized Difference Vegetation Index (NIR − G)/(NIR + G) [49]
SIPI Structure Insensitive Pigment Index (NIR − B)/(NIR + B) [50]
PSRI Plant Senescence Reflectance Index (R − B)/NIR [51]
CRI Carotenoid Reflectance Index 1/G + 1/NIR [52]
EVI Enhanced Vegetation Index 2.5 × (NIR − R)/(1 + NIR + 6 × R − 7.5 × B) [53]
MSR Modified Simple Ratio Index ((NIR/R) − 1)/((NIR/R) +1) × 0.5 [54]
NLI Nonlinear Vegetation Index (NIR × NIR − R)/(NIR × NIR + R) [55]

RDVI Re-normalized Difference Vegetation Index (NIR − R)/(NIR + R) × 0.5 [56]
TVI Transformational Vegetation Index (NDVI + 0.5)0.5 [57]

MTVI Modified Triangular Vegetation Index 1.5 × [1.2 × (NIR − G) − 2.5 × (R − G)]/
[(2 × (NIR − G) − 6 × NIR + 5 × R0.5)0.5–0.5] [58]

NDRE Red edge Normalized Difference Vegetation Index (NIR − REG)/(NIR + REG) [59]
DVIREG Red-edge Difference Vegetation Index NIR − REG [60]

OSAVIREG Red-edge optimized Soil-Adjusted Vegetation Index (NIR − REG)/(NIR + REG + 1.6) × 1.16 [60]
RDVIREG Red-edge Re-normalized Difference Vegetation Index (NIR − REG)/(NIR + REG)0.5 [60]
MSRREG Red edge modified Simple Ratio Index ((NIR/REG) − 1)/((NIR/REG) +1)0.5 [60]

MTCI MERIS Terrestrial Chlorophyll Index (NIR − REG)/(REG − R) [61]

https://www.qgis.org/
https://www.qgis.org/
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2.4. Stacking Regression Models for Ensemble Learning

Ensemble learning is a machine learning paradigm where multiple base learners are
integrated to solve regression or classification problems. Stacking regression is an ensemble
learning model proposed by Wolpert (1992) [40] to blend the predictors and improve pre-
diction accuracy. It is commonly used to generate ensembles of heterogeneous predictors.
In this study, four regression models including random forest (RF) [24], support vector ma-
chine (SVM) [25], Gaussian process (GP) [26], and ridge regression (RR) [27] were integrated
for stacking regression-based ensemble learning. The R package “caret” (version 6.0−86)
in R 4.0.2 (https://CRAN.R-project.org/package=caret) (Accessed: 30 November 2020) is
exploited to build the base learners and the stacking regression framework. The fundamen-
tal of stacking regression is illustrated in Figure 2. The data pairs, canopy multispectral
reflectance, and grain yield were randomly and evenly split into ten parts, and then one
of the parts was used for the test. The predictions for each fold were made by training
the model and performing tenfold cross-validation. Based on this, an out-of-sample pre-
dictions matrix (OSPM) was obtained. During the tenfold cross-validation, grain yield
predictions of each regression model were generated separately to check the results of the
base learner on the test set before they were averaged. An OSPM with a dimension of
m × n (m is the number of base learners, and n is the number of samples in the training set)
was obtained after the m base learners completed the above process. Then, the OSPM was
used to train the level-2 regression model to make final predictions. The multiple linear
regression (MLR) was used as the level-2 model to avoid collinearity among the prediction
results for grain yield. The tenfold cross-validations were also conducted for the level-2
model to reduce uncertainty in prediction results. Especially, the same split process (with
tenfold cross-validation) was performed in all models to ensure fair comparisons between
the methods. To avoid uncertainty in results, the process of dividing data into training
and test sets was repeated 20 times with tenfold cross-validation. This process generated
200 models, and the average prediction accuracy of these 200 models in the test set was
taken as the final evaluation index.

2.4.1. Random Forest

Random forest (RF) regression can be regarded as a machine learning model that
combines a large number of regression trees [24]. The final output prediction results are the
averaged value of all the trees. Regression trees represent a set of conditions or restrictions,
and these trees are constructed by bootstrap sampling from a training sample set. This
construction strategy overcomes the shortcomings of data and is easy to overfit in the case
of complex trees. The key step in constructing an RF is splitting regression trees, and the
splitting criterion is based on selecting the input variable with the lowest Gini Index:

IG

(
tX(xi)

)
= 1−

m

∑
j=1

f
(

tX(xi)
, j
)2

(1)

https://CRAN.R-project.org/package=caret
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Figure 2. The workflow of the stacking regression model for grain yield prediction; RF, random
forest; SVM, support vector machine; GP, Gaussian process; and RR, ridge regression. P are model
predictions.

2.4.2. Support Vector Machine

Support vector machine (SVM) is derived from statistical learning theory and the
minimum structural risk principle. SVM is widely applied to data analysis and pattern
recognition [25]. The purpose of SVM is to minimize the error by adding a hyperplane
and maximizing the margin between positive and negative samples in the training set.
The introduction of the loss function allows SVM to solve nonlinear regression problems.
Support vector regression can be defined as follows:

f (x) =
n

∑
i=1

(âi − ai)k(xi, x) + b (2)

where a represents the additional hyperplane alongside the regression line; k (xi, x) is the
kernel function, and b is the bias.

2.4.3. Gaussian Process

Gaussian process (GP) is a type of probabilistic kernel machine based on Bayesian and
statistical learning theory [26]. It has been extensively used in the field of machine learning.
In probability theory and mathematical statistics, GP stands for the observed values in
a continuous domain (such as time or space), and it can be regarded as the distribution
and inference in a function space. In the process of prediction, GP maximizes the type-II
maximum likelihood through the boundary likelihood of observations. In addition, it
adjusts the hyperparameters and calculates the posterior distribution of unknown observa-
tions. When the observed variable space of GP belongs to a real field, a regression can be
conducted to make predictions.
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2.4.4. Ridge Regression

Ridge regression was proposed by Tikhonov in 1943 [27] and generalized by Hoerl
and Kennard in 1970 [62]. It shrinks the regression coefficients by penalizing them or
constraining their possible values. Specifically, ridge regression minimizes the sum of
squared errors including an L2-norm penalty on the size of the parameter estimates. The
coefficient estimates are, and the corresponding formula is as follows:

β̂RR =
arg min
β

N

∑
i=1

(
yi − β̂0 −

p

∑
j=1

xij B̂j

)2

+ λ
p

∑
j=1

β̂2
j (3)

where λ controls the amount of shrinkage; N represents the number of observations; y is
the dependent variable; p and B̂j are the number of independent variables and the value
of the jth coefficient, respectively.

2.4.5. Cross-Validation and Hyperparameter Tune

At level-1 of the stacking regression, the tenfold cross-validation was exploited to form
a sample matrix, and this procedure is considered as outer cross-validation. Meanwhile, the
inner cross-validation and grid search were conducted to fine-tuning the hyperparameters
of the base learners shown in Figure 2. In the outer cross-validation, the original data set
was randomly divided into 10 equal subsets (Figure 3). Each time, one of the subsets was
used for validating, and the remaining nine subsets for training. Each training set used
for the outer cross-validation was also randomly and evenly split into 10 sets, with 10% of
the data in the inner validating set and the remaining 90% in the inner training set. In the
inner cross-validation, different combinations of candidate hyperparameters were set to
construct the model on the inner training set. Then, the constructed model was validated
on the inner validating set. Each hyperparameter combination was validated 10 times,
and the hyperparameter combination with the highest average validation accuracy on the
outer training set was transferred to the outer cross-validation to train the ideal model. The
detailed hyperparameters of each machine learning are listed in Table 4.

Figure 3. The schematic diagram indicating inner and outer cross-validation.
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Table 4. Candidate hyperparameters of each machine learning algorithm.

Number
RF SVM RR GP

Ntree Mtry Cost Gamma Lambda Sigma

1 405 3 0.250 0.450 0.00058 0.41
2 410 4 0.263 0.453 0.00063 0.42
3 415 5 0.275 0.455 0.00067 0.43
4 420 6 0.288 0.458 0.00072 0.44
5 425 7 0.300 0.460 0.00077 0.45
6 430 8 0.313 0.463 0.00083 0.46
7 435 9 0.325 0.465 0.00089 0.47
8 440 10 0.338 0.468 0.00095 0.48
9 445 11 0.350 0.470 0.00102 0.49

10 450 12 0.363 0.473 0.00110 0.50
11 455 13 0.375 0.475 0.00118 0.51
12 460 14 0.388 0.478 0.00126 0.52
13 465 15 0.400 0.480 0.00136 0.53
14 470 16 0.413 0.483 0.00146 0.54
15 475 17 0.425 0.485 0.00156 0.55
16 480 18 0.438 0.488 0.00168 0.56
17 485 19 0.450 0.490 0.00180 0.57
18 490 20 0.463 0.493 0.00193 0.58
19 495 21 0.475 0.495 0.00207 0.59
20 500 22 0.488 0.498 0.00058 0.60

ntree means the number of regression trees, and mtry means the number of input variables per node; cost is the
parameter that controls the trade-off between minimization of the model’s complexity and minimization of the
training error; gamma is the parameter for radial basis kernel function, and it determines the distribution of the
data mapped to the new feature space; lambda is model penalization value; sigma is the parameter that inverses
kernel width for the radial basis kernel function; RF, random forest; SVM; support vector machine; GP, Gaussian
process; and RR, ridge regression.

2.5. Model Performance Evaluation

To evaluate the model performance for grain yield prediction, the coefficients of deter-
mination (R2) and root mean square error (RMSE) were calculated through the following
equations:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

where n is the number of samples; yi and ŷi are the measured and the predicted grain yield
of sample i, respectively; y represents the mean of the measured grain yield. The model
with a higher value of R2 and lower values of RMSE can predict grain yield better.

2.6. Statistical Analysis

A mixed linear model was exploited to test the significance of variation between
genotypes, irrigation treatments, and their interactions for vegetation index and grain yield.
The model is presented as follows:

Y = Xβ + Zµ + ε (6)

where Y represents the response demonstrated by fixed effect (β) and random effect (µ)
with random error (ε). X and Z are fixed and random effects, respectively. Heritability was
estimated through the following formula:

H2 = σg
2/(σg

2 + σε
2/r) (7)
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where r is the number of replicates per treatment; σg
2 and σε

2 indicate the genotypic and
error variances, respectively [63]. The spectral traits with low heritability were considered
as noise features in previous studies [4]. In this study, the VIs with heritability less than 0.5
were not used as the input features to construct grain yield prediction models.

3. Results
3.1. Phenotypic Analysis

The distribution of averaged grain yield data of irrigation treatments is given in
Figure 4. The grain yield under limited irrigation treatment was 8% less than that under
full irrigation treatment. It can be seen from the results listed in Table A5 that the coefficient
of variation (CV) under full irrigation treatment was 15.7%, which was slightly higher
than that under limited irrigation treatment (14.6%). The analysis of variation (ANOVA)
results revealed significant variations (p < 0.001) among the genotypes for all vegetation
indices (VIs) across the growth stages and grain yield. In addition, there was a significant
difference between the two irrigation treatments for all traits (Tables A1–A5).

Figure 4. Grain yield distribution under (a) full irrigation treatment; (b) limited irrigation treatment.

The heritability (H2) was high in the mid-grain filling stage, which ranged from 0.60
to 0.91 for all VIs (Tables A1–A4). The VIs with heritability values greater than 0.5 were
selected as the input features for the model to make grain yield prediction for wheat in
a particular growth stage. Under full irrigation treatment, the numbers of VIs with a
heritability value greater than 0.5 were 17, 14, 18, and 20 for heading flowering EGF and
MGF, respectively, and the the numbers of VIs with a heritability value greater than 0.5
under limited irrigation treatment were 19, 19, 18, and 20 across growth stages (Figure 5).
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Figure 5. The Venn diagram of the vegetation indices with heritability greater than 0.5 for each
growth stage; (a) full irrigation treatment; (b) limited irrigation treatments. Abbreviations: EGF, early
grain filling; MGF, mid-grain filling.

3.2. Performance Base Learners for Grain Yield Prediction

Under full irrigation treatment, the individual base learners achieving the best yield
prediction results for the four growth stages are as follows: RR with mean R2 of 0.488 and
mean RMSE of 0.859 t ha−1 for the heading stage; GP with mean R2 of 0.520 and mean
RMSE of 0.831 t ha−1 for the flowering stage; RF with mean R2 of 0.602 and mean RMSE of
0.711 t ha−1 for the early grain filling stage, and RR with mean R2 of 0.604 and mean RMSE
of 0.777 t ha−1 for the mid grain filling stage (Figure 6 and Table 5). SVM did not achieve
the best predictions for any of the growth stages. Under limited irrigation treatment, the
individual base learners achieving the best yield prediction results for the four growth
stages are as follows: RR with mean R2 of 0.561 and mean RMSE of 0.699 t ha−1 for the
heading stage; RR with mean R2 of 0.611 and mean RMSE of 0.660 t ha−1 for the flowering
stage; RF with mean R2 of 0.599 and mean RMSE of 0.668 t ha−1 for the early grain filling
stage, and RF with mean R2 of 0.626 and mean RMSE of 0.641 t ha−1 for the mid grain
filling stage. In addition, it can be seen that the prediction results under limited irrigation
treatment were slightly higher than those under full irrigation treatment.

Table 5. Test accuracies (R2) of base models and ensemble models for grain yield prediction.

Model

Full Irrigation Limited Irrigation

Coefficient of Determination (R2) Coefficient of Determination (R2)

Heading Flowering EGF MGF Heading Flowering EGF MGF

RF 0.485 0.505 0.602 0.531 0.541 0.604 0.599 0.626
SVM 0.435 0.469 0.540 0.519 0.510 0.580 0.506 0.537
GP 0.465 0.520 0.589 0.563 0.550 0.595 0.512 0.573
RR 0.488 0.515 0.588 0.604 0.561 0.611 0.531 0.612

RF-SVM 0.488 0.522 0.620 0.562 0.543 0.614 0.617 0.628
RF-GP 0.492 0.534 0.620 0.589 0.555 0.612 0.618 0.625
RF-RR 0.502 0.515 0.611 0.601 0.564 0.619 0.609 0.629

SVM-GP 0.467 0.526 0.591 0.567 0.549 0.600 0.517 0.579
SVM-RR 0.472 0.547 0.616 0.610 0.569 0.617 0.541 0.578
GP-RR 0.496 0.551 0.618 0.622 0.570 0.616 0.542 0.613

RF-SVM-GP 0.490 0.528 0.619 0.588 0.549 0.612 0.615 0.628
RF-SVM-RR 0.499 0.533 0.624 0.607 0.563 0.620 0.613 0.627
SVM-GP-RR 0.493 0.546 0.619 0.623 0.564 0.617 0.540 0.613
RF-GP-RR 0.500 0.544 0.621 0.620 0.568 0.616 0.613 0.628

RF-SVM-GP-RR 0.498 0.538 0.622 0.620 0.562 0.617 0.611 0.628

The ensemble models with prediction accuracy lower than base models are highlighted by underline. Abbreviations: RF, random forest;
SVM; support vector machine; GP, Gaussian process; and RR, ridge regression.
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Figure 6. The statistical distributions of the prediction accuracy of each machine learning algorithm
for grain yield prediction in the test phases; (a) distributions of R2 at the heading stage; (b) distribu-
tions of RMSE at the heading stage; (c) distributions of R2 at the flowering stage; (d) distributions of
RMSE at the flowering stage; (e) distributions of R2 at the early grain filling stage; (f) distributions
of RMSE at the early grain filling stage; (g) distributions of R2 at the mid-grain filling stage; (h)
distributions of RMSE at the mid-grain filling stage. Abbreviations: RF, random forest; SVM; support
vector machine; GP, Gaussian process; and RR, ridge regression.

As shown in Figures A1 and A2, the Pearson’s correlations between the grain yield
from predictions generated by the machine learning algorithms across the four growth
stages and the two irrigation treatments were high (r = 0.81–0.97). By contrast, the density
curves of the grain yield predictions were slightly different from each other. Moreover, the
base learners differed significantly in the distribution interval of the prediction accuracy.

3.3. Ensemble Approach for Grain Yield Prediction

To evaluate the performance of the stacking method, the grain yield prediction is
obtained by using different combinations of the base learners for the four growth stages
and the two irrigation treatments. The grain yield prediction results obtained by combining
two of the base learners are presented in Figure 7 and Table 5. The model combinations
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achieving the best mean prediction results for the four growth stages under full irrigation
treatment are as follows: RF-RR with mean R2 of 0.502 and mean RMSE of 0.843 t ha−1 for
the heading stage, GP-RR with mean R2 of 0.551 and mean RMSE of 0.808 t ha−1 for the
flowering stage, RF-GP with mean R2 of 0.620 and mean RMSE of 0.709 t ha−1 for the early
grain filling stage, and GP-RR with mean R2 of 0.622 and mean RMSE of 0.752 t ha−1 for
the mid grain filling stage. The model combinations achieving the best mean prediction
results for the four growth stages under the limit irrigation treatment are as follows: GP-RR
with mean R2 of 0.570 and mean RMSE of0.691 t ha−1 for the heading stage, RF-RR with
mean R2 of 0.619 and mean RMSE of 0.643 t ha−1 for the flowering stage, RF-GP with mean
R2 of 0.618 and mean RMSE of 0.648 t ha−1 for the early grain filling stage, and RF-RR with
mean R2 of 0.629 and mean RMSE of 0.639 t ha−1 for the mid grain filling stage.

Figure 7. The statistical distributions of prediction accuracy of the stacking regression when including
two base learners for predicting grain yield in the test phases; (a) distributions of R2 in the heading
stage; (b) distributions of RMSE at the heading stage; (c) distributions of R2 in the flowering stage;
(d) distributions of RMSE at the flowering stage; (e) distributions of R2 in the early grain filling stage;
(f) distributions of RMSE at the early grain filling stage; (g) distributions of R2 at the mid-grain filling
stage; (h) distributions of RMSE at mid-grain filling stage. Abbreviations: RF, random forest; SVM;
support vector machine; GP, Gaussian process; and RR, ridge regression.
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As for the stacking regression combing three base learners, the model combinations
with high values of R2 and lowest value of RMSE for the four growth stages under full
irrigation treatment are as follows: RF-GP-RR with mean R2 of 0.500 and mean RMSE of
0.845 t ha−1 for the heading stage, SVM-GP-RR with mean R2 of 0.546 and mean RMSE of
0.813 t ha−1 for the flowering stage, RF-SVM-RR with mean R2 of 0.624 and mean RMSE
of 0.709 t ha−1 for the early grain filling stage, and SVM-GP-RR with mean R2 of 0.623
and mean RMSE of 0.752 t ha−1 for the mid grain filling stage (Figure 8). The model
combinations under limited irrigation treatment, the model combinations achieving the
best mean prediction results for the four growth stages under full irrigation treatment
are as follows: RF-GP-RR with mean R2 of 0.568 and mean RMSE of 0.693 t ha−1 for the
heading stage, RF-SVM-RR with mean R2 of 0.620 and mean RMSE of 0.643 t ha−1 for the
flowering stage, RF-SVM-GP with mean R2 of 0.615 and mean RMSE of 0.650 t ha−1 for
the early grain filling stage, and RF-SVM-GP with mean R2 of 0.628 and mean RMSE of
0.639 t ha−1 for the mid grain filling stage.

Figure 8. The statistical distributions of prediction accuracy of the stacking regression when including
three base learners for grain yield prediction in the test phases; (a) distributions of R2 at the heading
stage; (b) distributions of RMSE at the heading stage; (c) distributions of R2 at the flowering stage;
(d) distributions of RMSE at the flowering stage; (e) distributions of R2 at the early grain filling stage;
(f) distributions of RMSE at the early grain filling stage; (g) distributions of R2 at the mid-grain filling
stage; (h) distributions of RMSE at the mid-grain filling stage. Abbreviations: RF, random forest;
SVM; support vector machine; GP, Gaussian process; and RR, ridge regression.



Remote Sens. 2021, 13, 2338 14 of 25

Figure 9 shows the performance of the stacking regression combing all the four base
machine learning models for grain yield prediction of the four growth stages. Under full
irrigation treatment, the mean values of R2 for the stacking regression were improved
to 0.498, 0.538, 0.622, and 0.620 for the heading stage, flowering stage, early grain filling
stage, and mid-grain filling stage, respectively. Meanwhile, the mean values of RMSE were
reduced to 0.851 t ha−1, 0.820 t ha−1, 0.709 t ha−1, and 0.713 t ha−1 for the heading stage,
flowering stage, early grain filling stage, and mid-grain filling stage, respectively. Similar
findings were also observed under limited irrigation treatment. The mean values of R2

were up to 0.562, 0.617, 0.611, and 0.628, and the mean values of RMSE were 0.702 t ha−1,
0.647 t ha−1, 0.651 t ha−1, and 0.642 t ha−1, for the heading stage, flowering stage, early
filling stage, and mid-grain filling stage, respectively. We estimated the spatial distribution
of the grain yield at the plot scale based on the ensemble model by combining four
base learners at mid grain filling. The difference of grain yield under the two irrigation
treatments can be observed directly in Figure A3.

Figure 9. The statistical distributions of prediction accuracy of the stacking regression when including
four base learners for predicting grain yield in the test phases; (a) distributions of R2 at the heading
stage; (b) distributions of RMSE at heading; EGF, early grain filling and MGF, mid-grain filling.

In terms of the mean R2 and RMSE, most of the ensemble models achieved higher
prediction accuracy than the individual best models (Table 5), which confirmed the effec-
tiveness of the ensemble model implemented in this study. In addition, the overall accuracy
indicated that the prediction performance of the ensemble model was proportional to the
number of base learners (Figure 10).

Figure 10. The overall prediction accuracy (R2) when stacking regression including different number
of base learners; (a) under full irrigation treatment; (b) under limited irrigation treatment; when
n is 1, it represents the overall accuracy of the four base learners; the bars represent the standard
deviations. Abbreviations: EGF, early grain filling and MGF, mid-grain filling stages.

3.4. Regression Coefficient Results for a Secondary Model

Figure 11 illustrates the distribution of the regression coefficients for the four base
learners within the secondary model (MLR). A higher regression coefficient of a particular
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base learner indicated a larger weight in the stacking procedure. Under full irrigation treat-
ment, the stacking performance for the heading stage was strongly influenced by the RR
and GP models with high mean regression coefficients of 0.89 and 0.61, respectively. Similar
results were observed for the flowering stage, where the mean regression coefficients of the
RR and GP were 0.59 and 0.51, respectively. The impacts of the RF and SVM models on the
stacking regression were relatively small with the mean regression coefficients of −0.01
and −0.02, respectively. The RF had the highest impact on the stacking performance for
the early grain filling stage with a mean regression coefficient of 0.50, followed by the SVM
with a mean regression coefficient of 0.33, RR with a mean regression coefficient of 0.03,
and GP with a mean regression coefficient of 0.21. For the mid-grain filling stage, the RF
and RR models had similar weights with the mean regression coefficients of 0.46 and 0.45,
respectively, followed by the GP and SVM with the mean regression coefficients of 0.08 and
0.03. Under limited irrigation, RF showed a higher influence on the stacking performance
with a mean regression coefficient of 0.61, while the GP, RR, and SVM models had mean
regression coefficients of 0.31, 0.14, and −0.06, respectively. For the flowering stage, early
grain filling stage, and mid-grain filling stage, the impact of the RF-based model was with
the regression coefficient of 0.53, 0.55, and 0.05, respectively; the impact of the RR-based
model was with the regression coefficient of 0.41, 0.52, and 0.50, respectively; the impact of
SVM-based model was with the regression coefficient of 0.24, 0.39, and 0.13, respectively,
the impact of GP-based model was with the regression coefficient of −1.14, −0.41, and 0.36,
respectively. Overall, the results indicated that the stacking regression achieved higher
prediction accuracy by allocating a more reasonable weight of base learners under various
modeling conditions.

Figure 11. The distribution of regression coefficient within the level-2 model (MLR); (a) heading
stage; (b) flowering stage; (c) early gain filling stage; (d) mid gain filling stage. Abbreviations: RF,
random forest; SVM; support vector machine; GP, Gaussian process; and RR, ridge regression.

4. Discussion

The UAV-based multispectral vegetation indices have been increasingly exploited
to predict plant physiological traits by crop breeding studies [5,64]. In this study, 20 VIs
covering all five light bands captured by the multispectral sensor were taken to evaluate
the machine learning models for grain yield prediction. The high heritability of the VIs
indicated an excellent accuracy of these traits for grain yield prediction (Tables A1–A4).
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Among these VIs, GNDVI, NDRE, OSAVIREG, MSRREG, and MTCI had a heritability
greater than 0.5 under both the treatments and across the growth stages. These five VIs
could be selected as the best ones to predict variations among the genotypes for grain yield.
Previously, some studies have reported that GNDVI and NDRE were the best predictors for
grain yield and nutrient uptake efficiencies across the growth stages [5,64]. Therefore, these
VIs can be used to select high-yielding genotypes with high accuracy in large breeding
programs. Concerning water stress condition between different irrigation treatments, it
has been found that thermal images show a correlation between minor changes in water
stress that are undetectable by the multispectral indices as normalized difference vegetation
index (NDVI) [65]. Thermal imagery can help diagnosis of water stress in plants, causes
by the stomatal closure, which determines the reduction of the transpiration rate and
decreasing evaporative cooling increases leaf temperature. In this regard, canopy thermal
imaging represents a fast and practical way to evaluate and estimate crop water status,
indicating plant’s water content. In some cases, relationship of canopy temperature has
also been reported high with grain yield at early grain filling stages but lower at later
grain fulling stages [66]. This might be due to low greenness and photosynthetic activity at
late maturation stages. When wilting starts and transpiration decreases, the temperature
difference between plots could get small which weakened the discrimination ability of
canopy temperature at plot level growth. Therefore, data fusion of multispectral and
canopy temperature imagery for GY prediction at a critical growth stage can increase
the accuracy of prediction analysis. Meanwhile, the introduction of machine learning
models can further improve the prediction accuracy and decisions during selection. To
achieve precise prediction results and reduce the risk of overfitting, machine learning
algorithms usually adopted feature selection strategies to reduce the data dimension to a
suitable level [34]. In this study, VIs with heritability greater than 0.5 were selected across
the growth stages, which means that all the base learners and their combinations were
evaluated at maximum input data accuracy and repeatability. Previously, feature selection
algorithms such as recursive feature elimination (RFE) [37] and Boruta [67] have been
applied to prediction analysis. Different from RFE and Boruta, the feature selection based
on heritability can be performed without knowing the predictor variables in breeding work.
The successful use of heritability to reduce the number of input features has been reported
in the previous study [4], and it achieved high prediction accuracy. Therefore, taking VIs
with high heritability as input data increased the prediction accuracy and reliability of the
models to assess the variations of genotypes.

Previously, several studies have exploited different machine learning models such
as RR, SVM, RF, and GP to predict grain yield and physiological attributes of plants on
remote sensing data sets [32–36]. This study aims to evaluate the combination of the above
base learners to form an ensemble learning approach for grain yield prediction in different
growth stages. It is difficult for a single machine learning model to predict several plant
attributes using similar algorithms. For example, random forest algorithms are among the
most powerful machine learning algorithms because of their proven accuracy, adaptability,
and simplicity [32]. Such algorithms have been used in applications ranging from forest
growth monitoring to winter wheat leaf chlorophyll content estimation [32,68]. However,
the model performance of random forest is not as good as ridge regression in most cases
considered by this study. Different characteristics of trait composition made it difficult for
an algorithm of any model to maintain the prediction ability and accuracy in the case of
several varied traits as input data [34,37]. The RR model has been reported to have high
accuracy and robustness under most of the modeling conditions [69–72]. In our study,
better prediction results were also obtained by the RR model compared to other models
(Figure 6 and Table 5). It might be attributed to the biased nature of the model for collinear
data analysis and comprehensive relationship for most of the traits [69,73]. However, the
prediction ability of the RR model could be low in some cases, due to traits, growth stages,
and growing conditions [74]. Therefore, it is important to find a method that can combine
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the advantages of multiple models to achieve an improved prediction accuracy under
various growth conditions for grain yield prediction.

Ensemble learning approaches have been reported to increase the diversity of algo-
rithms by combining different base learners, and the combination of more heterogeneities
of base learners improves the ensemble learning model with higher prediction ability.
When implementing a stacking method, it is necessary to include self-sufficient, indepen-
dent, and diverse base learners for analysis [34,37]. In this study, four machine learning
algorithms with different principles and internal structures were successfully combined,
which achieved higher accuracy for predicting grain yield than the single base learner.
In addition, the accuracy parameters (R2 and RMSE) of the base learners exhibited more
fluctuations with the wide ranges than that of the ensemble approaches (Figures 7–9),
indicating the stability of the ensemble approaches on new data.

Among all the combinations with two, three, and four base learners, the one that
contained the RR model performed well in terms of prediction accuracy across growth
stages and treatments. Meanwhile, the regression coefficient analysis of combining the four
base learners showed a higher weight of RR in most of the cases. Therefore, the RR model
had a great influence on the ensemble method for grain yield prediction. Combining two
or three base learners can contribute to higher prediction accuracy than combining four
base learners in some cases, but these model combinations were unstable and performed
poorly in other situations. Conversely, the model combination of four base learners ex-
hibited good accuracy and stability in all the cases, which is of great significance to the
practical applications of the prediction model. Overall, the stacking regression method can
achieve higher prediction accuracy than individual base learners, and the improvement
was proportional to the number of base learners (Figure 10). This is consistent with the
conclusion of a previous study for estimating hourly and continuous ground-level PM2.5
concentrations [44]. The stacking regression can be further optimized for grain yield pre-
diction. The results of this study showed that the larger the number of base learners, the
higher the accuracy of the final model (Figure 10). It means that more machine learning
algorithms should be incorporated by the stacking regression method. Therefore, deep
learning-based regression methods such as multilayer perceptron (MLP) [75] can be used
as a new algorithm in the stacking procedure, while multiple birth SVM regression [76]
and parallel RF regression [77] can be respectively used as variants of the SVM and RF
regression for further improvement of the model. In addition, stacking a large number
of base learners requires a level-2 model to perform the multicollinearity data analysis
in the model [78]. Thus, ridge regression, least absolute shrinkage, selection operator
(LASSO), and elastic net regression (ENET) can be used as level-2 models for collinearity
analysis [78–81]. The grain yield predictions made by single models under full and limited
irrigation treatments were similar across the growth stages, indicating the adaptability
of UAV data for grain yield prediction. The prediction results obtained from ensemble
learning were very similar under both irrigation treatments i.e., full irrigation treatment
(R2 = 0.625) and limited irrigation treatment (R2 = 0.628) at the mid-grain filling stage. This
result indicated that the mid-grain filling stage is the most appropriate stage to predict the
grain yield under full and limited irrigation treatments. This is rational since grain filling
is the stage where wheat transfers organic matter such as starch and protein produced by
photosynthesis from the vegetative organs to the grains, and the vegetation indexes in this
period are closely related to the final quality of thousand-grain weight [82].

5. Conclusions

Recently, there is an increasing focus on using multi-model fusion for data analysis
to increase the prediction accuracy in crops. We have successfully used the ensemble
learning method to stack the multiple base leaners to increase the grain yield prediction
accuracy in wheat. The experimental results showed that the stacking of multi base
learners possess the capability to improve the traits estimations effectively as compared to
simple regression methods. Since UAV based phenotyping platforms can estimate spectral
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information from multiple growth stages cost-effectively, the use of ensemble learning
approaches is important in increasing the accuracy of within season yield predictions.
Our results illustrated the usefulness of ensemble learning approach for yield prediction
using multi-stage multispectral data. We also demonstrated the weight of each base leaner
such as random forest (RF), support vector machine (SVM), Gaussian process (GP), and
ridge regression (RR) in ensemble leaning model development for yield prediction. Grain
yield prediction results were high at a mid grain filling stage when a four base learner
combination was used in an ensemble learning model as compared to other growth stages
and base leaner combinations. To date, relatively few studies have been done to use
the information obtained by UAV based sensors as inputs in ensemble learning model
prediction of grain yield in winter wheat. Further validations of ensemble learning methods
on multiple crops and UAV based data are required to increase its validity and authenticity
in crop breeding.
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Appendix A

Table A1. Main statistical parameters of grain yield under two irrigation treatments.

Treatment Mean (t ha−1) CV (%)
F-Value

H2
Genotype (G) Treatment (T) G × T

Full Irrigation 7.59 15.7

10.401 *** 264.432 *** 0.98

0.85

Limited
Irrigation 6.92 14.6 0.89

***, significant at p < 0.001; CV means coefficient of variation.

Table A2. Significance test and heritability of the vegetation indexes extracted in the heading stage.

Vegetation Index
Genotype (G) Treatment (T) G × T H2

F-Value F-Value F-Value Full Irrigation Limited Irrigation

NDVI 4.854 *** 743.179 *** 1.263 * 0.51 0.78
SAVI 4.855 *** 743.178 *** 1.262 * 0.51 0.78

OSAVI 4.856 *** 743.226 *** 1.262 * 0.51 0.78
NRI 4.599 *** 1284.147 *** 1.344 * 0.52 0.80

GNDVI 5.998 *** 235.842 *** 1.104 0.70 0.74
SIPI 3.439 *** 564.833 *** 1.222 * 0.50 0.62
PSRI 1.148 0.771 1.156 0.14 0.13
CRI 7.058 *** 7.053 ** 0.968 0.78 0.72
EVI 7.777 *** 480.102 *** 1.482 ** 0.82 0.71
MSR 3.952 *** 710.450 *** 1.022 0.47 0.75
NLI 4.184 *** 1446.413 *** 1.261 * 0.44 0.74

RDVI 4.298 *** 325.237 *** 0.988 0.56 0.73
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Table A2. Cont.

Vegetation Index
Genotype (G) Treatment (T) G × T H2

F-Value F-Value F-Value Full Irrigation Limited Irrigation

TVI 4.890 *** 741.107 *** 1.278 * 0.51 0.78
MTVI2 8.176 *** 1005.586 *** 1.436 ** 0.81 0.76
NDRE 17.346 *** 139.202 *** 1.166 0.88 0.90

DVIREG 7.126 *** 1302.732 *** 0.928 0.65 0.82
OSAVIREG 17.346 *** 139.204 *** 1.166 0.88 0.90
RDVIREG 9.764 *** 1103.257 *** 1.349 * 0.73 0.87
MSRREG 17.958 *** 138.719 *** 1.177 0.88 0.91

MTCI 17.304 *** 184.176 *** 1.187 0.88 0.91

*, **, ***, significant at p < 0.05, p < 0.01 and p < 0.001, respectively.

Table A3. Significance test and heritability of the vegetation indexes extracted in the flowering stage.

Vegetation Index
Genotype (G) Treatment (T) G × T H2

F-Value F-Value F-Value Full Irrigation Limited Irrigation

NDVI 6.436 *** 948.477 *** 1.408 * 0.71 0.77
SAVI 6.436 *** 948.481 *** 1.408 * 0.71 0.77

OSAVI 6.436 *** 948.440 *** 1.408 * 0.71 0.77
NRI 3.687 *** 502.703 *** 1.132 0.59 0.57

GNDVI 6.622 *** 740.962 *** 1.463 ** 0.73 0.78
SIPI 5.619 *** 2053.124 *** 1.565 *** 0.67 0.75
PSRI 1.153 2.017 1.158 0.64 0.13
CRI 1.929 *** 3.624 1.281 * 0.34 0.54
EVI 1.725 *** 154.691 *** 1.481 ** 0.35 0.51
MSR 5.995 *** 1008.409 *** 1.371 * 0.70 0.76
NLI 3.189 *** 694.061 *** 1.511 ** 0.46 0.72

RDVI 2.950 *** 253.226 *** 1.195 0.44 0.70
TVI 6.458 *** 937.304 *** 1.413 * 0.71 0.77

MTVI2 2.009 *** 292.869 *** 1.487 ** 0.39 0.59
NDRE 10.989 *** 35.906 *** 1.044 0.77 0.91

DVIREG 3.525 *** 244.143 *** 1.347 * 0.49 0.80
OSAVIREG 10.989 *** 35.908 *** 1.044 0.77 0.91
RDVIREG 4.918 *** 209.064 *** 1.526 *** 0.56 0.85
MSRREG 11.078 *** 34.183 *** 1.046 0.77 0.91

MTCI 10.682 *** 73.627 *** 1.053 0.77 0.90

*, **, ***, significant at p < 0.05, p < 0.01 and p < 0.001, respectively.

Table A4. Significance test and heritability of the vegetation indexes extracted in the early grain filling stage.

Vegetation Index
Genotype (G) Treatment (T) G × T H2

F-Value F-Value F-Value Full Irrigation Limited Irrigation

NDVI 6.407 *** 131.876 *** 1.484 ** 0.69 0.79
SAVI 6.407 *** 131.873 *** 1.484 ** 0.69 0.79

OSAVI 6.407 *** 131.889 *** 1.484 ** 0.69 0.79
NRI 5.019 *** 906.706 *** 1.424 ** 0.51 0.79

GNDVI 9.13 *** 45.687 *** 1.452 ** 0.79 0.83
SIPI 7.784 *** 17.953 *** 1.705 *** 0.75 0.83
PSRI 1.156 0.303 1.162 0.75 0.13
CRI 5.786 *** 442.256 *** 1.082 0.69 0.72
EVI 4.652 *** 751.814 *** 1.129 0.64 0.67
MSR 5.834 *** 139.053 *** 1.327 * 0.65 0.79
NLI 3.265 *** 812.713 *** 1.144 0.45 0.56

RDVI 5.635 *** 2.048 1.104 0.64 0.78
TVI 6.404 *** 131.186 *** 1.49 ** 0.69 0.78

MTVI2 4.417 *** 886.16 *** 1.106 0.60 0.66
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Table A4. Cont.

Vegetation Index
Genotype (G) Treatment (T) G × T H2

F-Value F-Value F-Value Full Irrigation Limited Irrigation

NDRE 19.785 *** 67.904 *** 1.349 * 0.88 0.93
DVIREG 2.376 *** 450.393 *** 0.804 0.37 0.35

OSAVIREG 19.785 *** 67.9 *** 1.349 * 0.88 0.93
RDVIREG 3.432 *** 342.097 *** 0.746 0.58 0.48
MSRREG 20.303 *** 67.16 *** 1.375 * 0.88 0.93

MTCI 19.822 *** 45.575 *** 1.401 * 0.88 0.93

*, **, ***, significant at p < 0.05, p < 0.01 and p < 0.001, respectively.

Table A5. Significance test and heritability of the vegetation indexes extracted in the mid-grain filling stage.

Vegetation Index
Genotype (G) Treatment (T) G × T H2

F-Value F-Value F-Value Full Irrigation Limited Irrigation

NDVI 9.091 *** 1121.021 *** 1.365 * 0.80 0.81
SAVI 9.091 *** 1121.035 *** 1.365 * 0.80 0.81

OSAVI 9.091 *** 1121.020 *** 1.365 * 0.80 0.81
NRI 4.860 *** 1682.199 *** 1.275 * 0.63 0.69

GNDVI 13.186 *** 614.600 *** 1.223 * 0.86 0.86
SIPI 8.883 *** 765.657 *** 1.357 * 0.78 0.82
PSRI 8.278 *** 779.147 *** 1.544 *** 0.75 0.81
CRI 6.456 *** 2.374 0.928 0.71 0.76
EVI 4.408 *** 576.88 *** 1.096 0.60 0.68
MSR 7.881 *** 1353.925 *** 1.104 0.76 0.79
NLI 5.014 *** 1205.454 *** 1.184 0.62 0.71

RDVI 6.774 *** 785.527 *** 1.080 0.72 0.79
TVI 9.124 *** 1073.981 *** 1.398 * 0.80 0.81

MTVI2 4.487 *** 791.938 *** 1.113 0.61 0.68
NDRE 17.429 *** 528.708 *** 1.089 0.88 0.91

DVIREG 8.626 *** 997.224 *** 1.044 0.78 0.81
OSAVIREG 17.429 *** 528.698 *** 1.089 0.88 0.91
RDVIREG 7.046 *** 761.566 *** 1.144 0.73 0.77
MSRREG 18.188 *** 526.719 *** 1.106 0.88 0.91

MTCI 17.312 *** 636.939 *** 1.111 0.88 0.90

*, **, ***, significant at p < 0.05, p < 0.01 and p < 0.001, respectively.
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Figure A1. Regression plots, density curves, and correlation coefficient of the grain yield prediction
generated by various machine learning methods at four growth stages under full irrigation treatment;
(a) heading stage; (b) flowering stage; (c) early grain filling stage; (d) mid-grain filling stage significant
(***) at p < 0.001. Abbreviations: RF, random forest; SVM; support vector machine; GP, Gaussian
process; and RR, ridge regression.

Figure A2. Regression plots, density curves, and correlation coefficient of grain yield prediction
generated by various machine learning methods at four growth stages under limited irrigation
treatment; (a) heading stage; (b) flowering stage; (c) early grain filling stage; (d) mid-grain filling
stage significant (***) at p < 0.001. Abbreviations: RF, random forest; SVM; support vector machine;
GP, Gaussian process; and RR, ridge regression.
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Figure A3. Spatial distribution of grain yield (t ha−1) at the plot scale using an ensemble learning model.
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