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Abstract: Image registration has always been an important research topic. This paper proposes
a novel method of constructing descriptors called the histogram of oriented local binary pattern
descriptor (HOLBP) for fast and robust matching. There are three new components in our algorithm.
First, we redefined the gradient and angle calculation template to make it more sensitive to edge in-
formation. Second, we proposed a new construction method of the HOLBP descriptor and improved
the traditional local binary pattern (LBP) computation template. Third, the principle of uniform
rotation-invariant LBP was applied to add 10-dimensional gradient direction information to form a
138-dimension HOLBP descriptor vector. The experimental results showed that our method is very
stable in terms of accuracy and computational time for different test images.

Keywords: image registration; scale-invariant feature transform (SIFT); local binary pattern (LBP)

1. Introduction

The process of matching and superimposing two or more images extracted for different
times, sensors (imaging equipment), or conditions (e.g., weather, illuminance, and camera
position and angle) is called image registration [1]. In some fields, such as remote sensing
data analysis, computer vision [2], image fusion [3], image segmentation [4], and image
clustering [5], it has been shown to have a wide range of applications [6,7]. The general
gray level-based normalized product correlation method cannot handle scale changes,
while phase correlation registration based on the frequency domain can only obtain the
translation parameters of the image [1,8].

Although mutual information (MI) can be used as a registration metric for multi-sensor
images, the computational complexity of mutual information is very high [9,10].

To register real-time images with reference images, it is necessary to extract features
from the acquired images and establish a corresponding relationship with the extracted
feature information [9,11]. The features consist of points, lines, curves, and surfaces,
including corners, straight lines, edges, templates, regions, and contours. By solving the
feature correspondence relationship, the transformation between the real-time image and
the reference image (usually a transformation matrix) is obtained, and finally, the real-time
image is transformed into the required form by selecting different modes according to the
geometric relationships [12].

In recent years, Ye et al. [13,14] proposed the histogram of orientated phase congruency
(HOPC) and developed the channel features of orientated gradients (CFOG) for multimodal
remote sensing image registration. Wu et al. [15] proposed the fast sample consensus (FSC)
algorithm, and an iterative method to increase the number of correct correspondences.
Ma et al. [16–19] proposed robust feature matching of remote sensing images via vector
field consensus and a locality preserving technique to remove mismatches.
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Among existing image registration algorithms, those based on features with points
occupy a central position, e.g., Harris corner detection and scale-invariant feature transform
(SIFT) [20]. However, when the SIFT algorithm is applied to remote sensing images,
it is affected by terrain, illumination, and other factors, resulting in many key point
mismatches [21]. Zhang et al. [8] presented an improved SIFT method for accuracy and
robustness based on local affine constraints with a circle descriptor. Chang et al. [22]
proposed a method based on a modified SIFT and feature slope grouping to improve the
feature matching and the efficiency of the algorithm. However, this also increases the
number of mismatched points in the feature set and leads to reduced registration accuracy.

In order to solve the problems of SIFT in remote sensing images, the main contributions
of our paper are:

1. Redefinition of Gradient and Orientation: Based on the Laplacian and Sobel operators,
we improved the edge information representation to improve robustness.

2. Constructing descriptor: Based on the local binary pattern (LBP) operator, we pro-
posed a new descriptor, histogram of oriented local binary pattern descriptor (HOLBP),
which constructs histograms using the gradient direction of feature points and the
LBP value. The texture information of an image and the rotation invariance of the
descriptor were preserved as much as possible. We applied the principle of uniform
rotation-invariant LBP [23] to add 10-dimensional gradient direction information,
based on a 128-dimension descriptor of HOLBP, to enhance matching. This increased
the abundance of the description information with eight directions.

3. Matching: After the coordinates of the matched points were initially obtained, we
used rotation-invariant direction information for selection to ameliorate the instability
of the Random Sample Consensus (RANSAC) algorithm.

2. Methods

In this section, we introduce the remote sensing image registration method in four
subsections. The main content is organized as follows: redefinition of image gradient and
its use to determine the main direction of feature points; the composition of the HOLBP
descriptor; and specific operations in matching assignments.

2.1. Scale-Space Pyramid and Key Point Localization

This step exploits the Gaussian pyramid to construct the scale space, which is the
same as the SIFT algorithm [20].

2.2. Gradient and Orientation Assignment

The algorithm of spatial domain processing relies on the relevant calculation of image
pixels. Nevertheless, a real image often contains noise from uncertain sources, which
leads to errors in gradient and angle information calculations. In order to extract the
edge features of images more accurately, we redefined the calculation template of gradient
and gradient direction based on the Laplacian and Sobel operators. The new template
can smooth noise and provide more accurate edge direction information. This can be
expressed as:

Gx,σ = h1 ∗ I(x, y)
Gy,σ = h1

T ∗ I(x, y)
(1)

where h1 is the convolution kernel, i.e., h1 =

 −1 1 1
−1 −4 3
−1 1 1

, h1
T is the transpose of h1,

∗ is the convolution operator, I(x, y) is the input image, σ is the scale in Gaussian scale
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space, and Gx,σ and Gy,σ represent the derivatives in the horizontal and vertical directions,
respectively. Thus, the gradient magnitude and gradient direction are:

G(x,y,σ) =
√
(Gx,σ)

2 + (Gy,σ)
2

θ(x,y,σ) = arctan(Gy,σ/Gx,σ)
(2)

where G(x,y,σ) and θ(x,y,σ) represent the gradient magnitude and direction, respectively.
Here, we used a simple test image to illustrate the difference between the new template

and the ordinary Sobel and Laplacian operators. Figure 1 shows that our new gradient
template could keep the original shape of the rectangle and highlight the edges at the same
time when image corrupted with multiplicative noise which simulates the real processing
of registration.

Figure 1. Three different gradient computations applied on the test image.

2.3. Construct HOLBP Descriptor

The original SIFT descriptor is constructed based on the gradient information; how-
ever, it ignores complex image contours or textures. Although Lowe [20] suggested that
the normalization of descriptors could eliminate the effect of illumination, the results of
the registration experiments were not satisfactory. We have performed many experiments,
which indicate that the gradient information itself cannot fully represent the image texture
information. Consequently, we proposed the novel HOLBP descriptor, which consists of
two parts to address the above-mentioned problem.

2.3.1. HOLBP

After rotating the position and direction of the image gradient in a neighborhood near
a feature point into the main direction, SIFT takes the feature point as the center to select
an area of mσBp ×mσBp size in the rotated image. It is divided into Bp × Bp subregions at
equal intervals, which are mσ pixels. Here, m = 3, Bp = 4, and σ is the scale value of the
feature point.

The LBP operator [23] is derived in a 3× 3 window, with the central pixel of the
window as the threshold. The gray values of the adjacent 8 pixels are compared with it; if
the surrounding pixel value is greater than the central pixel value, the position of the pixel
is marked as 1; otherwise, it is marked as 0. In this way, an 8-bit binary number can be
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generated for comparison in this window and can be converted into a total of 256 decimal
numbers. The calculation of the LBP value is given by the following formula:

LBP(xr, yr) =
P−1

∑
p=0

2ps(ip − ir) (3)

where s(·) is a sign function, i.e., s(x) =
{

1 i f x ≥ 0
0 otherwise

, (xr, yr) is the center pixel, ir is

the grayscale value, ip represents gray values of adjacent pixels, and P is the number of
sample points. In this article, P = 8.

The proposed HOLBP descriptor is based on the LBP operator, which calculates the
LBP histogram of each subregion in eight directions centered on the feature points, and
draws the accumulated value of each gradient direction to form a seed point. At this
time, the direction of LBP for each subregion divides 0◦ to 360◦ into 8 ranges, with each
range being 45◦ so that every seed point has 8 directions of LBP intensity information, as
shown in Figure 2a. Considering Bp × Bp subregions at equal intervals, there are a total of
4× 4× 8 = 128 values.

Figure 2. (a) Subregion of HOLBP descriptor. (b) The circular neighborhood of eight sample points.

Note that the LBP calculated this way cannot be directly applied in calculations, due
to the 256 unconverted values causing a Euclidean distance mismatch. Thus, we ameliorate
the traditional LBP computation by adding an 8-domain Laplacian template operator to
make it more efficacious. The convolution formulae are:

LBPx,σ = h2 ∗ L(x, y)
LBPy,σ = h2

T ∗ L(x, y)
(4)

where h2 is the convolution kernel, i.e., h2 =

 1 1 1
1 −8 1
1 1 1

, h2
T is the transpose of h2, ∗ is

the convolution operator, L(x, y) is the LBP image of subregions, σ is the scale in Gaussian
scale space, and LBPx,σ and LBPy,σ represent the derivatives in the horizontal and vertical
directions, respectively. It is easy to obtain the improved LBP magnitude:

LBP(x,y,σ) =
√
(LBPx,σ)

2 + (LBPy,σ)
2 =
√

2LBPx,σ =
√

2LBPy,σ (5)

where LBP(x,y,σ) represents the improved LBP magnitude.
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There are two reasons why we calculate LBP this way. One is that it will cause
Euclidean distance matching errors if we directly use numerical values to generate the
histogram. The other is that a convolution operation will not change the LBP image in the
x or y direction but smooth and enhance the texture of the image to a certain extent.

For our method, the gradient itself is also the rate of change of the gray value, which is
similar to the LBP calculation. Thus, we form a 128-dimensional HOLBP descriptor filling
the gap in the texture information for the SIFT descriptor, which is denoted as HOLBP128.

2.3.2. Riu-Direction

The reason why SIFT can have the property of rotation invariance is that in the
descriptor histogram, eight directions are obtained to distinguish the magnitude of the
gradient. Nevertheless, these directions cannot represent the direction variations of all
feature points, as there will be mismatching in the matching task. The proposed HOLBP
descriptor adds 10-dimensional gradient direction information to enhance the matching
and rotation invariance.

Before the next step, we need to mention the concept of Uniform Rotation-Invariant
LBP (Riu-LBP). Ojala et al. [23] improved the LBP operator to extend a 3× 3 neighborhood
to any neighborhood, replacing the square neighborhood, and they obtained a series of
LBP feature values by rotating the resulting LBP features, as shown in Figure 2b. For eight
sampling points, there are 36 unique rotation-invariant binary patterns, but more pattern
types make the amount of data too large and the histogram too sparse. Ojala et al. thus
proposed a “uniform pattern” that reduced the dimensionality of 36 rotation-invariant
binary patterns to 10.

The Riu-LBP is achieved by simply counting the number of jumps in the basic LBP
code for uniform patterns, or setting P+1 for non-uniform patterns. Inspired by this
approach, our method describes the gradient angle information in the subregion from the
Riu direction:

DIR(P,R) =
P−1
∑

p=0
2ps(a(dp)− a(dr))

DIRRi
(P,R) = min

{
ROR(DIR(P,R), i)

∣∣∣i = 0, 1, . . . , P− 1
}

DIRRiu
(P,R) =


P−1
∑

p=0
s(a(dp)− a(dr)), f or uni f orm patterns

P + 1, otherwise

(6)

where dr is the center pixel, dp is the adjacent pixel, a(·) is the gradient direction of a pixel,
and ROR(x, i) performs a circular bit-wise right shift on the P-bit number x, i times. R
is the radius of the circular window, P is number of sample points, and s(·) is the sign
function. For the detailed description of the formula and the mode of uniform pattern,
please refer to paper [23]. In this paper, we utilized the above formula to calculate the angle
change information within the circular domain of the feature point. This model makes up
for the defect of incomplete angle description information caused by only dividing eight
directions when generating descriptors.

Thus, we obtain the 10-dimensional Riu gradient direction feature:

DIRi = DIRRiu
8,1 (7)

where the maximum value in DIRi indicates the most representative angle-jump mode
near the feature point. Combining HOLBPi with DIRi, we construct a new 138-dimensions
feature vector:

(HOLBP.DIR)i = [HOLBPi DIRi] (8)
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where i = 1, 2, . . . , n, and n represents the number of feature points. We obtain a new de-
scriptor within the sampling range of each feature point (the sampling range is explained in
Section 2.3.1). The eigenvector expression of an image with n key points can be denoted by:

HOLBP138 = [(HOLBP.DIR)1(HOLBP.DIR)2 · · · (HOLBP.DIR)n]
T (9)

The 10-dimensional descriptor added in this step can include the direction change
information around the feature points. It increases the abundance of the description
information with 8 directions. Figure 3 summarizes the flowchart of HOLBP. Next, it is nec-
essary to make a preliminary selection handling a large amount of descriptor information
of an image.

Figure 3. Flowchart of HOLBP.

2.4. Matching Assignment

For initial matching, we use the Euclidean squared distance as a measure of the simi-
larity between the two image descriptors, and we compare the nearest distance obtained
after sorting with the second nearest distance, if:

dn < dsn × dratio (10)

where dn indicates the nearest-neighbor distance, dsn indicates the second-nearest-neighbor
distance, and dratio ∈ (0, 1) is the matching threshold. In this article,dratio = 0.9.

The feature points satisfying the above formula are initially matched. For most statis-
tical problems, the Euclidean distance is unsatisfactory. Thus, we applied RANSAC [24] to
select a set of inliers compatible with a homography between the images, and we verified
the match using a probabilistic model.

For a pair of matching points in the picture, we have the following relationship:

p ∝ Hq (11)

which can be expanded to: xp
yp
1

 ∝

 H11 H12 H13
H21 H22 H23
H31 H32 1

 xq
yq
1

 (12)

where p and q are a pair of matching points, the coordinates of which are respectively (xp, yp)
and (xq, yq), H represents a homography matrix, and ∝ denotes the proportional relationship.
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Four random sample sets are selected, and the homography matrix H between them
is calculated by LSM (least squares template matching). Following this, we handle the
remaining point sets in the reference image and H to predict the coordinates of the image
to be registered. After iterations, the largest inlier sets (whose projections are consistent
with H) are found, and the H generated is the transformation matrix between two images.

Assume that the point sets obtained after preliminary matching are P = {p1, p2, . . . , pn}
and Q = {q1, q2, . . . , qn}. For the first iteration, four sets of points are randomly selected
from them, namely: P1 = {p1m, p2m, p3m, p4m} and Q1 = {q1m, q2m, q3m, q4m}, where the
subscripts im represent four randomly selected points, i = 1, 2, 3, 4. Note that they are not
arranged in order, we record them in the above way for convenience.

In the previous section, we calculated the Riu gradient direction of the feature points.
In the matching assignment, we exploited this information to improve the matching
efficiency and filter randomly selected points in each iteration. θmax(·) and θmin(·) represent
the maximum and minimum Riu directions, respectively, corresponding to the randomly
selected sets. The randomly selected points should satisfy the following formula:∣∣∣θ1

max(pim)− θ1
max(qim)

∣∣∣ < ∣∣∣(θ1
max(pim)− θ1

max(qim))− (θ1
min(pim)− θ1

min(qim))
∣∣∣ (13)

where θ1(·) indicates the Riu direction of the random point selected for the first iteration.
Then, we use the LSM algorithm and the coordinates of the points in P1 to estimate

the homography matrix H1. This process can be described by the following formula:

Q1(x, y) = H1P1(x, y) (14)

if,

‖qk(x, y)− Ht pk(x, y)‖2 ×max(θmax(pk(x, y))− θmax(qk(x, y))) < Threshold (15)

where k = 1, 2, . . . , n, and we output the number of points satisfying the above formula nk.
We repeat the iterations until the maximum number of point sets nkmax is reached, and we
use the Hkmax obtained at this time as the final result.

We have the following iterative equation:
∣∣θt

max(pim)− θt
max(qim)

∣∣ < ∣∣(θt
max(pim)− θt

max(qim))− (θt
min(pim)− θt

min(qim))
∣∣

Qt(x, y) = HtPt(x, y)
dk = ‖qk(x, y)− Ht pk(x, y)‖2 ×max(θmax(pk(x, y))− θmax(qk(x, y)))

dk < Threshold, pk ∈ Pmax(k), qk ∈ Qmax(k)
0 < t < tmax

(16)

where t is the number of iterations, θt(·) indicates the Riu direction of the random point
selected for the tth iteration, Pt = {p1m, p2m, p3m, p4m}, and Qt = {q1m, q2m, q3m, q4m}.
pk(x, y) and qk(x, y) are both included in P(x, y) and Q(x, y), respectively. In this paper,
tmax = 1000, and we set Threshold = 0.4 at each iteration. The steps of the proposed
method are outlined in Algorithm 1.

3. Experimental Results and Analysis

In this section, the experimental data and results are analyzed in detail, including
remote sensing image data, experimental evaluation measurements, and the displayed
results. All the experiments were conducted with the MATLAB R2016b software on a
computer with an Intel Core 3.2 GHz processor and 8.0 GB of physical memory.

3.1. Data

Six pairs of images were selected to test the performance of our method. Table 1 gives
a detailed description of each pair, and Figures 4–9 and Tables 2–7 show the registration
results of images for different methods. Table 8 summarizes the registration results of
images for different methods. The bolded values of all the tables represent the method with
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best performance under different evaluations. The symbol of “*” means that registration
failed (RMSE > 4).

Algorithm 1 Proposed Algorithm

Input: <P, Q>: The initial matching points through nearest-neighbor distance ratio. P = {p1, p2, . . . , pn}, Q = {q1, q2, . . . , qn}.
Output: <Pmax, Qmax>: The final matching set updated by the proposed method.
Step1: Obtain sets <Pt, Qt> by Equation (12).

If
∣∣θt

max(pim)− θt
max(qim)

∣∣ < ∣∣(θt
max(pim)− θt

max(qim))− (θt
min(pim)− θt

min(qim))
∣∣

Pt = {p1m, p2m, p3m, p4m}, Qt = {q1m, q2m, q3m, q4m}
End If

Step2: Estimate the homography matrix Ht by Equation (13).
Qt(x, y) = HtPt(x, y)

Step3: Obtain sets <Pmax(k), Qmax(k)> by Equation (14).
For k = 1 : n

dk = ‖qk(x, y)− Ht pk(x, y)‖2 ×max(θmax(pk(x, y))− θmax(qk(x, y)))
If dk < Threshold
pk ∈ Pmax(k), qk ∈ Qmax(k)
End If

End For
Step4: Obtain sets <Pmax, Qmax> by repeating the iterations.

For t = 1 : tmax, n0 = 0, nk = size(Pmax(k))

If nk > n0
n0 ← nk + n0 , Pmax ← Pmax(k) , Qmax ← Qmax(k)

End If
End For

Table 1. Detailed description of six pair images.

Pair Sensor and Data Size Image Characteristic

Pair-A
Remote sensing image data set 306 × 386 Geographic images
Remote sensing image data set 472 × 355

Pair-B
ADS 40, SH52/August 6, 2008 811 × 705 Stadium in Stuttgart,

GermanyADS 40, SH52/August 6, 2008 709 × 695

Pair-C
Remote sensing image data set 768 × 1024

mountain chainRemote sensing image data set 768 × 1024

Pair-D
Landsat-7/ April, 2000 512 × 512

MexicoLandsat-7/May, 2002 512 × 512

Pair-E
Landsat-5/September, 1995 412 × 300

SardiniaLandsat-5/July, 1996 312 × 300

Pair-F
Remote sensing image data set 400 × 400 Geographic images
Remote sensing image data set 400 × 400
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Figure 4. Matching results of different methods for images of Pair-A: (a) SIFT+RANSAC; (b) SURF; (c) SAR-SIFT; (d) PSO-
SIFT; (e) our method.

Figure 5. Matching results of different methods for images of Pair-B: (a) SIFT+RANSAC; (b) SURF;
(c) SAR-SIFT; (d) PSO-SIFT; (e) our method.



Remote Sens. 2021, 13, 2328 10 of 17

Figure 6. Matching results of different methods for images of Pair-C: (a) SIFT+RANSAC; (b) SURF;
(c) SAR-SIFT; (d) PSO- SIFT; (e) our method.

Figure 7. Matching results of different methods for images of Pair-D: (a) SIFT+RANSAC; (b) SURF;
(c) SAR-SIFT; (d) PSO-SIFT; (e) our method.
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Figure 8. Matching results of different methods for images of Pair-E: (a) SIFT+RANSAC; (b) SURF;
(c) SAR-SIFT; (d) PSO-SIFT; (e) our method.

Table 2. The number of matches and key points, running time, and comparisons of RMSE of different
methods for Pair-A.

Methods SIFT+RANSAC SURF SAR-SIFT PSO-SIFT Our Method

Number of
Matches/Key

points
307/350 70/99 41/96 298/561 325/360

Time/s 7.153 6.406 6.255 9.026 10.181

RMSE 0.3226 0.5057 0.6645 0.3217 0.3980

Table 3. The number of matches and key points, running time, and comparisons of RMSE of different
methods for Pair-B.

Methods SIFT+RANSAC SURF SAR-SIFT PSO-SIFT Our Method

Number of
Matches/Key

points
73/616 3/212 102/392 54/455 110/393

Time/s 10.239 10.59 18.478 18.825 17.456

RMSE 0.5850 * 0.5997 0.6550 0.7608
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Figure 9. Matching results of different methods for images of Pair-F: (a) SIFT+RANSAC; (b) SURF;
(c) SAR-SIFT; (d) PSO-SIFT; (e) our method.

Table 4. The number of matches and key points, running time, and comparisons of RMSE of different
methods for Pair-C.

Methods SIFT+RANSAC SURF SAR-SIFT PSO-SIFT Our Method

Number of
Matches/Key

points
283/917 22/280 14/132 77/883 329/762

Time/s 32.701 12.058 22.894 169.662 51.385

RMSE 0.5024 0.5534 0.6440 0.6107 0.6143

Table 5. The number of matches and key points, running time, and comparisons of RMSE of different
methods for Pair-D.

Methods SIFT+RANSAC SURF SAR-SIFT PSO-SIFT Our Method

Number of
Matches/Key

points
449/971 122/237 18/117 542/1196 603/975

Time/s 14.151 8.431 9.556 50.271 28.158

RMSE 0.5988 0.5909 0.5381 0.6121 0.7449
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Table 6. The number of matches and key points, running time, and comparisons of RMSE of different
methods for Pair-E.

Methods SIFT+RANSAC SURF SAR-SIFT PSO-SIFT Our Method

Number of
Matches/Key

points
111/336 65/198 11/103 112/345 166/325

Time/s 6.755 8.65 7.091 12.323 13.089

RMSE 0.6168 0.5535 0.5293 0.6444 0.8219

Table 7. The number of matches and key points, running time, and comparisons of RMSE of different
methods for Pair-F.

Methods SIFT+RANSAC SURF SAR-SIFT PSO-SIFT Our Method

Number of
Matches/Key

points
83/292 59/181 16/141 78/372 97/244

Time/s 6.624 9.50 8.277 10.833 11.661

RMSE 0.5734 0.5602 0.4691 0.6388 0.7570

Table 8. Correct matching numbers, comparisons of RMSE, and running time of different methods.

Methods Pair-A Pair-B Pair-C Pair-D Pair-E Pair-F

SIFT+RANSAC 307/0.3226 /7.153 73/0.5850/10.239 283/0.5024/32.701 449/0.5988/14.151 111/0.6168/6.755 83/0.5734/6.624

SURF 70 /0.5057/6.406 3/*/10.59 22/0.5534/12.058 122/0.5909/8.431 65/0.5535/8.65 59/0.5602/9.50

SAR-SIFT 41/0.6645/6.255 102/0.5997/18.478 14/0.6440/22.894 18/0.5381/9.556 11/0.5293/7.091 16/0.4691/8.277

PSO-SIFT 298/0.3217/9.026 54/0.6550/18.825 77/0.5107/169.662 542/ 0.6121/50.271 112/0.6444/12.323 78/0.6388/10.833

Our method 325/0.3980/10.181 110/0.7608/17.456 329/0.6143/51.385 627/0.7463/26.51 176/0.8796/13.741 97/0.7570/11.661

3.2. Experimental Evaluations
3.2.1. Number of Correct Matches

The number of correct matching points can indicate the effectiveness of a method
under the same conditions.

3.2.2. Registration Accuracy

The root mean-square error (RMSE) is used to measure the deviation between the
observed value and the true value [11,21], which can be denoted as:

RMSE =

√√√√ 1
N

N

∑
i=1

((xi − x̃′i)
2 + (yi − ỹ′i)

2) (17)

where (xi, yi) and (x′i , y′i) are those of the N selected key points from the image pair, and
(x̃′i , ỹ′i) denotes the transformed coordinates of (x′i , y′i).

The RMSE is more sensitive to outliers. If there is a large difference between the
predicted value and the true value, the RMSE will be very large.

3.2.3. Total Time

The less time that is spent, the better the method is in real-time.

3.3. Results Analysis

We compared the proposed method with SIFT+RANSAC [24], SURF [25], SAR-
SIFT [26], and PSO-SIFT [21] to verify the effectiveness, accuracy, and feasibility. There
were no deep learning (DL)-related methods used in the comparisons, as DL typically uses
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80% or more of a dataset for training while we used 2% of a dataset for training or no
training at all. The experimental results are shown in Table 8, where 307 and 73 represent
the number of correct matching pairs, 0.3226 and 0.5850 represent the RMSEs, and 7.153
and 10.239 denote the computation time in seconds.

In the experimental test, we selected six remote sensing test images, which can be
divided into large rotation angle and almost constant rotation angle. It can be observed
from Table 8 that our method could achieve satisfactory results regardless of whether or not
the registration images had very large rotation angles. The following is our specific analysis.

Table 8 shows that on the Pair-A, Pair-B, and Pair-C test images, i.e., when angle
deviations of the test images change significantly, our method could extract as many
correct matching points as possible while also achieving smaller RMSEs. Without the
support of rotation-invariant angle information, the traditional SIFT could achieve a good
registration effect, but it lost its competitiveness in comparison with our method. Both
SURF and SAR-SIFT showed that the registration effect on these three pairs of test images
was inadequate.

On the Pair-D, Pair-E, and Pair-F test images, i.e., the test images having almost
constant rotation direction, Table 8 also shows the superiority of the HOLBP descriptors. In
other words, considering the same image information, our novel descriptor could extract
the texture and contour information of an image to the greatest extent, which is reflected in
the correct matching points and RMSEs.

Although SIFT+RANSAC was almost on par with our method when images were not
affected by angle changes, it lost its preponderance in terms of correct matching points,
as shown in the results. It can be seen from Table 8 that our method could find more
correct matching points with little RMSE loss. In particular, when the test image had
strong texture information, such as Pair-D, Pair-E, and Pair-F, the differences between both
approaches were more obvious. It is the HOLBP descriptor based on the construction of
rotation-invariant texture information rather than the original SIFT descriptor that detects
more pairs of matching points. Even though SURF has an advantage in terms of speed, its
instability in RMSE and mismatches are unacceptable. Even though PSO-SIFT has better
matching accuracy, the time loss cannot be ignored. In general, our method outperformed
others, yet it also demonstrated some deficiency in sample matching precision.

In order to further verify the accuracy and effectiveness, Figure 10 shows the registra-
tion results on six pairs of images. In general, comparing four methods and test images
of different sizes and types, our method was very stable under the three experimental
evaluations, and the registration results were also satisfactory.

4. Conclusions

We proposed a novel method to construct descriptors, called HOLBP, for fast and
robust matching, and we redefined the gradient and direction calculation template. Experi-
mental results demonstrated that our methods had advantages in terms of correct matching
points, and registration accuracy and time, making our method stable on different test
images and remote sensing image registration.

However, in the experiments, we found that the effect of real noise still could not be
eliminated. Secondly, for some images with low resolution, we lost the dominant position.
Our method aimed to obtain more of the correct matched points but yielded poor RMSE,
for example, Tables 5–7, which was not satisfactory. In future work, we will focus on
ameliorating the accuracy and improving the speed of matching for a larger variety of
remote sensing images. We will also investigate the use of other transforms, like the Radon
transform [27,28], for remote sensing image registration.
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Figure 10. Registration results of our method: (a) Pair-A after registration; (b) Pair-B after registration; (c) Pair-C after
registration; (d) Pair-D after registration; (e) Pair-E after registration; (f) Pair-F after registration.
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