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Abstract: The Tibetan Plateau (TP), known as “The Roof of World”, has expansive alpine grass-
lands and is a hotspot for climate change studies. However, cropland expansion and increasing
anthropogenic activities have been poorly documented, let alone the effects of agricultural activities
on food security and environmental change in the TP. The existing cropland mapping products
do not depict the spatiotemporal characteristics of the TP due to low accuracies and inconsistent
cropland distribution, which is affected by complicated topography and impedes our understanding
of cropland expansion and its associated environmental impacts. One of the biggest challenges of
cropland mapping in the TP is the diverse crop phenology across a wide range of elevations. To
decrease the classification errors due to elevational differences in crop phenology, we developed two
pixel- and phenology-based algorithms to map croplands using Landsat imagery and the Google
Earth Engine platform along the Brahmaputra River and its two tributaries (BRTT) in the Tibet
Autonomous Region, also known as the granary of TP, in 2015–2019. Our first phenology-based
cropland mapping algorithm (PCM1) used different thresholds of land surface water index (LSWI)
by considering varied crop phenology along different elevations. The second algorithm (PCM2)
further offsets the phenological discrepancy along elevational gradients by considering the length
and peak of the growing season. We found that PCM2 had a higher accuracy with fewer images
compared with PCM1. The number of images for PCM2 was 279 less than PCM1, and the Matthews
correlation coefficient for PCM2 was 0.036 higher than PCM1. We also found that the cropland area
in BRTT was estimated to be 1979 ± 52 km2 in the late 2010s. Croplands were mainly distributed in
the BRTT basins with elevations of 3800–4000 m asl. Our phenology-based methods were effective
for mapping croplands in mountainous areas. The spatially explicit information on cropland area
and distribution in the TP aid future research into the effects of cropland expansion on food security
and environmental change in the TP.

Keywords: cropland; Tibetan Plateau; pixel- and phenology-based algorithm; Google Earth En-
gine; Landsat

1. Introduction

Although agricultural activities in the Tibetan Plateau (TP) are uncommon and only
comprise less than 1% of the land cover, they play an important role in regional food security
given the strong dependence of people’s livelihoods on local grains. Over 55% of Tibet’s
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cereal is produced along the Brahmaputra River and its two tributaries (BRTT), the Lhasa
River and Nyang Qu River, despite its small area (5.5% of Tibet) [1]. The Tibetan Plateau has
experienced significant warming in the past few decades, affecting cultivation suitability at
higher elevations through temperature stress, water availability, and other environmental
conditions [1,2]. With rapid population growth and climate warming, agriculture has
expanded significantly both horizontally and vertically in the past few decades [3]. This
expansion has come with ecological consequences due to Tibet’s fragile environment,
including desertification, degradation, and water supply loss [1,4–8]. Cropland maps
are essential for understanding the spatiotemporal pattern of cropland changes and their
environmental effects [9]. However, croplands in the TP have been overlooked and their
spatial distributions are unclear in the existing land cover and land use products due to the
complicated topography and fragmented landscape on the plateau [10].

Satellite remote sensing is the main approach for mapping croplands at large scales,
but it is challenging to use in the TP considering the complicated topography, hetero-
geneous landscape, and insufficient satellite observations due to frequent clouds in the
summer formed by warm and humid airflow raised by topography [10–13]. Until now,
cropland mapping products on the plateau have been mainly produced by visual inter-
pretation, which is time consuming, labor intensive, and difficult to apply on large spatial
scales [1–3,14]. Spatially explicit reconstruction models (e.g., spatial production alloca-
tion model (SPAM)) have also been used to estimate historical cropland change by using
statistical data and remote sensing variables to reconstruct cropland distribution [15–17].
However, the accuracy and spatial resolution of the spatially explicit reconstruction models
are usually inferior to remote sensing approaches. Moderate resolution imaging spectrora-
diometer (MODIS) data have been used for crop monitoring in the TP because of their high
temporal resolution [18–20], but their application is limited in the TP due to their coarse
spatial resolution (500 m) [21].

Long-term, moderate spatial resolution Landsat data are currently the optimal data
source for cropland mapping. The release of Landsat data from USGS has provided an
unparalleled opportunity to map croplands at a 30-m resolution and monitor land cover
dynamic changes since the first Landsat launch in 1972 [22,23]. Many previous studies
have used Landsat data and phenology-based methods to map cropland extent or major
crops [24–30]. In the TP, the cropping system has a single cropping pattern and relatively
concentrated planting and harvesting periods, which allow us to detect croplands because
of their distinct phenology [31]. Specifically, the crop growing seasons are mainly from
April to October due to cold temperatures on the plateau during winter and early spring
(monthly mean temperature below 5 ◦C [32]) and human management. However, the
growing season of the steppe is from June to October because of the relatively colder and
semiarid climate [33]. The phenological difference between cropland and natural vegetation
can be easily captured by time series of vegetation indices (VIs), such as the normalized
difference vegetation index (NDVI), enhanced vegetation index (EVI), and land surface
water index (LSWI) [34–37]. However, the phenology of vegetation is elevation dependent
due to temperature gradients [38]. As elevation increases, crop planting and harvesting
both occur later [32]; thus, it is necessary to develop different thresholds according to
different elevation gradients for a more robust approach.

A previous study found that annual land cover mapping and retrospective analysis
of land cover change is impossible in the TP due to insufficient satellite observations in
the TP [11]. Thus, all available Landsat data should be used in multiple-year time frames
to reduce uncertainties in image quality. A similar strategy was used for tracking rice
paddy dynamics in Northeast China [25,39], historical encroachment of red cedar in the
U.S. Southern Great Plains [35], and forest cover dynamics for the Carpathian ecoregion in
Eastern Europe [40].

Here, we develop two efficient phenology-based algorithms to map the croplands in
the granary of the TP, the BRTT region, by using all the available Landsat images and the
Google Earth Engine (GEE) cloud-computing platform. Specifically, our objectives were
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to (1) develop robust and transferable pixel- and phenology-based algorithms to detect
croplands in the BRTT region and (2) quantify the area and spatial distribution of croplands
in 2015–2019.

2. Materials and Methods
2.1. Study Area

The study area (28◦20′ ~ 31◦20′N, 89◦00′ ~ 92◦35′E) was the Brahmaputra River and its
two tributaries in the Tibet Autonomous Region (BRTT) of China, which covers 18 counties
(6.65 × 104 km2) in the Lhasa, Lhoka, and Shigatse Prefectures (Figure 1). The climate on
the plateau is characterized by low temperatures, with average annual temperature varying
between 4.7 ◦C and 8.3 ◦C. The average annual precipitation varies between 252 to 580 mm
and falls mainly between May and September [41]. There is a precipitation gradient that
decreases from southeast to northwest and is strongly controlled by topography [42]. The
average elevation ranges from 3500 to 4200 m and decreases from west to east. Solar
radiation is high with annual total solar radiation from 7600 to 8000 MJ/m2 and average
annual sunshine time from 2800 to 3300 h [1]. The dominant vegetation is grassland, which
occupies about 77% of the land area [32].
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Figure 1. The location and topography of study area, including 18 counties and eight Landsat scenes that cover the
study area.

The croplands are mainly distributed in the BRTT due to hydrothermal conditions,
where it is suitable for agriculture and is designated as the “crop-dominated zone” of
Tibet [43,44]. Woodlands only exist in the southeast or where they are planted around
some croplands for wind shelters. The main crop types are highland barley, spring wheat,
rapeseed, and pea. Wheat and barley are the staple crops that account for up to 60% of
crops sown [45]. The growing season of staple crops is mainly concentrated with sowing in
April and maturing in September. Planting and harvest would be delayed accordingly at
higher elevations where temperatures are cooler.

2.2. Data
2.2.1. Landsat Data and Pre-Processing

We used all of the Landsat 7 Enhanced Thematic Mapper (ETM+) and Landsat 8
Operational Land Imager (OLI) Surface Reflectance images from 2015 to 2019, which were
collected and atmospherically corrected in the GEE platform. There are small but significant
differences between Landsat ETM+ and OLI due to different acquisition conditions, sensors,
and other factors. The improved OLI calibration resulted in narrower wavebands than



Remote Sens. 2021, 13, 2289 4 of 19

ETM+. Specifically, the OLI-based NDVI is greater than the ETM+-based NDVI. Thus, we
applied coefficients to harmonize the two Landsat datasets [46]. The study area is covered
by 8 Landsat scenes (path/rows of 140/39, 139/39, 138/39, 137/39, 137/40, 140/40, 139/40,
138/40) (Figure 1). We counted the number of observations annually for all the available
Landsat 7/8 surface reflectance data by path/row (Figure 2a) and by month (Figure 2b)
during the main growing season (April–October) from 2015 to 2019. We assessed the pixel
quality of individual pixels according to the pixel_qa band. The cloud, cloud shadows, and
snow/ice were identified as bad observations according to the Fmask [47] and metadata.
Fmask has good performance to screen cloudy, cloud shadows, and snow gridcells with
an overall accuracy of 96.41% for Landsat 7 [48] and 89% for Landsat 8 [47]. Bins of the
number of good observations as a percentage of all observations are illustrated for each
year in Figure 2c, and the total number of good observations are in Figure S1.
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We used the surface reflectance data filtered for good observations to calculate three
VIs, including NDVI [49], EVI [50], and LSWI [51]. NDVI and EVI can reflect the greenness
of vegetation, and the latter considers the impact of residual atmospheric contamination
and soil background [50]. LSWI is sensitive to equivalent water thickness attributed to the
SWIR band, which is sensitive to leaf water and soil moisture [52]. The time series of three
VIs were used to analyze vegetation phenology and identify the unique characteristic of
croplands. The following equations were used to calculate three VIs:

NDVI =
ρnir − ρred
ρnir + ρred

(1)

EVI = 2.5× ρNIR − ρred
ρnir + 6× ρred − 7.5× ρblue + 1

(2)

LSWI =
ρnir − ρswir
ρnir + ρswir

(3)

where ρblue, ρred, ρnir, and ρswir are the surface reflectance values of the blue (450–520 nm,
452–512 nm), red (630–690 nm, 636–673 nm), near-infrared (770–900 nm, 851–879 nm),
and shortwave-infrared bands (1550–1750 nm, 1556–1651 nm) from TM/ETM+ or OLI
sensor, respectively.

We fitted phenology curves of cloud-free composite images at a 16-day interval to
the LSWI temporal profile based on all Landsat 7/8 data over 2017–2019 on the GEE
platform using the following steps. First, we composited three years of data into one
year by taking the median values of LSWI at 16-day intervals from March to October. We
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started a month in advance to reconstruct the LSWI temporal curves in case there was
a data gap in April which needed to interpolate the first 16-day LSWI value due to the
snow or cloud contamination in early spring. Second, sometimes good observations cannot
be obtained even after compositing three years of data in some regions, so we filled the
data gaps using linear interpolation of the good observations before and after the gap [53].
Finally, we smoothed the curve using the Savitzky–Golay (S–G) filter to reconstruct the
LSWI dataset. The S–G filter can effectively remove the noise that deviated from the normal
growth trajectory and can better match the vegetation growth trajectory during the data
reconstruction [54]. In this study, we defined the filtering window size of the S–G filter
as 7, the number of time steps from right/left to the middle point as 3, the degree of the
smoothing polynomial as 3, and the iteration times as 3. This process was completed using
the GEE platform and is represented at a selected cropland site in Figure 3.
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2.2.2. Ground Truth Data

Ground truth data were collected randomly through visual interpretation of Google
Earth’s high-resolution imagery and assisted by Landsat false-color composite imagery,
which was composited during the growing season in the GEE platform. The imagery was
used to distinguish the five-land use and land cover types (cropland, grassland, woodland,
built-up, and water) through visual interpretation. As shown in the false-color composite
(R: near-infrared, G: red, B: green) of Figure S2, croplands show a unique bright red color
in July which is different from that of grasslands, because of the strong absorption of green
leaves in the red band and high reflectance in the green and near-infrared bands (Figure S2).
In total, we collected 2208 training points of interest (POIs) including 1204 cropland samples,
678 grassland samples, 219 woodland samples, 56 water samples, and 51 built-up samples.
The distributions of the training POIs and Google Earth high-resolution images are shown
in Figure S3.

2.2.3. Other Data

Shuttle Radar Topography Mission (SRTM) DEM data were used in this study, which
have a 3-arc-second resolution in 2000 [55]. The SRTM DEM data are available in GEE, and
we calculated elevation and slopes in GEE, which was used to divide training POIs into
different elevation gradients.

China’s Land-Use/Cover Datasets (CLUDs) and three global land-use and land-
cover datasets, including GlobeLand30, From-GLC, and MCD12Q1, were compared to
the resultant map in this study (Table 1). CLUDs was created mainly using a human–
computer interactive interpretation method based on Landsat TM\ETM+ images [56].
GlobeLand30 was produced using the pixel-object-knowledge classification methodology
from Landsat/TM and China’s environmental satellite (HJ) [57]. From-GLC datasets
utilized support vector machine, maximum likelihood classifier, and multi-source data,
including MODIS time-series images, DEM, and soil water data [58]. MCD12Q1 used
the random forests classification based on MC43A2 and MC43A4 products with ancillary
information from a variety of sources [59].
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Table 1. Overview of the four cropland datasets used in this study.

Product Satellite Sensor Spatial Resolution (m) Periods Class

CLUDs Landsat TM/ETM+ 100 2015 25
GlobeLand30 Landsat/TM, HJ/CCD 30 2020 10
FROM-GLC Landsat TM 30 2017 10
MCD12Q1 Terra/Aqua 500 2019 17

2.3. Methods

Here, we developed two phenology-based methods to extract croplands in BRTT. The
workflow is shown in Figure 4. First, training and validation POIs were generated using
Google Earth’s high-resolution imagery, which were divided into four gradients using
DEM data. Second, two phenology-based cropland mapping algorithms were used to
produce cropland maps. Finally, the better cropland map was compared with four existent
cropland datasets.
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2.3.1. The First Phenology-Based Cropland Mapping (PCM1)

From the temporal profile of NDVI, EVI, and LSWI at three randomly selected sites
with different vegetation types in the study area, we found that croplands had a different
phenology profile than the other vegetation types. More specifically, croplands had rapid
growth in the summer and a rapid decline in autumn due to harvest, while natural
vegetation did not exhibit this dramatic variation in phenology during the growing season
(Figure 5). The orange shaded bar of Figure 5 showed a discrepancy between croplands and
grasslands in July or August. The grassland cover was rather low in the arid and semiarid
regions with low VIs values [60], while crop growth and cropland VIs peaked. The blue
shaded bar showed a discrepancy between croplands and woodlands in September or
October. Croplands were in lower greenness and water content with low VIs values during
the harvest phase while woodlands were still in higher greenness and water content [9,41].
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higher planting density and water content around the peak of the growing season and 
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monthly composited false-color imagery (Figure S4). 

Figure 5. Temporal profile analysis of the Landsat (ETM+/OLI)-based normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI), and land surface water index (LSWI) of (a) woodland, (b) cropland, and (c) grassland at
selected sites during 2015–2019. The Google Earth high-resolution images were shown on the left. The orange and blue
shaded bars showed the optimal time windows (July–August and September–October) to separate croplands from other
vegetation types.

With increased elevation and decreased accumulated temperature, crop planting and
harvesting time are delayed compared to the crops at lower elevations. According to
our analyses of the seasonal variation of vegetation at four different elevation gradients,
croplands are identifiable in certain phenological phases. For instance, croplands have
higher planting density and water content around the peak of the growing season and
exhibit bright red on the false-color composite of Landsat imagery, while other vegetation
types exhibit dark red. At higher elevations, the peak of the growing season occurs later
than at lower elevations, reflected by the later appearance of the brightest red on the
monthly composited false-color imagery (Figure S4).

We quantified the difference in crop phenology at different elevations by calculating
monthly mean and standard deviation (SD) of VIs based on the training POIs (1204 cropland
pixels, 678 grassland pixels, and 219 woodland pixels) over 2015–2019. Cropland monthly
mean VIs peaked later with increased elevation (Figure 6).
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Figure 6. Monthly mean and standard deviation (SD) of the Landsat (ETM+/OLI)-based normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI), land surface water index (LSWI) for croplands, grasslands, and woodlands
at four different elevation gradients. The values were calculated based on the training POIs over the years of 2015–2019.

The first phenology-based cropland mapping algorithm (PCM1) was generated by
using different thresholds along different elevation gradients in the months according
to the phenological differences of different vegetation types. We chose five consecutive
years, 2015–2019, of Landsat 7/8 images to ensure sufficient observations, as the TP
has insufficient observations for annual land cover monitoring [11]. Cropland area was
extracted using the following rules. First, the vegetation area was masked by using the
mean NDVI over 0.3 in summer from June to August (NDVIsummer) (Figure S5). Second,
we excluded woodlands by using the mean NDVI in October (NDVIOct) of less than 0.4
when the crops have matured with a low NDVI value (Figure 7). Third, we excluded the
disturbance of grasslands by using the different thresholds at different elevation gradients.
We used mean LSWI in July (LSWIJul) over 0.15 in areas with elevation ≤ 4000 m and mean
LSWI in August (LSWIAug) over 0.25 in areas with elevation > 4000 m (Figure 7). We also
used the thresholds of elevation < 5000 m and slope < 30◦ to reduce the commission error,
as croplands rarely exist under this condition [19,32]. The PCM1 approach is conducted
using the following formulas:

NDVIsummer > 0.3 AND NDVIOct < 0.4 (4)

LSWIJul > 0.15(if DEM ≤ 4000 m) OR LSWIAug > 0.25(if DEM > 4000 m) (5)

DEM < 5000 m AND Slople < 30◦ (6)
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2.3.2. The Second Phenology-Based Cropland Mapping (PCM2)

The thresholds used in the PCM1 may be difficult to transfer to other periods due
to interannual variations in image quality, crop growth, climate, and cloud cover [24]. In
particular, thresholds selected in July and August with the above method were restricted
by a lack of good observation in cloud-cover regions formed by warm and humid airflow
raised by topography [12] (Figure S6 and S7). Therefore, we further improved the PCM1
algorithm based on the unique growing season length of croplands as well as the relatively
higher greenness and water content at the peak of the growing season. The LSWI time series
data showed larger differences in the growing season pattern of vegetation (Figure S8). We
preprocessed the LSWI temporal profile according to the steps introduced in Section 2.2.1
and selected four groups of grassland, cropland, and woodland POIs at four elevation
gradients for the LSWI time series analysis. Figure 8 indicated that the frequency of LSWI
observations over 0.2 (FreqLSWI>0.2) can be used to separate croplands from grasslands as
grassland LSWI values tended to be lower than 0.2 during the growing season.
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Here, we improved the PCM1 algorithm by replacing Equation (5) with the frequency
of LSWI observations over 0.2 from May to September and the maximum LSWI values
during summer (June–August), as croplands have a longer growth period and higher water
content than grasslands. We used FreqLSWI>0.2 around 3 to 8 times and the maximum LSWI
(LSWImax) over 0.25 to exclude the disturbance of grasslands (Figure 9). Additionally, we
used elevation < 5000 m and slope < 30◦. We chose three consecutive years, 2017–2019, of
Landsat 7/8 images to apply the second algorithm (PCM2) to extract the cropland area.
The PCM2 approach is conducted using the following formulas:

NDVIsummer > 0.3 AND NDVIOct < 0.4 (7)

FreqLSWI>0.2 ∈ [3, 8] (8)

LSWImax > 0.25 (9)

DEM < 5000 m AND Slople < 30◦ (10)
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Figure 9. Frequency of land surface water index (LSWI) over 0.2 and its standard deviation (SD)
from May to September (yellow), and the max LSWI and its SD from June to August (blue) of
three vegetation types within the training POIs at four elevation gradients. C, G, and W represent
croplands, grasslands, and woodlands, respectively. 1, 2, 3, and 4 represent four elevation gradients
(<3600 m, 3600–3800 m, 3800–4000 m, and >4000 m).

2.3.3. Accuracy Assessment of Cropland Maps and Comparison with Existing Maps

We used a stratified random sampling design to assign areas of interest (AOIs) to
assess the accuracy of our resultant maps and the other four cropland maps. First, cropland
and noncropland were stratified based on the CLUDs map in 2015. Second, random POIs
were generated separately in each stratum, and we made AOIs as circle buffers of the
POIs (diameter of 100 m). Good practices indicated the standard errors of producers,
and overall accuracies are smaller for proportional allocation (the sample size should be
proportional to the area of each stratum). In the meantime, the compromise between
the user’s versus producer’s and overall accuracies can be achieved through shifting the
proportional allocation by increasing the sample size in the rare classes [61]. Noncropland
dominates the study area, therefore we generated more noncropland POIs than cropland
POIs and increased the POIs proportion of croplands for good practice (the rare class here).
Third, we verified the AOIs in each stratum through visual interpretation of Google Earth’s
high-resolution imagery to correct obvious errors (e.g., wrong samples generated due to
the data quality of CLUDs and cropland samples lying on the field boundary). Finally,
1100/10,944 validation AOIs/pixels were generated, which included 76/750 cropland
AOIs/pixels and 1024/10,194 noncropland AOIs/pixels. The distribution of the validation
AOIs was shown in Figure 10. The accuracy assessment was evaluated using the overall
accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and Matthews correlation
coefficient (MCC) (Equation (11)). MCC produces a more informative and reliable score
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in evaluating binary classifications than F1 score and Kappa coefficient [62]. A confusion
matrix of cropland maps was calculated to evaluate the accuracy of the results based on
two phenological algorithms. Additionally, we adjusted the accuracy and estimated the
area with 95% confidence intervals using the methods proposed by Olofsson et al. [63]:

MCC =
tp× tn− fp× fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
(11)

where tp (true positives) represents actual positives that are correctly predicted positives;
fn (false negatives) represents actual positives that are wrongly predicted negatives; tn
(true negatives) represents actual negatives that are correctly predicted negatives; and fp
(false positives) represents actual negatives that are wrongly predicted positives.
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and noncropland). The background is the world terrain base map.

We also compared the resultant map with the other four cropland datasets (CLUDs in
2015, GlobeLand30 in 2020, FROM-GLC in 2017, and MCD12Q1 in 2019) based on different
classification methods. Although these four products range from 2015 to 2020, we assumed
they are comparable to our results because of the relatively stable land use on the TP within
a few years. We reclassified the datasets into a cropland/noncropland map and resampled
it into 30 m to match our results. The accuracy of these cropland maps was obtained by
overall accuracy, MCC, commission error, and omission error using the same validation
AOIs as in Figure 10.

3. Results
3.1. Accuracy Assessment

We conducted accuracy assessments of the two cropland maps using PCM1 over
2015–2019 and PCM2 over 2017–2019 as described in Section 2.3.3. We also adjusted the
accuracies according to the mapped areas to obtain more reasonable results [61]. We found
that the second cropland map, which used less data, had a slightly higher accuracy than
the first one (Table 2). The MCCs were 0.875 in PCM1 and 0.911 in PCM2. The cropland
category using PCM1 and PCM2 had adjusted OAs of 98.4% and 99.2%, adjusted PAs
of 62.2% and 81.8%, and adjusted UAs of 92.6% and 90.8%, respectively (Table 2). The
significant decline of adjusted PA was related to the extremely small proportion of cropland
strata. The estimated areas with 95% confidence intervals increased from 1724 km2 to
2565 ± 94 km2 in PCM1 and from 1782 km2 to 1979 ± 52 km2 in PCM2, which fixed the
potential omission error in the unadjusted results. Table S1 provided the confusion matrix
of the cropland map. The total pixels in the confusion matrix were different because of
missing pixels located in high mountains with elevation above 5000 m (3098 pixels of PCM1
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and 122 pixels of PCM2), where we had no data for the study period, but this missing data
did not affect our results considering there were no crops grown at such high elevations.

Table 2. Nonadjusted/adjusted producer’s, user’s, and overall accuracies for the cropland maps produced using the first
and second phenology-based cropland mapping algorithm (PCM1 and PCM2). The mapped areas/estimated areas with
95% confidence intervals were also shown in the table. PA, UA, and OA mean producer’s accuracy, user’s accuracy, and
overall accuracy, respectively.

Methods Class
PA Adjusted PA UA Adjusted UA OA Adjusted OA Area Estimated Area

(%) (km2)

PCM1
Cropland 85.4 62.2 92.6 92.6

98.0 98.4
1724 2565 ± 94

Noncropland 99.3 99.8 97.4 98.5

PCM2
Cropland 92.5 81.8 90.8 90.8

98.8 99.2
1782 1979 ± 52

Noncropland 99.3 99.7 99.4 99.4

3.2. Cropland Map of BRTT in 2017–2019

Resultant maps based on PCM1 and PCM2 algorithms had a high spatial agreement,
while the zoom-in views of four regions showed that the result from PCM2 was more
continuous than that of PCM1 (Figure S9). Since PCM2 had a higher accuracy with
less image processing compared with PCM1, the following results were analyzed based
on PCM2. The spatial distribution of PCM2-based croplands during the study period
(2017–2019) is shown in Figure 11. The croplands were mainly distributed in the basins of
BRTT and presented a unique three-dimensional multilevel agricultural layout due to the
different temperatures along the elevation gradient. Large and contiguous croplands were
mainly concentrated in wide valleys with flat terrain and where irrigation was accessible,
and small cropland fields were in the upper end of the tributaries with a higher elevation.
Thus, croplands in BRTT had a dendritic distribution along rivers (Figure 11). The total
cropland area for BRTT was estimated at 1979 ± 52 km2, which accounted for 3% of the
total land area.

In terms of the distribution of the croplands along the different elevation gradients
and prefectures, most of the croplands (81.2%) were distributed between elevations of
3600 m to 4200 m, while 41.5% of the croplands were concentrated between 3800 and
4000 m (Figure 11b). Croplands were mainly distributed in eastern Shigatse Prefecture and
southern Lhasa Prefecture. Shigatse and Lhasa Prefectures accounted for 49.3% and 33.5%
of the total cropland area, respectively, and contained over 80% of the croplands. Lhoka
Prefecture only accounted for 17.2% of croplands (Figure 11c). Croplands in Shigatse were
more concentrated than in the other two prefectures (Figure 11a).

3.3. Comparison of Penology-Based Map with Other Four Cropland Datasets

We compared the PCM2 cropland map for 2017–2019 with the other four cropland
datasets ranging from 2015 to 2020 (Figure 12). The spatial pattern of croplands from PCM2
was visually consistent with that of the CLUDs and GlobeLand30-based cropland layers,
while it was inconsistent with that of the FROM-GLC and MCD12Q1 cropland layers,
especially in the western part of the study area (Figure 12a–e). Then, we selected a zoom-in
view of five datasets as well as their false-color imagery in July composited from 2015 to
2019 and found PCM2 could exhibit the detailed spatial distribution of croplands at higher
elevations, followed by results from CLUDs, GlobeLand30, FROM-GLC, and MCD12Q1.
CLUDs and GlobeLand30 wrongly classified noncroplands near croplands as croplands,
while From-GLC and MCD12Q1 ignored croplands. The cropland areas from these five
datasets showed different results, with larger cropland areas in CLUDs and GlobeLand30
and much smaller cropland areas in From-GLC and MCD12Q1 (Figure 12f).
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Figure 11. (a) The spatial distributions of croplands in 2017–2019 based on the second phenology-based cropland mapping
(PCM2) algorithm. (1–4) are the zoom-in views of four regions labeled in (a), respectively. (b) The proportion of cropland
area in different elevation gradients. (c) The proportion of cropland area in three prefectures (Shigatse, Lhasa, and
Lhoka Prefecture).

The accuracies of these five cropland datasets were obtained by an error matrix using
the same validation AOIs introduced in Section 2.3.3 and were adjusted. According to
Table 3, PCM2 achieved the highest accuracy, with an adjusted OA of 98.8% and MCC of
0.911. The adjusted OA and MCC of CLUDs reached 98.8% and 0.898, and those of Glo-
beLand30 reached 97.4% and 0.798, respectively. Comparatively, the accuracies obtained
with FROM-GLC and MCD12Q1 were relatively lower. The adjusted OA and MCC were
95.1% and 0.505 of FROM-GLC, and 94.5% and 0.413 of MCD12Q1. Furthermore, Glo-
beLand30 had a large adjusted commission error of 20.1%, which evidently overestimated
cropland area. Moreover, FROM-GLC and MCD12Q1 had large adjusted omission errors
of 86.6% and 85.9% due to the obviously underestimated cropland area.

To show more spatial details of our results with other cropland datasets, we com-
pared the PCM2-based cropland of 2017–2019 with the CLUDs-based cropland in 2015
(Figure S10). The cropland area of CLUDs was larger than our mapped cropland area
(Figure S10d). According to three zoom-in views (Figure S10a–c), CLUDs overestimated
cropland by wrongly classifying some grasslands near croplands or fallow lands as crop-
lands (Figure S10e–i).
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Figure 12. Spatial distributions of croplands in the study area, as derived from the (a) PCM2 in this study, (b) China’s
Land-Use/Cover Datasets (CLUDs), (c) GlobeLand30, (d) FROM-GLC, and (e) MCD12Q1. (f) shows the comparison of
cropland areas from this study with the other four datasets. (g) exhibits false-color imagery in July in the case region marked
in (a–e). (1–5) are the detailed spatial distributions of croplands according to the five maps.

Table 3. Adjusted accuracies of the second phenology-based cropland map and the other four cropland datasets. MCC
means Matthews correlation coefficient.

PCM2 CLUDs GlobeLand 30 FROM-GLC MCD12Q1

Adjusted OA (%) 98.8 98.8 97.4 95.1 94.5
MCC 0.911 0.898 0.798 0.505 0.413

Adjusted
Commission error (%) 9.2 5.1 20.1 2.3 7.1

Adjusted
Omission error (%) 18.2 20.6 28.3 86.6 85.9

4. Discussion
4.1. Phenology-Based Approaches for Mapping Croplands in the Mountainous Area

We developed two phenology-based approaches for cropland mapping in a five-year
(PCM1) and three-year (PCM2) window in BRTT, the granary of the Tibetan Plateau, by
using all the available Landsat images and GEE. The first algorithm extracted croplands by
selecting monthly thresholds based on the phenology of croplands while considering the
phenological discrepancy of croplands at different elevations. The second algorithm per-



Remote Sens. 2021, 13, 2289 15 of 19

formed better in the mountainous regions by considering the unique growing season length
and peak of croplands. The phenological differences between croplands and other vege-
tation types in the study area were captured by VIs (NDVI, EVI, and LSWI). A relatively
concentrated planting time (April–May), peak growing season (June–August), and harvest-
ing time (September–October) of croplands are the critical windows in which croplands can
be distinguished from natural vegetation. Therefore, our pixel- and phenology-based algo-
rithm was successfully used to map croplands in BRTT. Such phenology-based algorithms
have been widely used in land cover and crop mapping [25,35,64] and can be applied to
other areas with similar climates and ecosystems [24,39].

Compared to the visual interpretation method and spatially explicit reconstruction
models, the phenology-based method using Landsat images can extract cropland extent
accurately and efficiently. The spatial location of existent cropland datasets was in high dis-
agreement in alpine regions with multimountain topography and fragmented landscapes
(Figure 12). Large commission errors (2.3–20%) and omission errors (20.6–86.6%) of the
existent four cropland datasets obviously overestimated or underestimated cropland area
in this region. Our phenology-based method with an adjusted overall accuracy of 98.8%,
MCC with 0.911, and adjusted commission and omission error of 9.2% and 18.2% can
provide accurate cropland information, especially cropland expansion at higher elevations
in the alpine regions.

Our study indicated that the mapping of croplands using Landsat data with 30 m
resolution and the phenology-based approach in the alpine regions with complicated
landscapes and fragmentized topography is feasible and accurate. The PCM2 algorithm
assessed the phenological differences in the growing season length and peak between
croplands and natural vegetation, which was less affected by the image quality and cloud
cover during the critical period of growing season and interannual variations in crop
growth, climate, and other factors. Thus, it was more reliable and transferable to long-term
cropland mapping. The GEE platform also provided the massive storage capacity and
efficient computing capability necessary to analyze huge datasets such as the 30-m Landsat
data. Our method has the potential to be utilized for tracking historical cropland changes in
this region and could be applied to other regions with similar mountainous characteristics.

4.2. Uncertainty and Implications

The major challenge for our study stemmed from the extreme infrequency of observa-
tions and relatively poor image quality during the vegetation growing period in the TP.
Therefore, we combined all the observations within a 5-year timeframe to generate the
phenology profile in the PCM1 algorithm (Figure S11). The second phenology algorithm
alleviated the problem of image quality by compositing 16-day observations and interpo-
lating gaps of LSWI using a combination of 3-year data. LSWI is sensitive to the onset of
the monsoon and has a strong relationship with cumulative rainfall, and this should be
considered in further studies when filling the LSWI gaps [65]. Additionally, the fusion of
high temporal resolution imagery (e.g., MODIS) with Landsat imagery can result in a dense
time series remote sensing dataset with moderately fine spatial resolution, which could
be useful for obtaining images during critical periods of the growing season to delineate
small-scale farming systems and generate annual cropland maps in future studies [66–69].

The accuracy of our cropland maps was also affected by mixed vegetation types.
Mixed pixels with different land-use types are difficult to identify in remote sensing [70].
Particularly since 1978, the Tibet autonomous government launched a well-known pro-
gram known as the “shelter forest system” or “windbreaks” by planting arbors and shrubs
around the croplands to conserve water and soil and prevent ecoenvironmental deteriora-
tion, such as desertification [7,71]. The forest belt consisted of several rows of trees planted
around the croplands and other mixed vegetation types, which are difficult to detect with
moderate resolution imagery. The fusion of Landsat and other moderate resolution sensors,
such as Sentinel-2 and Gaofen-6, is expected to detect windbreaks in croplands.
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The relatively lower adjusted PA revealed that the resultant cropland maps were
conservative, which was mainly because of the sample variation and universal mixed
pixels. It is difficult to distinguish crop types and fallow and abandoned land using visual
interpretation of satellite imagery without field trips, and it cannot guarantee that land
use has not changed during a multiyear timeframe. The sample variation could lead to a
large error affecting the thresholds in the algorithm. More ground truth samples need to
be collected, from both expert and citizen-science reference data [72] to better deal with
mixed pixels and land use and land cover change to improve the algorithm. Moreover,
the object-based approach might be utilized to further decrease the uncertainties of the
pixel-based approach and overcome the mixed pixels in heterogeneous regions [73,74].

5. Conclusions

Despite croplands being a relatively small fraction of the land surface, croplands in the
TP play an important role in regional food security and have undergone significant changes
in the past few decades. The lack of accurate cropland maps at the regional scale limits our
understanding of the current spatial distribution and historical changes of croplands in the
TP. We used 1445 Landsat 7/8 images obtained in 2015–2019 and two pixel and phenology-
based algorithms to extract croplands in the BRTT, the granary of the TP. The unique
spectral characteristics and growth curve of croplands facilitated the cropland mapping
in our study. With an adjusted overall accuracy of 98.8% and MCC of 0.911, the results
indicated that the phenology-based algorithm could successfully extract croplands in the
BRTT at a 3-year timeframe using all the available Landsat images and GEE. Our resultant
maps showed that croplands were mainly distributed in the basins of the BRTT and had
a dendritic distribution that mimicked their adjacent river systems. Crops were mainly
grown at elevations between 3600 and 4200 m, and the Shigatse and Lhasa Prefectures were
the main regions where croplands were concentrated. The uncertainties of our resultant
map are related to the mixed pixel issues and insufficient observations in the region. The
fusion of Landsat and other moderate resolution sensors, such as Sentinel-2 and Gaofen-6,
is expected to enable the generation of annual cropland maps in the TP.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13122289/s1, Figure S1: Number of good observations at the pixel level during the growing
season (April–October) from 2015 to 2019 in the study area, Figure S2: Field photo, Google Earth
high-resolution imagery, and Landsat false-color composite imagery of five land-use types, Figure S3:
Spatial distributions of the training points of interests (POIs) of five land-use types, Figure S4:
Landsat false-color composite imagery (R: near-infrared, G: red, B: green) of croplands from April
to October at four elevation gradients, Figure S5: Monthly mean and standard deviation (SD) of
Normalized Difference Vegetation Index (NDVI) for five land-use types based on the training POIs
over years of 2015–2019, Figure S6: Number of good observations at the pixel level in July from
2015 to 2019 and total good observations over 2015–2019 in the study area, Figure S7: Number of
good observations at the pixel level in August from 2015 to 2019 and total good observations over
2015–2019 in the study area, Figure S8: Monthly mean and standard deviation (SD) of Normalized
Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water
Index (LSWI) of cropland, grassland, and woodland based on the training POIs over years 2015–2019,
Figure S9: The spatial distribution of croplands in the late 2010s derived from the PCM1 (2015–2019)
and PCM2 (2017–2019) in the study area, Figure S10: Comparison of the cropland maps produced
using the second Phenology-based Cropland Mapping (PCM2) algorithm in this study and China’s
Land-Use/cover Datasets (CLUDs) in 2015, Figure S11: Cropland maps based on the first phenology-
based cropland mapping (PCM1) algorithm composited imagery from one to five years, Table S1:
Confusion matrix of cropland map based on the validation AOIs from high-resolution images from
Google Earth and China’s Land-Use/cover Datasets (CLUDs) in 2015.
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