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Abstract: Gravity geologic method is one of the important to derive seafloor topography by using
altimetry-gravity, and its committed step is gridding of regional gravity anomaly. Hence, we proposed
a topography constraint factor weight optimization (TCFWO) method based on ordinary kriging
method. This method fully considers the influence of topography factors on the construction of
regional gravity grid besides horizontal distance. The results of regional gravity anomaly models
constructed in the Markus-Wake seamount area show that the TCFWO method is better than ordinary
kriging method. Then, the above two regional gravity models were applied to invert the seafloor
topography. The accuracy of derived topographic models was evaluated by using the shipborne
depth data and existing seafloor topography models, including ETOPO1 and V19.1 model. The
experimental results show that the accuracy of ST_TCFWO (seafloor topography model inverted
by TCFWO method) is better than ST_KR (seafloor topography model inverted by kriging method)
and ETOPO1 model. Compared with the ST_KR, the accuracy of the ST_TCFWO has improved
about 26%. In addition, the accuracy of seafloor topography is affected by the variation of depth,
the distribution of control points and the type of terrain. In different depth layers, the ST_TCFWO
has better advantages than ST_KR. In the sparse shipborne measurements area, the accuracy of
ST_TCFWO is better than that of V19.1, ETOPO1 and ST_KR. Moreover, compared to other models,
ST_TCFWO performs better in flat submarine plain or rugged seamount area.

Keywords: gravity geologic method; TCFWO method; seafloor topography; regional gravity
anomaly model

1. Introduction

The oceans account for about 71% of the world’s total area and are rich in natural
resources. Comprehensive seafloor topographic information, on one hand, can provide
support for proper development of resources. On the other hand, the topographic informa-
tion combined with gravity anomaly information ensures navigation safety [1]. Generally,
shipborne sounding technology is one of the methods to obtain seafloor topography, which
has high accuracy but is time-consuming for large areas. Fortunately, the satellite altimetry
can quickly derive global marine gravity information [2], and the topography can be con-
structed based on the correlation between seafloor topography and gravity information [3].
The method of inversion of seafloor topography by satellite altimetry makes up for the
deficiency of traditional sounding technology. Therefore, the exploration of using gravity
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information to invert seafloor topography has never stopped. With the development of
space technology, there are more and more altimetry satellites [4–7], such as, Geo-sat,
ERS-1/2, Jason-1/2/3, Envisat, Cryosat-1/2, HY-2, etc. The accuracy of marine gravity
constructed by satellite altimetry has reached 2–3 mGal in most areas [8–12]. Consequently,
it promotes the research of seafloor topography inversion [13–17]. Many methods have
been proposed for inversion of seabed topography using gravity information, for example,
linear response function technique [18], gravity geologic method (GGM) [19], least square
configuration method [20] and linear regression analysis [21]. One of them, the GGM
was originally proposed to predict the depth of bedrock by Ibrahim and Hinze [22], and
then applied to the inversion of seafloor topography. According to the control points of
shipborne sounding measurements, the free air gravity anomaly is divided into regional
and residual gravity, and then the terrain is inverted based on the correlation between
residual gravity anomaly and seafloor topography. The method is carried out in the space
domain, which is simple and has high inversion accuracy. Therefore, it has been applied
and improved in many references. In 2011, Kim, J.W. et al. [23] proposed the tuning density
difference GGM which solved the problem of determining the density contrast. In 2017,
Xiang et al. [24] proposed an adaptive triangulated finite element approximation method
for non-uniform control points which solved the long wavelength accuracy difference is
too large because of the uneven distribution of depth control points. In 2018, Kim and
Yun [25] verified the effectiveness of the GGM in the shallow water area. In 2020, Xing [26]
used a three-dimensional rectangular model to replace horizontal thin plate model to
construct short wavelength gravity anomaly, and integrated prior terrain information by
regularization method to improve the accuracy of seafloor topography inversion.

According to GGM principle, grid processing of discrete regional gravity anomaly
data is crucial for seafloor topography inversion. However, there are few studies on how
to improve the grid accuracy of regional gravity field. Moreover, there are many grid
methods [27–30], so it is necessary to select them. Among them, kriging algorithm has
advantages in space prediction and uncertainty analysis. It is widely used in geophysics,
geology, aerospace, meteorology, image processing and other fields [31–35]. Hence, we try
to improve this method to optimize the regional gravity anomaly model.

Due to the limitation of shipborne sounding technology, the distribution of depth
control points is relatively sparse especially in the Southern Ocean [14], which has a great
impact on the grid construction of regional gravity anomaly model. Compared with other
interpolation methods, the kriging algorithm is based on spatial autocorrelation analysis
and the spatial variation analysis of data to obtain the unbiased optimal estimate [36], it
has advantages for sparse data interpolation. Moreover, the GGM assumes that the resid-
ual gravity anomaly has an approximate linear correlation with the seafloor topography,
the non-linear influence is ignored [37]. This leads to the existence of some topographic
information in the regional gravity anomalies. Hence, we proposed the topography con-
straint factor weight optimization (TCFWO) method by introducing a topographic factor
to optimize the weight of kriging algorithm for regional gravity data interpolation. In
the TCFWO method, the horizontal and vertical variogram models of regional gravity
data were constructed, and the anisotropic effect of the horizontal variogram was consid-
ered. Subsequently, we used the TCFWO method to carry out relevant experiments on
Marcus-Wake seamount area to verify the effectiveness and practicability of the method.

2. Construction of TCFWO Method

The free air gravity anomaly, ∆g f (x, y), obtained by satellite altimetry, which is as-
sumed to divided into two parts regional and residual anomaly according to the shipborne
depth measurements in GGM [38]:

∆g f (x, y) = ∆greg(x, y) + ∆gres(x, y) (1)

where x and y represent the latitude and longitude, respectively. ∆greg(x, y) and ∆gres(x, y)
denote as the regional and residual gravity anomalies. In the area of relatively flat terrain
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change, the relationship between topography and the residual gravity can be assumed by a
simple Bouguer plate formula [37]:

E(x, y) = ∆gres(x, y)/2piG∆ρ + D (2)

where E(x, y) is the depth value at point (x, y). G represents the universal gravitational
constant (=6.672 × 10−11 N·m2/kg2). D is the deepest depth of the control points within
the study area. Both the value of E(x, y) and D are negative from the sea level down. ∆ρ is
the difference between bedrock density and seawater density. However, in GGM, ∆ρ needs
to be optimized as a parameter to adjust the relationship between residual gravity and to-
pography, its analytical significance exceeds the actual physical meaning [19]. The common
methods to determine the density contrast include downward continuation method [38]
and iterative method [23], in this paper, the latter method was used. By rearranging the
Equation (2), the residual gravity anomalies at the control points, (xi, yi), (i = 1, 2, . . . , n),
can be calculated:

∆gCP
res (xi, yi) = 2piG∆ρ

[
ECP(xi, yi)− D

]
(3)

where ∆gCP
res (xi , yi) are residual gravity anomalies. ECP(xi , yi) are the depth of control

points. Therefore, the corresponding regional gravity anomalies ∆gCP
reg(xi , yi) can be

calculated.
∆gCP

reg(xi, yi) = ∆gCP
f (xi, yi)− ∆gCP

res (xi, yi) (4)

where ∆gCP
f (xi, yi) are the free air gravity anomalies at control points, which can be ob-

tained by bilinear interpolation from the satellite altimetry derived gravity model. Once
the residual gravity anomaly model is acquired, the seafloor topography model can be
estimated according to Equation (2). However, the regional gravity anomaly model should
be constructed first.

Evidentially, the regional gravity anomalies are discrete distribution, hence, it is
necessary to grid it. According to the TCFWO method, the construction process of regional
gravity field is as follows.

The ∆gCP
reg(xi, yi) at the control points can be calculated according to Equation (4). Then,

the unknown value of regional gravity anomaly, ∆gPP
reg(x0, y0), at the predicted position can

be estimated [30] by:
∆gPP

reg(x0, y0) = ∑n
i=1 λi∆gCP

l (xi, yi) (5)

where n is the number of control points. (x0, y0) is the predicted position coordinate of
unknown attribute value. λi(i = 1, 2, . . . , n) are weight values assigned to the known
points, which determine the results of gridding. Hence, the step to determine weight
values is crucial.

The estimation of TCFWO method is unbiased and optimal, just like kriging algorithm.
Therefore, the estimated value ∆gPP

reg(x0, y0) satisfies the following conditions. E
[
∆gPP

reg(x0, y0)− ∆gPP∗
reg (x0, y0)

]
= 0,

Var
[
∆gPP

reg(x0, y0)− ∆gPP∗
reg (x0, y0)

]
= min

(6)

where ∆gPP∗
reg (x0, y0) is the real value at (x0, y0) point. E[·] is the mathematical expectation

symbol. Var[·] represents the variance solution symbol. In addition, based on the second-
order stationary hypothesis, the variable data satisfies the following two conditions [39]:

E
[
∆gCP

reg(xi, yi)
]
= K, (K ∈ D) (7)

Cov
[
∆gCP

reg(xi, yi), ∆gCP
reg
(
xj, yj

)]
= E

[
∆gCP

reg(xi, yi)·∆gCP
reg
(
xj, yj

)
−K2

]
= f (h) (8)
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where K is any constant. Cov[·] is the covariance calculation symbol of the variable.
∆gCP

reg(xi, yi) and ∆gCP
reg
(
xj, yj

)
are the attribute value of two arbitrary points. f (h) is a func-

tion only related to the distance h between two variables.
According to the unbiased and error optimal characteristics of TCFWO method for

estimation value, a new objective function F(λ, φ) is constructed by combining Equations
(5)–(8) and using Lagrange multiplier method. Hence, the problem of determining weight
values, λi, is transformed into the calculation of equation optimization with constraints of
∑n

i=1 λi − 1 = 0.

F(λ, φ) = Var
[
∑n

i=1 λi∆gCP
reg(xi, yi)− ∆gPP∗

reg (x0, y0)
]
+ 2φ(∑n

i=1 λi − 1) = 2 ∑n
i=1 λiγi0(d)−

∑n
i=1 ∑n

j=1 λiλjγij(d)− γ00(d) + 2φ(∑n
i=1 λi − 1)

(9)

where φ is the Lagrange coefficient. γi0(d) is the variogram value between the control
point (xi, yi) and the predicted point (x0, y0). γij(d) is the variogram value between (xi, yi)
and

(
xj, yj

)
. The value of variogram is a statistic describing the spatial correlation of data,

which is defined as the variance of the difference between two points. Hence, the γi0(d)
and γij(d) can be calculated by the experimental variogram Equation (10) [30]:

γ(d) =
1
2

E
[{

∆gCP
reg(m)− ∆gCP

reg(m + d)
}2
]

(10)

where ∆gCP
reg(m) and ∆gCP

reg(m + d) are the regional gravity anomaly at position m and
m + d. d is the Euclidean distance between two points namely the lag distance.

Then, the partial derivative of F(λ, φ) with respect to λi and φ are calculated, and the
results after derivation are zero. Finally, the equations for determining the weight value
are as follows [31]: {

∑n
i=1 λi = 1,

∑n
i=0 λiγij(d) + φ = γi0(d), i, j = 1, 2, . . . , n (11)

From the Equation (11), the values of variogram are important for weight determi-
nation. However, the ordinary kriging algorithm only considers the influence of two-
dimensional factors on variogram values. In order to calculate and optimize the weight
values λi, this paper introduced the topographic factors, zi(i = 1, 2 . . . , n), as the third
variable factor based on longitude and latitude coordinates. Thus, the variogram models
of gravity anomaly in horizontal and vertical directions could be constructed, respectively,
and added by equivalence weight:

γij
(

Lij, Zij
)
= 1

2
[
γ
(

Lij
)
+ γ

(
Zij
)]

γ
(

Lij
)
= 1

2 E
[{

∆gCP
reg(xi, yi)− ∆gCP

reg
(
xj, yj

)}2
]

γ
(
Zij
)
= 1

2 E
[{

∆gCP
reg(zi)− ∆gCP

reg
(
zj
)}2

]
, i, j = 1, 2, . . . , n

(12)

where γ
(

Lij
)

and γ
(
Zij
)

are the experimental variograms in horizontal and vertical direc-
tions, respectively. γ

(
Lij, Zij

)
is the optimized experimental variogram. The Lij and Zij are

the lag distance in horizontal direction and vertical direction, respectively [40]:{
Lij =

√(
xi − xj

)2
+
(
yi − yj

)2

Zij =
∣∣zi − zj

∣∣, i, j = 1, 2, . . . , n
(13)

where (xi, yi, zi) and
(
xj, yj, zj

)
denote the coordinates of two shipborne measurements

control points with known attributes, respectively.
The values calculated by Equation (12) are experimental variogram, which are discrete

points. Generally, it is necessary to use the least square algorithm to fit the variogram
models based on the theoretical variogram function [41] and determine the better models
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according to the fitting results. Then, using the determined theoretical function model, the
variogram values between the corresponding points are calculated. Finally, the formula of
TCFWO method for gridding regional gravity anomaly is expressed as follows:

∑n
i=1 λ̂i = 1,

∑n
i=0 λ̂iγij

(
Lij, Zij

)
+ φ = γi0

(
Lij, Zij

)
,

∆gPP
reg(x0, y0) =

n
∑

i=1
λ̂i∆gCP

reg(xi, yi), i, j = 1, 2, . . . , n
(14)

where λ̂i are the optimized weight values. γij
(

Lij, Zij
)

are the best fitting variograms of
γ
(

Lij, Zij
)
. Other symbols have the same meaning as above.

Therefore, based on the above analysis, the process of gridding regional gravity
anomaly model and inversion of seafloor topography using TCFWO method is as follows.

Firstly, satellite altimetry derived gravity anomaly at the control points, ∆gCP
f (x, y),

are divided into two parts residual information, ∆gCP
res (x, y), and regional information

∆gCP
reg(x, y). There the ∆gCP

res (x, y) is determined based on the Equation (3).
Secondly, the experimental variogram models of regional gravity anomaly data,

∆gCP
reg(x, y), in horizontal and vertical directions are calculated, respectively, according

to Equation (12). Based on the theoretical variogram model, the least square algorithm is
used to fit the experiment variogram model.

Then, the values of best fitting theoretical variogram are substituted into the TCFWO
Equation (14), to realize the grid processing of regional gravity anomaly and construct a
model in the region.

Finally, the gridding of regional gravity anomaly model is subtracted from the satellite
altimetry derived gravity anomaly model to obtain the residual gravity anomaly model.
According to the Equation (2), the topographic model is calculated.

3. Verification of TCFWO Method
3.1. Overview of the Experimental Area and Data Preparation

The Marcus-Wake seamount group in the Western Pacific Ocean (156.00◦ E–164.47◦ E,
17.88◦ N–26.26◦ N) was selected as the study area. This area has experienced strong
volcanic activity, with complex topography and rich natural resources [42]. The high
precision seafloor topography is of great significance to the exploitation and utilization
of natural resources and marine geological research in the region. The experimental data
sources include the shipborne depth measurements data and the satellite altimetry gravity
anomaly model, and existing seafloor topographic models.

3.1.1. Shipborne Depth Measurements Data

The distribution depth measurements provided by the National Geophysical Data
Center (NGDC) (http://www.ngdc.noaa.gov/mgg, accessed on 2 September 2020) are
shown in Figure 1a, there are 53,863 shipborne measurements. One of every five points
was selected to form the check data set. There are 10,777 check points, as shown by the
blue star dots. The check data set was used to determine the density contrast and evaluate
the results of seafloor topography. There are 43,086 remaining points used as control data
set for seafloor topography inversion, as shown in red dots. Among them, the maximum
depth is −6190.00 m, the minimum depth is −1038.00 m, and the average is −4782.68 m,
which suggests the region’s terrain fluctuates sharply.

http://www.ngdc.noaa.gov/mgg
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Figure 1. Experimental data of the study area. (a) Distribution of shipborne depth measurements points. The details of the
yellow box area are shown in the small picture on the right. The red solid dots are check data. The blue star dots are control
data. (b) Gravity anomaly data by satellite altimetry.

3.1.2. Satellite Altimetry Derived Gravity Anomaly Data

The satellite altimetry derived gravity anomaly model was provided by the Scripps
Institution of Oceanography (SIO) (https://topex.ucsd.edu, accessed on 12 July 2020). As
shown in Figure 1b, the version is V28.1 with a resolution of 1′ × 1′. The maximum gravity
value in the area is 254.80 mGal, the minimum is−63.00 mGal, and the average is−4.69 mGal.
In addition, it also includes the seafloor topography model ETOPO1 (https://www.ngdc.
noaa.gov, accessed on 2 November 2020) and V19.1 (https://topex.ucsd.edu, accessed on
12 July 2020) for accuracy comparison, which were analyzed in Section 4.2 below.

3.2. Geostatistical Analysis of Regional Gravity Anomaly Data

Using TCFWO method to grid gravity anomaly model, geostatistical analysis is
necessary to master the spatial stationarity and variability of variables comprehensively.
Quantile-quantile graphs and variogram models are generally better methods.

3.2.1. Second-Order Stationary Analysis

The TCFWO method is based on kriging algorithm, so the experimental data should
satisfy the second-order stationary hypothesis. However, in practice, such data is difficult to
exist, and there is no good method to judge the second-order stability. Generally, If the data
approximately satisfies the normal distribution, we consider that the data is second-order
stationary. Therefore, before gridding the regional gravity anomaly data, it is necessary to
test the approximate normality of the data.

The normal distribution test is often analyzed by quantile-quantile diagram, and the
regional gravity anomaly data distribution drawn with blue solid dots based on the idea
of quantile diagram is shown in Figure 2. According to the figure, the sample data are
basically distributed near the red straight line which is normal distribution line. Therefore,
we considered that the regional gravity anomaly data approximately satisfies the normal
distribution. Indeed, if the data does not normal distribution, it needs to be transformed,
such as Box-cox and logarithmic transformation.

https://topex.ucsd.edu
https://www.ngdc.noaa.gov
https://www.ngdc.noaa.gov
https://topex.ucsd.edu
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Figure 2. Quantile figure of regional gravity anomaly data. The red line represents a normally
distributed line. The blue solid dots represent the regional gravity anomaly data distribution.

3.2.2. Analysis of Spatial Variability Characteristics

It is crucial to master the variability characteristics of data spatial distribution for
grid processing. In geo-statistics, the variogram model is used to analyze it, which mainly
involves the calculation and fitting of the variogram model and the anisotropic analysis of
data. The anisotropy of data means that its variogram is not identical in different directions,
that is, the value of range and sill of variogram model are not identical. Instead, if the
variogram is the same in different directions, it satisfies isotropy.

1. Construction of variogram model in the horizontal direction

According to the distribution of the regional gravity anomaly data in the horizontal
direction, the Equation (13) was used to calculate the distance of points in the horizontal
direction as the lag distance. In the calculation of variogram, the east-west direction is
represented by 0 and 180 degrees. Therefore, in order to comprehensively analyze the
variation properties in different directions, the variogram values in the four directions of
0◦, 45◦, 90◦ and 135◦ were calculated by Equation (12), respectively. The experimental
variograms are shown in Figure 3a. From the curve, the range and sill value are different
in different directions. Hence, the regional gravity anomaly data is anisotropic in the
horizontal direction.

In this paper, the experimental variogram of horizontal direction was established by
using the mean values of variogram models in the four directions. The distribution of
experimental samples is shown as the black star in Figure 3b. Based on the theoretical
variogram models, such as exponential function model, spherical function model and
gaussian function model, the least square algorithm was used to fit the experimental
variogram curves. The results of the three theoretical variograms fitting are shown in
the red triangle line, blue square line and black solid line in Figure 3b, respectively. The
statistics of the formula parameters and fitting degree are shown in Table 1.

Figure 3. Analysis results of spatial variability analysis. (a) Experimental variograms in different directions. (b) The results
of variogram fitting.
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Table 1. Fitting results of three theoretical variograms models in horizontal direction.

Model Range (Degree) Sill (mGal2) Nuggets (mGal2) R2

exponential model 5.12 364.16 339.35 0.59
spherical model 0.46 480.37 21.35 0.45
gaussian model 0.23 412.47 89.38 0.44

Note. R2 namely R-squared represents the degree of fitting, the greater the value, the higher the degree of fitting
and the value range is 0~1.

From the Figure 3b and Table 1, the results of the spherical model and the gaussian
model are basically the same, and the R2 is 0.45 and 0.44, respectively. While the result of
the exponential model is 0.59, which is better than the other two function models. Therefore,
the exponential model was used to calculate the value of the variogram.

2. Construction of variogram model in vertical direction

Firstly, variogram values and the lag distance in vertical direction were calculated
based on Equations (12) and (13), respectively. Then, according to the horizontal variogram
fitting method, the variogram fitting curve in the vertical direction is shown in Figure 4
and the fitting results are shown in Table 2.

Figure 4. Variogram value distribution and fitting results in vertical direction.

Table 2. Three theoretical variograms are used to fit the experimental variograms in vertical direction.

Model Range (Degree) Sill (mGal2) Nuggets (mGal2) R2

exponential model 0.01 596.37 130.71 0.97
spherical model 0.02 475.40 197.05 0.94
gaussian model 0.01 426.02 214.11 0.93

According to Figure 4 and Table 2, the fitting results of the three theoretical variation
function models are similar. By comparison the value of R2, the values of spherical model
and Gaussian model are 0.94 and 0.93, respectively. However, the value of the exponential
model is 0.97, which shows that the fitting accuracy is better. Therefore, the exponential
model was used in the construction of the variogram model in vertical direction.

3.3. Accuracy Assessment of Regional Gravity Anomaly Model

Combined with Equations (2)–(4) the discrete regional gravity anomalies of shipborne
depth control points position in Section 3.1 can be calculated. In order to verify the
applicability of TCFWO method, results of this method and kriging algorithm in gridding
regional gravity anomalies were compared. Two methods were used to build GR_TCFWO
(Figure 5a) and GR_KR (Figure 5b) models with 1′ × 1′ resolution, respectively, and the
leave-one-out cross-validation method was used to evaluate model’s accuracy [43]. The
process of cross-validation method is to first remove one point in the regional gravity
anomaly data set, and then use the remaining points to predict the gravity value at that
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location. Then add the excluded point back to the dataset and remove another point.
Do this 1000 times for samples in the dataset and compare the differences between the
estimated and true values of the selected samples. Taking the estimated values of the model
as the abscissa and the true values as the ordinate, the constructed scatter diagram and
its regression fitting curve are shown in Figure 6. The statistical results of the difference
between the two values are shown in Table 3b.

Figure 5. Regional gravity anomaly model, namely the discrete data interpolation results. (a) GR_TCFWO model map
constructed by TCFWO method. (b) GR_KR model map constructed by kriging algorithm.

Figure 6. Cross-validation fitting regression curve, thereinto, the blue dots are 1000 validation data and red line is regress
line. (a) Cross-validation result of GR_TCFWO model. (b) Cross-validation result of GR_KR model.

Table 3. Statistical table of model and cross-validation information. (a) Information of regional
gravity anomaly models. (b) Statistics of the difference between the estimate values and the true
values of cross-validation results. (unit: mGal).

Model
(a) (b)

Min. Max. Mean STD Min. Max. Mean STD R2

GR_KR −97.18 49.70 −43.94 16.15 −48.42 39.08 −0.13 6.08 0.92
GR_TCFWO −119.30 56.73 −44.03 16.13 −31.51 20.23 0.07 3.62 0.98

Note. min. = minimum value; max. = maximum value; STD = standard deviation; The meaning of R2 is the same
as Table 1.

From the Figure 5, the two models are basically consistent in the whole, but there are
obvious differences in some areas with sparse control points. According to the statistical
results in Table 3a, the values range of GR_TCFWO model is larger than GR_KR model,
but the standard deviation of GR_TCFWO model is slightly lower than GR_KR model.
Therefore, the TCFWO method increased the value range of the regional gravity anomaly
model, which may have revealed more details, and the stability of the model was slightly
improved. From the Figure 6a,b, the results showed that the GR_KR values were typically
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more scatter compared to GR_TCFWO values, which indicated a lower correlation with
sample values. Therefore, TCFWO method could construct a higher accuracy model than
kriging method.

From the Table 3b showed that the standard deviation (STD) of cross-validation results
of GR_TCFWO model was 3.62 mGal, the R2 of liner regression is 0.98. By comparison, the
STD of GR_KR model is 6.08 mGal, the R2 is 0.92. The results showed that the accuracy
of model constructed by the TCFWO method was about 40% higher than that of the
ordinary kriging algorithm. Hence, the TCFWO method was more effective in gridding.
Subsequently, in order to further prove the advantages of the TCFWO method, two gravity
anomaly models were used to invert seafloor topography.

4. Inversion and Comparison of Seafloor Topography

The regional gravity anomaly models established by the above two methods provide
basic data for seafloor topography inversion. According to the principle of GGM, the
quality of the regional gravity anomaly model is important to the accuracy of seafloor
topography inversion. Therefore, it is necessary to analyze the inversion results.

4.1. Determination of Density Contrast

Density contrast, ∆ρ, is the difference between bedrock density and seawater density,
which is important to adjust the relationship between gravity and seafloor topography.
Generally, the density of the global ocean bedrock is 2.70 g/cm3 (1 g/cm3 = 103 kg/m3)
which is the mean value between 2.67 g/cm3 and 2.73 g/cm3 [19], and the average density
of the seawater is 1.03 g/cm3, so the density constant is 1.67 g/cm3. However, it is not
suitable to use the average value for the inversion of local topography, the density constant
should be accurately determined. The commonly used methods are the iterative method
and the downward continuation method, among which the iterative method is widely
used, since it is simple and convenient when there are more control points.

Based on the iterative density constant determination method proposed by Kim,
J.W. [23], 43,086 control points and 10,777 check points were selected, and their distribution
was as show Figure 1a. Then, the control points were used to estimate the seafloor topogra-
phy model under different density constants, and bilinear interpolation was used to obtain
the predicted topographic values at the location of the check points. By comparing the
correlation coefficient and the difference standard deviation between the predicted values
and the actual values, we constructed the curve Figure 7.

Figure 7. Parameter selection of density contrast. (a) Correlation coefficient curve. (b) Standard deviation curve.

According to Figure 7a,b the correlation coefficient increases and the STD with ∆ρ
increases in a certain range. When the density contrast is greater than a certain constant,
the correlation coefficient decreases and the STD increases. Through the above-mentioned
calculation and fitting of the two curves, the density constant was about 1.11 g/cm3, the
correlation coefficient curve reached the maximum value and STD was the minimum value.
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Therefore, in this paper the optimal density contrast 1.11 g/cm3 was used to estimate
seafloor topography.

4.2. Accuracy Comparison and Analysis of Seafloor Topography Models

In order to further illuminate the advantages of the TCFWO method compared with
kriging method, the following focuses on the analysis of the inverted seafloor topography
models. Firstly, the satellite altimetry gravity anomaly model V28.1 was used to subtract
GR_TCFWO and GR_KR models constructed in Section 3.3, respectively, and the residual
gravity anomaly model was obtained. Then, the corresponding seafloor topography
model ST_TCFWO (Figure 8a) and ST_KR (Figure 8b) were obtained by the Equation (2).
Finally, the accuracy of inversion models was compared and analyzed by using the
shipborne measurements data and existing models such as the ETOPO1 (Figure 8c) and
V19.1 (Figure 8d).

Figure 8. Seafloor topographic models with 1′ × 1′ resolution. (a) ST_TCFWO model which was inverted using the
GR_TCFWO model. (b) ST_KR model was estimated using the GR_KR model. (c) ETOPO1 model from NGDC. (d) V19.1
model from SIO.

From the Figure 8, the geomorphic features of the Marcus-Wake seamount group
area shown by each model are basically the same in general. However, there are some
differences in the local values, which can be seen from the statistical results of the average
and STD in Table 4. Obviously, the STD of difference between ST_TCFWO model and
ST_KR model was 42.50 m, which was the smallest. In comparison, the STD of difference
between ST_TCFWO model and V19.1 model is 213.85 m and ETOPO1 model is 208.83 m,
respectively. However, the STD of the difference between the ST_KR model and the general
models are 221.75 m and 210.17 m, respectively. Therefore, the ST_TCFWO model is closer
to the international general model.

In addition, the two international models V19.1 and ETOPO1 are also different. The
mean value of difference between them is −9.4 m, and the STD is 202.32 m. The reasons
may be related to their construction methods. ETOPO1 model was mainly based on
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the seafloor topography of V8.2 inverted by satellite altimetry, and then integrated the
shipborne depth data for interpolation and smoothing [44]. However, V19.1 was predicted
by satellite altimetry and sparse shipboard bathymetry. Compared with V8.2, V19.1 model
has higher accuracy and resolution.

Table 4. Statistics of model differences, namely the differences between the four models. (unit: m).

Model Min. Max. Mean STD

ST_TCFWO−V19.1 −1877.32 2718.78 −2.56 213.85
ST_TCFWO−ETOPO1 −1686.31 2034.48 −11.96 208.83

ST_KR−V19.1 −2025.38 2692.17 −4.90 221.75
ST_KR−ETOPO1 −1690.79 2038.84 −14.30 210.17

ST_TCFWO−ST_KR −769.33 862.14 2.34 42.50
V19.1−ETOPO1 −2096.86 1725.66 −9.40 202.32

Note. min. = minimum value; max. = maximum value; STD = standard deviation.

Through the above comparison, there are some differences among the four models.
Moreover, both the international general seafloor topographic models and the models
predicted by gravity in this paper can’t completely guaranteed to be correct, especially
in the area where there are no shipborne depth control points. Therefore, this paper
analyzed the accuracy of the seafloor topographic model by using the external check points,
namely four models were interpolated to 10,777 shipborne depth measurements inspection
points (Figure 1) using bilinear interpolation, and the difference between model values and
checking values were compared, the statistical results of are shown in Table 5.

Table 5. The difference statistical results of seafloor topography model, namely the difference between
four models and the check points of the shipborne depth measurements. (unit: m).

Model Min. Max. Mean STD R2

ST_TCFWO −1677.20 2335.16 −1.57 129.14 0.995
ST_KR −1739.77 2569.20 0.02 173.51 0.991

ETOPO1 −1855.31 2733.65 2.18 191.71 0.990
V19.1 −2112.94 2484.36 3.93 117.86 0.996

Note. min. = minimum value; max. = maximum value; STD = standard deviation. The meaning of R2 is the same
as Table 1.

According to the Table 5, by comparing the STD, the model accuracy in the study area
from high to low is V19.1 model, ST_TCFWO model, ST_KR model and ETOPO1 model.
The STD values are 117.86 m, 129.14 m, 173.51 m and 191.71m, respectively. The correlation
coefficient between the model and the shipborne sounding measurements inspection data,
the accuracy can also be reflected. In contrast, the accuracy of V19.1 model is better than
ST_TCFWO model. Analyzing the reasons, on one hand, the inversion band of V19.1 model
was controlled in the range of 15 km to 160 km, and the shipborne measured data were
used in the long wavelength part of topography [14]. On the other hand, it needs to be
further explored whether the shipborne check points for model accuracy evaluation were
also applied to the V19.1 model construction. However, it is obvious that the accuracy
of ST_TCFWO model is better than ETOPO1 and ST_KR model. Compared with the
ST_KR model (STD = 173.51 m), the accuracy of the ST_TCFWO model (STD = 129.14 m)
was improved about 26%. Therefore, it is reflected that the TCFWO method has obvious
advantages compared with the ordinary kriging algorithm in application of inversion
seafloor topography. To compare the difference of each model in different depth, the
variation of residual values between model values and checking values with depth was
drawn, as shown in Figure 9. The results show that with the increase of depth, the residual
values of the four models tend to zero value. Comparing the Figure 9a with Figure 9b,c, the
results of ST_TCFWO model are more aggregated, which indicates the inversion advantage
of TCFWO method. In contrast, the data distribution of V19.1 model is closest to the value



Remote Sens. 2021, 13, 2277 13 of 18

of zero, which indicates that the model values are more consistent with the checking values
overall. It is also consistent with the conclusion of the above analysis.

Figure 9. The curve of residual values with depth. (a) ST_TCFWO model (b) ST_KR model (c) ETOPO1 model (d)
V19.1 model.

To further analyze the accuracy of the model at different depths, the depth variation
of the check points was taken as the standard. Taking a depth layer every 1000 m, and the
above residual values of models in each different depth layers was shown in Table 6. With
the increase of depth, the checking accuracy of ST_KR model improved. The verification
accuracy of ST_TCFWO model, ETOPO1 model and V19.1 model first decreases and then
increases with the increase of depth, and all reached the maximum STD in the depth range
of −2000 m to −3000 m. The maximum STD of each model was 235.16 m, 420.47 m and
249.57 m, respectively. Therefore, the stability of ST_TCFWO model is basically consistent
with international models. Furthermore, in the range of −1000~−3000 m and more than
−6000 m, ST_TCFWO model is better than the other three models. However, in the range
of−3000 m to−6000 m (which is also the range where most of the check points gather), the
accuracy of models from high to low was V19.1, ST_TCFWO, ST_KR and ETOPO1. This is
a very interesting result. In this depth range, the accuracy of V19.1 model is better. The
specific reasons need further discussion in future. However, it is obvious that ST_TCFWO
model has better accuracy than ST_KR model in all ranges, indicating an advantage of
TCFWO method.

Then, as shown in Figure 10, the model with sparse distribution of control points
(160.00◦ E–164.47◦ E, 17.88◦ N–26.26◦ N) was intercepted to further analyze the influence
of control points on model accuracy. There are 14,364 control points and 3572 check points.
Bilinear interpolation was used to calculate the model values of the seafloor topographic
models at the check points. The statistical results of the difference between model values
and checking values are shown in Table 7. We defined relative precision as the ratio of
the difference values to the shipborne depth checking values. RESTD in the table is the
standard deviation of relative precision. In this paper, the mean value of RESTD of each
model was taken as the criterion to judge the large difference.
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Table 6. Statistical analysis of model checking results with depth variation. (unit: m).

Depth Variation Range Model Min. Max. Mean STD

−1000~−2000 (809)

ST_TCFWO −1677.20 2335.16 −29.48 222.75
ST_KR −1739.77 2569.20 −50.67 315.57

ETOPO1 −881.07 2733.65 83.47 238.29
V19.1 −668.16 2484.36 60.33 223.62

−2000~−3000 (726)

ST_TCFWO −1181.09 2039.45 20.64 235.16
ST_KR −1496.34 2159.48 40.55 311.56

ETOPO1 −1355.78 2274.23 89.86 420.47
V19.1 −1328.03 2266.00 58.41 249.57

−3000~−4000 (856)

ST_TCFWO −1449.41 1487.53 −4.15 226.51
ST_KR −1011.26 1479.01 9.14 301.52

ETOPO1 −1855.31 1360.57 −14.14 339.65
V19.1 −1110.48 1561.92 13.53 162.11

−4000~−5000 (1300)

ST_TCFWO −833.23 1512.12 7.49 153.35
ST_KR −1247.16 1504.43 17.68 199.54

ETOPO1 −1676.95 1385.66 −10.98 220.53
V19.1 −2112.94 1512.87 −3.58 140.15

−5000~−6000 (6811)

ST_TCFWO −492.59 394.46 −1.62 58.08
ST_KR −582.47 492.09 −2.11 75.10

ETOPO1 −1080.53 459.09 −12.02 81.66
V19.1 −465.07 583.23 −7.76 36.27

<−6000 (275)

ST_TCFWO −152.54 82.19 −12.13 33.04
ST_KR −200.56 81.72 −17.87 44.88

ETOPO1 −396.73 111.235 −5.81 42.92
V19.1 −655.62 68.06 −12.61 50.15

Note. min. = minimum value; max. = maximum value; STD = standard deviation. The number of check points is
indicated in brackets.

If the relative accuracy is greater than the mean of RESTD value (8.26%), it is consid-
ered as a large difference point. The distribution of large difference points was shown in
the red dots in Figure 10. We can see that the red dots are basically distributed near the
ridge and seamount where the topographic changes dramatically. Among them, ETOPO1
has the largest number of red dots and V19.1 has the smallest number. The distribution
of red points in ST_TCFWO model is like that in ST_KR. However, in some regions, the
number of dots in ST_TCFWO is significantly less than ST_KR. From the distribution of red
dots in the map, the accuracy of the model is affected by the drastic change of terrain. We
think that the reasons may be as follows: (1) The accuracy of gravity anomaly obtained by
satellite altimetry is reduced due to the sharp relief of topography. (2) Most of the seamount
in the study area were formed during the mid-Cretaceous, resulting in a large amount of
sediment accumulation. Therefore, the correlation between gravity anomaly and seafloor
topography is reduced.
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Figure 10. Local seafloor topographic model, namely, the part intercepted from Figure 8, in which
the shipborne control points are relatively sparse. ST_TCFWO model, ST_KR model, ETOPO1 model
and V19.1 model are shown from left to right. The red dots are the check points with relative accuracy
greater than 8.26%. The number of dots in each model is 228, 357, 399 and 106, respectively. The
yellow box area was used to analyze the model accuracy under different sea areas.

Table 7. The results of the difference between the local model and the shipborne survey check points.
(unit: m).

Model Min. Max. Mean STD RESTD Rate

ST_TCFWO −1667.87 2294.04 0.72 152.88 6.69% 18.38%
ST_KR −1735.56 2556.00 3.59 207.59 9.37% 19.64%

ETOPO1 −1840.63 2713.15 21.09 210.09 8.36% 10.06%
V19.1 −2020.82 2458.69 11.48 159.66 8.63% 35.47%

Note. min. = minimum value; max. = maximum value; STD = standard deviation. RESTD= the standard
deviation of relative precision. Rate is the standard deviation change of comparison with the overall statistical
results in Table 5 which represents the stability of the model.

From the Table 7, the extreme, mean values and STD of ST_TCFWO local model are
smaller than that of three other models, with the highest accuracy among the four models.
Comparing with the local of ST_KR model (STD = 207.59 m), the accuracy of ST_TCFWO
local model was improved by about 26.35%. Moreover, comparing Tables 5 and 7 above,
due to the reduction of control points, the accuracy of the four models is significantly
reduced and the accuracy change rate is different. The STD of local of ST_TCFWO model is
152.88 m, compared with ST_TCFWO model (STD = 129.14 m), the accuracy change rate is
18.38%. The STD change rate of ST_KR is 19.64%. More obvious is the V19.1 model, with
a change rate of 35.47%. Obviously, the ST_TCFWO model is better than ST_KR in both
accuracy and stability, and is less affected by the distribution of control points.

Subsequently, the accuracy of four local seafloor topographic models in different
areas was compared. We delineate two areas A and B with different geomorphic types
for analysis, as shown in Figure 10. The control points in area A and B are rare and
distributed discretely. In addition, the terrain of area A is relatively flat, mostly abyssal
plain landform. In area B, there are seamounts, ridge and other landforms, and the terrain
changes dramatically. The shipborne measurements check points in the two areas are used
to evaluate the accuracy of models. The results of difference between the model values and
checking values were shown in Table 8.
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Table 8. Accuracy comparison of local models in different sea areas (unit: m).

Area Model Max. Min. Mean STD

A

ST_TCFWO 134.94 −248.81 −11.54 46.62
ST_KR 292.76 −185.48 −14.28 66.36

ETOPO1 284.44 −257.61 3.44 55.14
V19.1 113.50 −92.31 2.78 21.14

B

ST_TCFWO 1031.46 −1456.25 32.47 453.13
ST_KR 1432.51 −1250.27 66.07 638.90

ETOPO1 1324.23 −1840.63 65.64 546.57
V19.1 2221.79 −2020.82 174.68 654.51

Note. min. = minimum value; max. = maximum value; STD = standard deviation.

From the Table 8, in the area A, the accuracy of V19.1 model was the best. The second
was ST_TCFWO model, its STD was 46.62 m. The accuracy ST_KR model was the lowest,
and the STD was 66.36 m. In the area B, the accuracy of ST_TCFWO model was better
than the other three models. However, the accuracy of the four models was not ideal. This
result was consistent with the distribution of red relative precision points in Figure 10.
It is worth affirming that ST_TCFWO model has better accuracy than ST_KR model no
matter in flat submarine plain or rugged seamount area, which shows the superiority of
TCFWO method.

5. Conclusions

When GGM is used to invert seafloor topography, due to the distribution of control
points, it is necessary to grid the regional gravity anomaly model by using interpolation
method, thereby, to improve the accuracy of seafloor topography. A study area of Marcus-
Wake seamount group was selected to evaluate the reliability of the TCFWO method. Then,
TCFWO and kriging methods were used to grid the regional gravity anomaly, and then the
corresponding seafloor topography models were inversed. Finally, the inversion models
were compared with shipborne depth measurements data and existing models, including
ETOPO1 and V19.1, respectively. The following useful conclusions were drawn.

1. The cross-validation results show that the STD of the GR_TCFWO regional gravity
anomaly model gridded by TCFWO method was 3.63 mGal, which was more accurate
than the GR_KR model constructed by the ordinary kriging algorithm nearly 40%.
Hence, TCFWO method has optimized the interpolation weight of kriging algorithm
by introducing topography constraint factor, and has obtain a better grid model. The
GR_TCFWO model is a better data for seafloor topography inversion.

2. The accuracy of the models was evaluated by using the shipborne sounding data. The
STD of ST_TCFWO model was 129.14 m, and its accuracy was slightly lower than
that of V19.1 model and better than the ST_KR and ETOPO1 models. Comparing
with the ST_KR, and the accuracy of ST_TCFWO model was improved by about 26%.
The accuracy of the models was affected by the change of depth. In each depth layer,
the accuracy of ST_TCFWO model was better than that of ST_KR model. Moreover,
ST_TCFWO model showed better advantages than other models in the depth layer of
−1000 m~−3000 m and more than −6000 m.

3. The accuracy of the model was affected by the distribution of control points, but the
influence on ST_TCFWO model was relatively small. In the area with sparse shipborne
measured control points, the accuracy of ST_TCFWO model was better than ST_KR,
ETOPO1 and V19.1 model. By analyzing the model in different topographic features,
the accuracy of the model was greatly affected by the terrain changes and the points
with low relative accuracy were mainly distributed in the locations where the terrain
changes violently. However, ST_TCFWO model has better accuracy than ST_KR
model no matter in flat submarine plain or rugged seamount and ridge area, which
shows the superiority of TCFWO method.
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