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Abstract: Convolutional Neural Networks (CNN) have been rigorously studied for Hyperspectral
Image Classification (HSIC) and are known to be effective in exploiting joint spatial-spectral infor-
mation with the expense of lower generalization performance and learning speed due to the hard
labels and non-uniform distribution over labels. Therefore, this paper proposed an idea to enhance
the generalization performance of CNN for HSIC using soft labels that are a weighted average of
the hard labels and uniform distribution over ground labels. The proposed method helps to prevent
CNN from becoming over-confident. We empirically show that, in improving generalization perfor-
mance, regularization also improves model calibration, which significantly improves beam-search.
Several publicly available Hyperspectral datasets are used to validate the experimental evaluation,
which reveals improved performance as compared to the state-of-the-art models with overall 99.29%,
99.97%, and 100.0% accuracy for Indiana Pines, Pavia University, and Salinas dataset, respectively.

Keywords: beam-search; regularization; hybrid convolutional neural network (CNN); hyperspectral
images classification (HSIC)

1. Introduction

Hyperspectral Imaging (HSI) has been extensively utilized for many real-world
applications [1]—for instance, crop monitoring [2], vegetation coverage [3], precision
agriculture [4], land resources [5], oil spills [6], water quality [7], meat adulteration [8,9],
adulteration in household products such as color adulteration in red chili [10,11], microbial
spoilage, and shelf-life of bakery products [12].

Thus, HSI Classification (HSIC) has received remarkable attention and intensive
research results have been reported in the past few decades [13]. According to the literature,
HSIC can be categorized into spatial, spectral, and spatial-spectral feature methods [14].
The spectral feature can be labeled as a primitive characteristic of HSI also known as
spectral curve or vector, whereas the spatial feature contains the relationship between the
central pixel and its context, which significantly improves the performance [15].

In the last few years, deep learning, especially Convolutional Neural Networks
(CNNs), has received widespread attention due to its ability to automatically learn non-
linear features for classification, i.e., overcome the challenges of hand-crafted features for
HSIC using traditional methods [16] such as Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), Random Forest, Ensemble Learning, Artificial Neural Network, and
Extreme Learning Machine (ELM) [17,18]. Moreover, CNN can jointly investigate the
spatial-spectral information and such models can be categorized into two groups, i.e.,
single and two-stream; more information regarding single or two-stream methods can be
found in [19]. This work explicitly investigates a single-stream method similar to the works

Remote Sens. 2021, 13, 2275. https://doi.org/10.3390/rs13122275 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3320-2261
https://doi.org/10.3390/rs13122275
https://doi.org/10.3390/rs13122275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13122275
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13122275?type=check_update&version=1


Remote Sens. 2021, 13, 2275 2 of 11

proposed by Ahmad et al. [20] (A Fast and Compact 3D CNN for HSIC), Xie et al. [21]
(Hyperspectral Face Recognition-based on Sparse Spectral Attention Deep Neural Net-
work), Liu et al. [22] (A semi-supervised CNN for HSIC), Hamida et al. [23] (3D Deep
Learning Approach for Remote Sensing Image Classification), Lee et al. [24] (Contextual
Deep CNN-based HSIC), Chen et al. [25] (Contextual Deep CNN-based HSIC), Li [26]
(Spectral–Spatial Classification of HSI with 3D CNN), He et al. [27] (Multi-scale 3D Deep
CNN Network for HSI), Zhao et al. [28] (Hybrid Depth-Separable Residual Networks for
HSIC). Yang et al. [29] (Synergistic 2D/3D CNN for HSIC).

Irrespective of the single or two-stream methods, all deep learning frameworks dis-
cussed above are sensitive to the loss, which needs to be minimized [30]. Several classical
works showed that the gradient descent to minimize cross-entropy performs better in
terms of classification and has fast convergence; however, to some extent, this leads to the
overfitting [31]. Several regularization techniques, such as dropout [32], L1, L2 [33], etc.,
have been used to overcome the overfitting issues together with several other exotic objec-
tives performed exceptionally well compared to the standard cross-entropy [34]. Recently,
a work [35] proposed a regularization technique that improves the accuracy significantly
by computing cross-entropy with a weighted mixture of targets with uniform distribution
instead of hard-coded targets.

Since then, regularization has been known to improve the classification performance
of deep models [36]. However, the original idea was used to improve the classification
performance of only the inception model on ImageNet data [35]. Despite this, various
image classification models have used regularization [37,38]. Though the regularization
technique is a widely used trick to improve the classification performance and to speed up
the convergence process, it has not been much explored for HSIC, and, above all, regarding
when and why regularization should work have not been explored very much.

Considering the aforementioned issues, this paper proposed a novel idea to enhance
the generalization performance of CNN for HSIC using soft labels that are a weighted aver-
age of the hard labels and uniform distribution over target labels. The proposed method
helps to prevent CNN from becoming over-confident. We empirically show that, in improv-
ing generalization performance, regularization also improves model calibration, which
significantly improves beam-search. Several publicly available Hyperspectral datasets
are used to validate the experimental evaluation, which reveals improved generalization
performance, statistical significance, and computational complexity as compared to the
state-of-the-art 2D/3D CNN models.

2. Problem Formulation

Let us assume that the Hyperspectral data can be represented as R(M×N)×B∗ =
[r1, r2, r3, . . . , rS]

T , where B∗ is the total number of bands. (M× N) are the samples per
band belonging to Y classes and ri = [r1,i, r2,i, r3,i, . . . , rB∗ ,i]

T is the ith sample in the
Hyperspectral Data. Suppose (ri, yi) ∈ (RM×N×B∗ ,RY), where yi is the class label of
the ith sample. For HSI classification with Y candidate labels, for example, lets assume
(ri, yi) ∈ (RM×N×B∗ ,RY), where yi is the class label of the ri sample belonging to the
training set and the ground truth distribution p over labels p(y|ri) and ∑Y

y=1 p(y|ri) = 1.
One can have a model with parameters θ that predicts the predicted label distribution as
qθ(y|ri) and, of course, ∑Y

y=1 qθ(y|ri) = 1. Thus, the cross entropy in this particular case

would be Hi(p, qθ) = ∑Y
y=1 p(y|ri) log qθ(y|ri).

If one have M × N instance in the training set, then the loss function would be
L = Hi(p, qθ) which can further modify as L = −∑M×N

i=1 ∑Y
j=1 p(y|ri) log 1θ(y|ri). However,

in nature, the p(y|ri) would be a one-hot-encoded vector [14,39], which can be defined as:

p(y|ri) =

{
1 i f y = yi

0 otherwise
(1)
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Based on the above objective, one can reduce the loss function as L = ∑M×N
i=1 Hi(p, qθ) =

−∑M×N
i=1 ∑Y

y=1 p(y|ri) log qθ(y|ri) = −∑M×N
i=1 p(yi|ri) log qθ(yi|ri) = −∑M×N

i=1 log qθ(yi|ri).
Minimizing L is equivalent to conduct maximum likelihood estimation over the training
set. However, during optimisation, it is possible to minimize L to almost 0, if, and only if,
all the instances in the dataset do not have conflicting labels (Conflicting labels means that
there are two examples with the same features but their ground truths are different.) This
is due to qθ(yi|ri) being computed from soft-max as:

qθ(yi|ri) =
exp(zyi )

∑Y
j=1 exp(zj)

(2)

where zi is the logit for candidate class i. The consequence of using one-hot-encoding is
that exp(zyi ) will be extremely large and exp(zj) where j 6= yi will be extremely small.
Given a non-conflicting dataset, the ultimate model will classify every training instance
correctly with the confidence of almost 1. This is certainly a signature of overfitting, and
the overfitted model does not generalize well. Thus, this work used a regularization
technique µ(y|ri) (noise distribution) irrespective to traditional techniques proposed in
literature [40–42] for deep models [43]. Thus, the new HSI ground truths (ri, yi) would be:

p′(y|ri) = (1− ε)p(y|ri) + εµ(y|ri) (3)

f (x) =

{
1− ε + εµ(y|ri) i f y = yi

εµ(y|xi) otherwise
(4)

where ε ∈ [0, 1] is a weight factor, and note that ∑Y
y=1 p′(y|ri) = 1. These new ground

truths have been used in loss function instead of one-hot-encoding [44]:

L′ = −
M×N

∑
i=1

Y

∑
y=1

p′(y|ri) log qθ(y|ri) (5)

L′ = −
M×N

∑
i=1

Y

∑
y=1

[
(1− ε)p(y|ri) + εµ(y|ri)

]
log qθ(y|ri) (6)

L′ =
M×N

∑
i=1

{
(1− ε)

[
−

Y

∑
y=1

p(y|ri) log qθ(y|ri)
]
+

ε
[
−

Y

∑
y=1

µ(y|xi) log qθ(y|ri)
]} (7)

L′ =
M×N

∑
i=1

[
(1− ε)Hi(p, qθ) + εHi(u, qθ)

]
(8)

where L′ is the loss function, and p′ is the estimated probabilities. It can be argued that,
for each ground truth, the loss contribution is a mixture of entropy between predicted
distribution (Hi(p, qθ)) and the one-hot-encoding, and the entropy between the predicted
distribution (Hi(µ, qθ)) and the noise distribution. While training, Hi(p, qθ) = 0 if the model
learns to predict the distribution confidently; however, Hi(µ, qθ) will increase dramatically.
To overcome this phenomenon, we used a regularizer Hi(µ, qθ) to prevent the model from
predicting too confidently. In practice, µ(y|r) is a uniform distribution that does not depend
on hyperspectral data. That is to say, µ(y|r) = 1

Y .

3. Experimental Settings and Results

The experiments have been conducted on three real HSI datasets, namely, Indian
Pines (IP), Salinas full scene, and Pavia University (PU). These datasets are acquired by
two different sensors. i.e., Reflective Optics System Imaging Spectrometer (ROSIS) and
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Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [13]. The experimental results
explained in this work have been obtained through Google Colab [45], an online platform
to execute any Python environment even on Graphical Processing Unit (GPU), providing
up to 358+ GB of cloud storage, and 25 GB of Random Access Memory (RAM).

In all the experiments, the initial size of the train/validation/test sets is set to
25%/25%/50% to validate the proposed model as well as several other state-of-the-art deep
models. Five models have been used as baseline for the experiments: AlexNet, LeNet, 2D
CNN, 3D CNN, and a Hybrid (3D/2D) CNN model. The details of the above-mentioned
model are as follows.

1. The AlexNet model consists of five convolutional layers with 96, 256, 384, 384, 256 fil-
ters, while each layer has 7× 7, 5× 5, 3× 3, 3× 3, and 3× 3 filter sizes. One pooling
layer after the first convolutional layer. A flattened layer, dense layers with 4096 units.
After each dense layer, a dropout layer has been used with 0.5%. Finally, an output
layer has been used with the total number of classes to predict [46].

2. The LeNet model has two convolutional layers in which each layer has 32 and 64 filters
with 5× 5 and 3× 3 filter sizes, respectively. One pooling layer after first convolutional
layer, a flattened layer, dense layer with 100 units. Finally, an output layer has been
used with the total number of classes to predict [47].

3. The 2D CNN model is composed of four convolutional layers in which each layer
has 8, 16, 32, and 64 filters with 3× 3 filter size. A flattened layer, two dense layers
with 256 and 100 units, and, after each dense layer, a dropout layer has been used
with 0.4%. Finally, an output layer has been used with the total number of classes to
predict [32].

4. The 3D CNN is composed of four convolutional layers in which each layer has 8,
16, 32, and 64 filters with 3× 3× 7, 3× 3× 5, 3× 3× 3, and 3× 3× 3 filter sizes.
A flattened layer, two dense layers with 256 and 128 units, and, after each dense layer,
a dropout layer has been used with 0.4%. Finally, an output layer has been used with
the total number of classes to predict [20].

5. The details of hybrid (3D/2D) convolutional layers and kernels are as follows:
3D conv layer 1 = 8× 5× 5× 7× 1 i.e., K1

1 = 5, K1
2 = 5 and K1

3 = 7. 3D conv layer
2 = 16× 5× 5× 5× 8 i.e., K2

1 = 5, K2
2 = 5. K2

3 = 5. 3D conv layer 3 = 32× 3× 3×
3× 16 i.e., K3

1 = 3, K3
2 = 3 and K3

3 = 3. 3D conv layer 4 = 64× 3× 3× 3× 32 i.e.,
K3

1 = 3, K3
2 = 3 and K3

3 = 3. 3D conv layer 5 = 128× 3× 3× 64 i.e., K2
1 = 3 and K2

2 = 3.
Three 3D convolutional layers are employed to increase the number of spectral-spatial
feature maps, and one 2D convolutional layer is used to discriminate the spatial
features within different spectral bands while preserving the spectral information.

Initially, the weights are randomized and then optimized using back-propagation
with the Adam optimizer by using the loss function presented in Equation (8). Further
details regarding the CNN architectures in terms of types of layers, dimensions of output
feature maps and number of trainable parameters can be found in [13,20,32,46,47].

In order to validate the claims made in this manuscript, the following accuracy metrics
have been assessed. They include: Kappa (κ is known as a statistical metric that considered
the mutual information regarding a strong agreement among classification and ground-
truth maps), average (AA represents the average class-wise classification performance),
and overall (OA is computed as the number of correctly classified examples out of the total
test examples). Such metrics are computed using the following equations:

κ =
Po − Pe

1− Pe
(9)

where
Po =

TP + TN
TP + FN + FP + TN
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Pe =

(
FN + TN

TP + FN + FP + TN
× FP + TN

TP + FN + FP + TN

)
+

TP + FN
TP + FN + FP + TN

OA =
1
K

K

∑
i=1

TPi (10)

AA =
TP + TN

TP + TN + FN
(11)

where TP and FP are true and false positive, TN and FN are true and false negative,
respectively. For fair comparison purposes, the learning rate for all these models including
hybrid models is set to 0.001, Relu as the activation function for all layers except the output
layer on which Softmax is used, patch size is a set of 15, and, for all the experiments, the
15 most informative bands have been selected using principal component analysis to reduce
the computational load. The convergence, accuracy, and loss of our proposed regularization
technique with several CNN models for 50 epochs are presented in Figure 1. From loss and
accuracy curves, one can conclude that the regularization has faster convergence.

(a) Accuracy (b) Loss
Figure 1. Accuracy and loss for training and validation sets on Indian Pines for 50 epochs.

3.1. Indian Pines

The Indian Pines (IP) dataset is acquired using an AVIRIS sensor over the northwestern
Indiana test site. IP data consist of 145× 145 spatial dimensions and 224 spectral dimensions
with a total of 16 classes in which all are not mutually exclusive. Some of the water
absorption bands are removed, and the remaining 200 bands are used for the experimental
process. These data consist of 2/3 agriculture, 1/3 forest, and other vegetation. Less
than 5% of total coverage consists of crops that are in an early stage of growth. Building,
low-density housing, two dual-lane highways, small roads, and a railway line are also a
part of it. Further details about the experimental datasets can be found at [48]. Table 1 and
Figure 2 present an in-depth comparative accuracy analysis on the IP dataset.

(a) 2D (b) 3D (c) A.Net (d) LeNet (e) Hybrid
Figure 2. Indian Pines: Classification accuracy: (a) 2D-CNN = 98.94%; (b) 3D CNN = 91.57%;
(c) AlexNet = 97.65%; (d) LeNet = 98.14%; and (e) Hybrid = 99.29%.
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Table 1. Indian Pines: Performance analysis of different state-of-the-art models trained using
regularization technique.

Class Train/Val/Test 2D 3D AlexNet LeNet Hybrid

Alfalfa 11/12/23 100 91.3043 95.6521 82.6086 100
Corn-notill 357/357/714 98.3193 93.5574 97.3389 97.0588 98.8795

Corn-mintill 207/208/415 99.5180 66.7469 98.3132 99.5180 99.5180
Corn 59/59/118 94.0677 90.6779 93.2203 99.1525 100

Grass–pasture 121/121/242 98.3471 97.1074 96.2809 94.2148 96.2809
Grass–trees 182/183/365 98.9041 97.5342 98.3561 98.9041 99.7260

Grass-mowed 7/7/14 92.8571 92.8571 100 100 100
Hay-windrowed 119/120/239 100 100 100 100 100

Oats 5/5/10 70 0 100 70 100
Soybean-notill 243/243/486 98.5596 82.3045 93.6213 99.3827 97.9423

Soybean-mintill 614/614/1228 99.6742 92.4267 97.8013 99.9185 99.8371
Soybean-clean 148/149/297 97.6430 98.6531 96.9696 95.2861 99.6632

Wheat 51/51/102 99.0196 98.0392 100 99.0196 99.0196
Woods 316/317/633 99.8420 99.3680 99.5260 98.8941 99.8420

Buildings 96/97/193 99.4818 90.6735 100 91.1917 99.4818
Stone–steel 23/23/46 100 97.8260 100 93.4782 100

Training Time 55.6695 250.1662 919.5566 61.8763 248.5993

Test Time 1.4897 4.0402 5.6891 1.2752 3.9997

Overall Accuracy 98.9463 91.5707 97.6585 98.14634 99.2975

Average Accuracy 98.7980 86.8173 97.9425 94.9142 99.3869

Kappa (κ) 96.6396 90.3561 97.3312 97.8853 99.1990

3.2. Pavia University

The Pavia University (PU) dataset acquired using a Reflective Optics System Imag-
ing Spectrometer (ROSIS) optical sensor over Pavia in northern Italy. The PU dataset is
distinguished into nine different classes. PU consists of 610× 610 spatial samples per
spectral band and 103 spectral bands with a spatial resolution of 1.3 m. Further details
about the experimental datasets can be found at [48]. Table 2 and Figure 3 present in-depth
comparative accuracy analysis on the PU dataset.

(a) 2D (b) 3D (c) A.Net (d) LeNet (e) Hybrid
Figure 3. Pavia University: Classification accuracy: (a) 2D-CNN = 99.9070%; (b) 3D CNN = 99.9256%;
(c) AlexNet = 99.0768%; (d) LeNet = 99.9318%; and (e) Hybrid = 99.9628%.
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Table 2. Pavia University: Performance analysis of different state-of-the-art models trained using
regularization technique.

Class Train/Val/Test 2D 3D AlexNet LeNet Hybrid

Asphalt 1658/1658/3316 100 100 98.9143 100 100
Meadows 4662/4662/9324 100 99.9892 100 100 100

Gravel 524/525/1049 99.5233 99.3326 95.5195 99.4280 99.6186
Trees 766/766/1532 99.6736 100 98.8250 99.7389 100

Painted 336/337/673 100 100 100 100 100
Soil 1257/1257/2514 100 100 99.9602 100 100

Bitumen 332/333/665 100 100 99.6992 100 100
Bricks 920/921/1841 99.8913 99.8913 97.9359 100 99.8913

Shadows 237/237/74 99.3670 99.5780 98.5232 99.7890 100

Training Time 296.0174 1145.9233 4716.4900 308.6389 1143.4996

Test Time 5.7400 14.8634 24.1701 4.5054 15.5904

Overall Accuracy 99.9298 99.9438 99.3033 99.9485 99.9719

Average Accuracy 99.8283 99.8657 98.8197 99.8839 99.9455

Kappa (κ) 99.9070 99.9256 99.0768 99.9318 99.9628

3.3. Salinas

The Salinas (SA) dataset was acquired using an AVIRIS sensor over Salinas Valley,
California and consists of 16 different classes—for instance, vineyard fields, vegetables,
and bare soils. SA consists of 224 spectral bands in which each band is of size 512× 217
with a 3.7 m spatial resolution. A few water absorption bands 108–112, 154–167, and 224
are removed before analysis. Further details about the experimental datasets can be found
at [48]. Table 3 and Figure 4 present an in-depth comparative accuracy analysis on the
Salinas dataset.

Table 3. Salinas: Performance analysis of different state-of-the-art models trained using regularization technique.

Class Train/Val/Test 2D 3D AlexNet LeNet Hybrid

Weeds 1 502/502/1005 100 100 100 100 100
Weeds 2 931/931/1863 100 100 100 100 100
Fallow 494/494/988 100 100 100 100 100

Fallow rough plow 348/348/698 100 100 100 100 100
Fallow smooth 669/669/1340 100 100 99.7012 100 100

Stubble 990/990/1980 100 100 100 100 100
Celery 894/894/1790 99.9441 100 100 100 100

Grapes untrained 2817/2818/5636 99.9822 100 99.9822 100 100
Soil vinyard develop 1550/1551/3102 100 100 100 100 100

Corn Weeds 819/820/1639 100 100 100 100 100
Lettuce 4wk 267/267/534 100 100 100 100 100
Lettuce 5wk 481/482/963 100 100 100 100 100
Lettuce 6wk 229/229/458 100 100 100 100 100
Lettuce 7wk 267/268/535 100 99.6261 100 100 100

Vinyard untrained 1817/1817/3634 99.8130 99.9174 99.1744 100 100
Vinyard trellis 451/452/904 100 100 100 100 100

Training Time — 257.9992 1256.1199 4667.9047 288.3353 1267.9766

Test Time — 7.3995 16.8058 27.8388 6.3860 19.2670

Overall Accuracy — 99.9889 99.9815 99.8706 100.0 100.0

Average Accuracy — 99.9837 99.9714 99.9286 100.0 100.0

Kappa (κ) — 99.9876 99.9794 99.8559 100.0 100.0
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(a) 2D (b) 3D (c) A.Net (d) LeNet (e) Hybrid
Figure 4. Salinas: Classification accuracy: (a) 2D-CNN = 99.9876%; (b) 3D CNN = 99.9794%;
(c) AlexNet = 99.8559%; (d) LeNet = 100.0%; and (e) Hybrid = 100.0%.

4. Comparison with State-of-the-Art Models

In all experimental results, the training, validation, and test sets are selected using
a 5-fold cross-validation process with 25, 25, and 50% samples for training, validation,
and test sets, respectively. The hybrid and all other competing models are trained using a
15× 15 patch size because the classification performance strongly depends on the patch
size, in which, if the patch size is too big, then the model may take pixels from various
classes, whereas, if the patch size is too small, the model may decrease the inter-class
diversity in samples. Hence, in both cases, the ultimate result will be in terms of a higher
misclassification rate, leading to low generalization performance. Therefore, an appropriate
patch size needs to be selected before the final experimental setup. The patch size selected
in these experiments is based on the hit and trial method (i.e., provided the best accuracy).

The experimental results on benchmark HSI datasets are presented in Table 4. From
these results, one can conclude that the proposed regularization process significantly
improves the performance, in terms of accuracy, speed of convergence, and computational
time. For comparison purposes, the framework, i.e., regularization for the Hybrid CNN
model, is compared with various state-of-the-art works published in recent years. From
the experimental results presented in Table 4, one can conclude that regularization with
Hybrid CNN has obtained better results as compared to the state-of-the-art frameworks
and, to some extent, outperformed with respect to the other models. The comparative
models include a Support Vector Machine (SVM) with and without any grid optimization,
Multi-layer Perceptron (MLP) having four fully connected layers with dropout, a 2D
CNN model proposed by Sharma et al. [21], a semi-supervised CNN model proposed by
Liu et al. [22], a 3D CNN model proposed by Hamida et al. [23], a hybrid CNN model
proposed by Lee et al. [24] that consists of two 3D and eight 2D convolutional layers,
a simple and compact 3D CNN model proposed by Chen et al. [25] that consists of three
3D convolutional layers, and a lightweight 3D CNN model proposed by Li et al. [26] that
consists of two 3D convolutional layers and a fully connected layer. Li’s work is different
from traditional 3D CNN models as it uses fixed spatial-sized 3D convolutional layers with
slight changes in spectral depth. Finally, multi-scale-3D-CNN [27], a fast and compact 3D-
CNN (FC-3D-CNN) [20], and three different versions of Hybrid Depth-Separable Residual
Network [28] were included.

All of the comparative models are being trained as per the settings mentioned in their
respective papers except for the number of dimensions and patch size (i.e., 15 dimensions
selected using PCA, and 15× 15 path size). The experimental results listed in Table 4 show
that the proposed framework has significantly improved results as compared to the other
methods with fewer training samples.
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Table 4. Experimental comparison with state-of-the-art models.

Methods Salinas Full Scene Indian Pines
OA AA Kappa OA AA Kappa

MLP 79.79 67.37 77.40 87.57 89.07 85.80

SVM-Grid 67.39 45.89 62.80 87.93 88.02 86.20

SVM 92.95 94.60 92.11 85.30 79.03 83.10

FC-3D-CNN [20] 98.06 98.80 97.85 98.20 96.46 97.95

Xie et al. [21] 93.35 91.88 92.60 95.64 96.01 95.10

Liu et al. [22] 84.27 79.10 82.50 89.56 89.32 88.10

3D-CNN [23] 85.00 89.63 83.20 82.62 76.51 79.25

Lee et al. [24] 84.14 73.27 82.30 87.87 83.42 86.10

Chen et al. [25] 86.83 92.08 85.50 93.20 95.51 92.30

Li [26] 88.62 86.84 87.40 94.22 96.71 93.40

MS-3D-CNN [27] 94.69 94.03 94.10 91.87 92.21 90.80

Zhao et al. [28] 98.89 98.88 98.85 95.86 96.08 95.09

SyCNN-S [29] 97.44 98.46 97.20 95.90 97.84 95.30

SyCNN-D [29] 97.76 98.95 97.50 96.13 98.08 95.60

SyCNN-ATT [29] 98.92 99.35 98.80 97.31 98.43 96.90

Regularized AlexNet 99.87 99.92 99.85 97.65 97.94 97.33

Regularized LeNet 100.0 100.0 100.0 98.14 94.91 97.88

Regularized 2D 99.98 99.98 99.98 98.94 98.79 96.63

Regularized 3D 99.98 99.97 99.97 91.57 86.81 90.35

Regularized Hybrid 100.0 100.0 100.0 99.29 99.38 99.19

5. Conclusions

The paper proposed a regularized CNN feature hierarchy for HSIC, in which the
loss contribution is considered as a mixture of entropy between a predicted distribution
and the one-hot-encoding, and the entropy between the predicted and noise distribution.
Several other regularization techniques (e.g., dropout, L1, L2, etc.) have also been used;
however, these techniques, to some extent, lead to predicting the samples extremely
confidently, which is not good from a generalization point of view. Therefore, this work
proposed the use of an entropy-based regularization process to improve the generalization
performance using soft labels. These soft labels are the weighted average of the hard labels
and uniform distribution over entire ground truths. The entropy-based regularization
process prevents CNN from becoming over-confident, while learning and predicting thus
improves the model calibration and beam-search. Extensive experiments have confirmed
that the proposed pipeline outperformed several state-of-the-art methods.
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