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Abstract: This paper analyzes remotely sensed data sources to evaluate land-use history within
the Peruvian department of Amazonas and demonstrates the utility of comparing present and past
land-use patterns using continuous datasets, as a complement to the often dispersed and discrete
data produced by archaeological and paleoecological field studies. We characterize the distribution
of ancient (ca. AD 1–1550) terracing based on data drawn from high-resolution satellite imagery and
compare it to patterns of deforestation between 2001 and 2019, based on time-series Landsat data. We
find that the patterns reflected in these two datasets are statistically different, indicating a distinctive
shift in land-use, which we link to the history of Inka and Spanish colonialism and Indigenous
depopulation in the 15th through 17th centuries AD as well as the growth of road infrastructure and
economic change in the recent past. While there is a statistically significant relationship between
areas of ancient terracing and modern-day patterns of deforestation, this relationship ultimately
explains little (6%) of the total pattern of modern forest loss, indicating that ancient land-use patterns
do not seem to be structuring modern-day trajectories of land-use. Together, these results shed light
on the long-term history of land-use in Amazonas and their enduring legacies in the present.

Keywords: agriculture; land-use; terraces; deforestation; Peru; remote sensing

1. Introduction

Amidst the mountainous topography of the Andes, Indigenous people have built agri-
cultural terraces for millennia, for a diverse series of reasons––to mitigate against erosion,
to manage irrigation systems, to expand planting surfaces, and to modify microclimatic
conditions, among others [1–6]. It is also becoming increasingly clear that, just as they
served multiple functions in the past, terraced landscapes in the Andes (as elsewhere)
were constructed through prolonged, and often incremental, processes [7–10]. While many
terrace systems seem to have been constructed and managed by small-scale communities,
others appear to have been erected at the behest of expansive polities, such as the Wari
and Inka, who employed them as tools of agricultural intensification and as elements of
sovereign claims over landscapes and peoples [11,12].

Andean Indigenous terraced agriculture was significantly impacted by the Spanish
Invasion of AD 1531–35 and its aftermath, after which the total area of terraced agricultural
land significantly decreased [2] (pp. 183–184). Processes driving agricultural contraction
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differed by region, but much appears linked to the decimation of Indigenous popula-
tions following the Spanish invasion [13,14]. Other factors cited for the abandonment of
agricultural terraces include the resettlement of communities; changes in crop regimes
and subsistence strategies, with a greater reliance on lower elevation crops from Europe
and on the raising of cattle; the adoption of new plowing technologies; the disruption of
community social and labor organization; and climatic changes resulting from the Little Ice
Age [15–21].

Today, agricultural terraces remain a persistent, though diminished, part of rural
agricultural systems in the Andes as well as an iconic (and sometimes monumental) element
of the region’s archaeological landscapes [22,23]. Construction of new terraces appears to
be rare, while disassembly (both intentional, for the sake of obtaining building materials or
expanding pasture areas, and unintentional, through the cumulative effects of mechanized
or oxen-driven plowing) is more common [24–26]. The continued abandonment of terraces,
even as rural populations have increased, therefore attests to significant social, economic,
and technological shifts and a new logic of land-use that differs from that in the past [27–30].
The introduction of Eurasian livestock to the Americas has, for example, had particularly
notable consequences for land-use patterns in the long term, both through its environmental
effects as well as its reorganization of labor and market forces [31,32]. However, the fact
that many ancient terraces remain in use today also attests to their enduring capacity
for controlling erosion, increasing soil depth, and managing hydrology. In many cases,
studies have demonstrated that even abandoned terraces retain productive soils, thereby
continuing to provide benefits and opportunities for modern-day communities [33–35].

Indeed, it is useful to avoid classifying terrace systems according to a simple binary
of abandoned vs. in-use, for at least three reasons. First, due to long fallowing peri-
ods (particularly in upland regions, where they may last as long as 10 years), it can be
difficult to distinguish abandoned terraces from those that remain in use, even when
assessing their status using more proximate datasets than remotely sensed satellite im-
agery, e.g., [10,18,28,36,37]. Second, the actual use and maintenance of terrace systems is
also non-binary, ranging along a continuum of maintenance and production, from very
high-intensity, carefully maintained terraces of high value crops to low-intensity, low-input
cultivation of cacti and other perennials on partially collapsed, eroded, even relict ter-
races [38]. Third, terrace systems often continue to be geomorphologically “active” agents
even if they are not carefully maintained or used in agricultural cycles, providing ancil-
lary services (and sometimes impediments) to the people, plants, and animals that live
around them.

Land-use patterns in the Andes have demonstrably changed between the past and
the present, but the difficulties involved with distinguishing ongoing terrace use from
abandonment as well as the cyclical use and reuse of terraced landscapes can make it
challenging to define precisely how these patterns have shifted over time. However, it
remains important that we attempt to do so. Charting changes in land-use at large scales
over the long term can generate important new data for understanding the processes and
factors driving that change. As policy makers continue to look to Indigenous technologies
as means of combating rural poverty, environmental degradation, and food insecurity,
e.g., [22,23,39–41], understanding what made ancient terraces viable in the past is essential
for considering whether such technologies hold relevance for rural communities today.

One region where such assessments may be particularly productive is the southern
portion of the Amazonas department, in northern Peru (Figure 1). As elsewhere in the
Andes, landscapes in southern Amazonas bear evidence of a significant decline in the
extent of agricultural terracing under cultivation after the Spanish invasion, from at least
the late 16th century AD and perhaps beginning as early as the Late Horizon (Inka period,
ca. AD 1470–1535). However, because rainfall in Amazonas is generally higher than in
much of the Central and Southern Peruvian Andes, much of the region’s natural vegetation
is forested. Thus, Indigenous depopulation and terrace abandonment has resulted in
significant reforestation of formerly cleared land over the past several centuries. Today,
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amidst economic and demographic growth, agricultural and pastoral production have
increased, and new areas for cultivation and grazing have opened up in reforested areas.
In the process, expansive areas of ancient terracing have been revealed, and much of this
terracing is clearly identifiable in very high-resolution (<5 m) satellite imagery. These
conditions mean that it is possible to employ analysis of satellite imagery in combination
with field-based reconnaissance to carry out systematic and regional-scale evaluation of
the distribution of ancient land-use in southern Amazonas and to assess how it compares
to land-use patterns today.

Figure 1. Map showing research area (red polygon) and principal sites. Hashed lines in inset indicate
the Department of Amazonas.

In this paper, we present the results of such an analysis. We first present the results of
a large-scale “virtual survey” of ancient terraces and settlements in southern Amazonas,
conducted using the Geospatial Platform of Andean Culture, History, and Archaeology
(GeoPACHA). We employ the resulting data to characterize ancient land-use patterns by
analyzing the distribution of ancient terracing with respect to general variables such as
elevation, slope, and proximity to modern-day settlements. Second, we investigate where
deforestation has occurred between 2001 and 2019, employing Global Forest Change (GFC)
data, processed and publicly provided by the Global Land Analysis & Discovery laboratory
at the University of Maryland [42]. We use this remotely sensed evidence of deforestation
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as a proxy for recent trends in land-use change, seeking to understand what areas are
targeted in the expansion of agricultural and pastoral production, why they are targeted,
and how the forces driving land-use change in the present differ from those in the past,
cf. [32,43]. Together, we investigate whether recent expansions of agriculture are associated
with areas with relict terracing. Addressing this question allows us then to assess not only
how land-use practices in the past compare to those in the present but also how the former
may have structured the latter.

2. Materials and Methods
2.1. Research Context

Our survey area comprises the provinces of Chachapoyas, Luya, and Bongará, which
collectively make up most of the southern part of the department of Amazonas, Peru.
Measuring 9187 square kilometers, this study region includes a sizeable portion of the
so-called Chachapoyas cultural area, a loosely defined geographic region in the north-
eastern Peruvian Andes in which the only definitive boundary is the Marañón River to
its west [44–46]. Human occupation in this region dates back to at least 12,000 years
BP [44,47], and recent excavations suggest that many sites once thought to date to the Late
Intermediate Period (ca. AD 1100–1470) have substantially earlier occupations [48–50]. Eth-
nohistoric sources suggest that Late Intermediate Period populations were not organized
into a cohesive polity but rather comprised different segments of a diverse socio-political
and ethnic landscape in which communities shared many cultural traditions (and per-
haps, languages) [44,45,51–54]. Settlement patterns appear to vary by subregion [44,55],
but hilltop and ridge-top sites are common and range in size from fewer than a dozen
structures each in the smallest sites to more than 500 in the largest [56]. Structures vary in
floor area, height, and masonry, but their forms are generally circular; some are decorated
with elaborate friezes containing both geometric and figurative elements [55,57–60]. While
hundreds of these sites have been documented through both pedestrian survey and remote
sensing, systematic coverage has been hindered by the region’s steep terrain, frequent
cloud cover, and often dense vegetation. As the number of stratigraphic excavations in the
region increases, so too has understanding of regional chronology. However, it remains
unclear whether all hilltop sites, and their associated terraced slopes would have been
occupied and in use at the same times–and what percentage of them have occupations
dating prior to the Late Intermediate Period.

Topography and ecology in the region are similarly diverse. Elevations range from
550 to 4200 m above sea level (masl) and encompass a wide range of ecosystems and
microclimates, from arid canyons to cloud forests and high altitude grasslands. Whereas
agriculture in some portions of the central and southern Andes must contend with lim-
ited and seasonal rainfall, often by means of complex irrigation networks [4], southern
Amazonas is generally quite wet [61]. While rainfall varies based on elevation, season,
and microregion, monthly precipitation is generally high enough that agriculture in this
region is almost exclusively rainfed. In comparison to some well-documented portions
of the Central Andes, such as the Urubamba Valley (Cuzco), the Lake Titicaca Basin, and
the Colca Valley (Arequipa), stone-faced terracing is also uncommon in southern Ama-
zonas. Instead, most terraces are earthen and follow mountain contours in the form of large,
widely spaced berms [25,61,62]. Though most terraced slopes are found at elevations where
maize agriculture is possible, the cultivation of tubers and a diverse range of other crops
was likely widespread in the past and remains so today [25,63]. Evidence documenting
the organization and extent of pastoralism is less clear, but archaeofaunal and isotopic
analyses [63,64] as well as ethnohistoric sources [65] (p. 229) suggest that camelids were
part of local diets and economies during the Late Intermediate Period as well.

The Inka invasion of the region appears to have occurred in two stages––an initial,
largely unsuccessful incursion in the 1450s, followed by a conquest carried out circa
AD 1470 [47,51,57,65–67]. Following these campaigns, the region became a provincial
constellation within Tawantinsuyu (the Inka empire), referred to as Chachapoyas, from
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one of many ethnic groups living therein. As they did in many other conquered provinces,
the Inkas engaged in a widespread campaign of population resettlement in Chachapoyas,
removing some residents to serve as mitmaqkuna in state-defined roles (such as soldiers
in Inka armies) and moving other communities (including at least one group of ceramic
artisans from the more southerly province of Wankas) to the Utcubamba valley [68]. Many
sites, particularly those at higher elevations, may have been abandoned at this time, while
others show continued occupation, demonstrated in the form of constructions of distinctly
Inka structures (e.g., [56,59,69]). The invasion of the region by Spanish forces in the 1530’s
and the establishment of the settlement of San Juan de la Frontera de Los Chachapoyas led
to still further disruption, and significant decline in Indigenous populations occurred in
the 16th and 17th centuries due to epidemics and colonial violence [13,51,57].

The combined population of Amazonas continued to be quite low during the 18th
through mid 20th centuries, and the region remained relatively disconnected from the coastal
and highland areas to the west until road construction in the early 20th century [32,70]. More
recently, regional population has increased apace with national rates of population growth,
rising from 254,560 people in 1981 to 418,365 people in 2017, while national population
over the same period has increased from approximately 17 million to 32 million people
(inei.gob.pe). Economic growth in Amazonas in the same period has been driven by
agriculture and cattle raising as well as tourism amidst widespread economic growth
within Peru that saw national GDP per capita increase more than threefold between 2000
and 2019 (worldbank.org, accessed on 10 December 2020). Local road networks have
greatly expanded during this period, as municipalities have sought to provide farmers
with means of bringing their crops to market more efficiently. It is in the context of these
developments that we observe changes in land-use and its expansion into previously
forested areas of southern Amazonas.

2.2. Predictor Variables

To characterize patterns of land-use and landcover in both the past and present and
to explore the forces driving changes in the spatial distribution of agriculture, we employ
elevation, slope, and distance to modern-day inhabited places. We selected these three
variables due to their inferred relevance for mountain agriculture, both in the past and
present, thus allowing us to characterize particular preferences and trends in land-use.
Moreover, because we consider these variables to influence land-use patterns in the present,
we must account for them in ultimately testing the effects of our fourth predictor variable:
the presence or absence of ancient agricultural terraces. That is, by holding the effects of
elevation, slope, and distance from modern settlements constant, we can investigate what
effect, if any, the presence of ancient agricultural terraces has on the land-use patterns of
farmers today.

Elevation and slope have clear relevance for agriculture, both in the past and present,
by impacting the kinds of microclimates that crops are exposed to and controlling rates
of water flow and soil stability [71]. Both variables also impact other relevant factors for
agriculture, such as insolation and aspect, which we do not directly evaluate here [72].
While all these factors can either limit or enhance the suitability of agriculture, they may
be mediated in part through the construction of agricultural terraces and other landscape
modifications as well as by the selection of particular crops that are better suited for
different elevations or watering regimes [2,10,19,29]. That is, land-use patterns in the
region should not be assumed to be wholly structured by these environmental variables.
Perceptions of agricultural suitability may also vary depending on subsistence practices or
sociocultural contexts and can themselves be altered through landscape interventions and
modifications [73,74]. Given the marked topographic diversity of the region, we expect
then that the analysis of elevation and slope should reveal differing and not necessarily
overlapping land-use patterns between the past and present. For this study, we employ
90-meter resolution Shuttle Radar Topography Mission (SRTM) digital elevation model
(DEM), from which we also derive slope values.

worldbank.org
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Proximity to inhabited places, on the other hand, is a more complicated variable,
particularly as it relates to ancient land-use patterns. We include it here in recognition
of the fact that land-use intensity, in both the past and present, generally decreases with
distance away from settlements [21]. Such a relationship can be based on any number of
factors, ranging from concerns of safety and defence to high regional settlement density
and circumscription to practical limitations of travel and transport. As such, we find little
reason to assume that the spatial relationship between settlement and land-use should
remain constant through time (though see e.g., [75,76]). Travel and transportation costs can,
for example, be greatly reduced by the expansion of road networks and by the adoption of
animal or motorized means of conveyance. Moreover, the distribution of inhabited places
today is likely a poor approximation of settlements in the past, both in terms of location as
well as regional density. Nevertheless, for the sake of holding constant the effect of distance
on modern-day land-use patterns, which we then compare to ancient land-use patterns, we
employ modern-day settlement locations for analysis of both ancient and modern land-use
patterns. We utilize place locations based on OpenStreetMap data, which record 333 unique
locations ranging from the provincial capital of Chachapoyas to small villages made up of
only a handful of residences [77]. To evaluate distance between modern-day settlement
and areas of ancient and modern land-use, we calculated the Euclidean distance between
each area and the nearest inhabited place. We then characterized land-use patterns in the
past and the present relative to these three variables and compared their distributions using
Kolmogorov–Smirnov (K–S) nonparametric tests.

To evaluate the effect of ancient land-use patterns on those of the present, we use
general linear regression modeling, with the presence or absence of forest loss as our
response variable and the presence or absence of terracing, elevation, slope, and distance
to populated settlements as our predictor variables. We employ general linear regression
modeling because forest loss is coded here as binary (present or absent) and therefore
requires a logit transformation to fit the binomial probability distribution. All analyses
presented here were conducted in R [78], with necessary datasets and code scripts made
available in the Supplementary Materials.

2.3. GeoPACHA

To establish the locations of ancient terraces and to evaluate their relationships with
areas of modern forest clearance, we conducted “virtual” archaeological survey using the
Geospatial Platform for Andean Culture, History, and Archaeology (GeoPACHA) [79].
GeoPACHA is a browser-based platform designed to facilitate systematic visual survey
and analysis of high resolution aerial imagery for archaeological applications. The interface
allows users to access high-resolution satellite imagery and elevation layers and provides
various tools for tagging and categorizing archaeological “loci” using point themes as
well as a structure of tiered access and editing to facilitate the review of the resulting
data. Users are organized into “projects” and trained to recognize regionally specific
forms of archaeological sites and landscapes in aerial imagery by project leads/regional
editors. They then tag and assign attributes to all archaeological sites and features within
an assigned series of 2 × 2 km grid squares, each further subdivided into 500 × 500 m
octants to allow users to keep track of survey coverage. Following completion of a survey
grid square, regional editors review all of the loci and attribute data submitted within
their research teams; these data are reviewed a second time by the project’s general editors
(Wernke and VanValkenburgh).

Using GeoPACHA, our team for this project spent two months digitally surveying
the region and tagging areas with evident terracing. Due to the high density of terraces
in many parts of the region and the challenges of parsing continuous landscape features
into discrete loci, the team effectively sampled terracing at a 500 m interval, placing one
locus within each 500 × 500 m grid square within which terracing (or other extensive
landscape features of interest, such as canals) was present. Rather than surveying the
entirety of southern Amazonas, we sampled the project area in east–west swaths of grid
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squares, from the Marañon River in the west to the border of the province of Rodríguez
de Mendoza in the east. We planned these survey swaths such that they would cover
the greatest range of possible topographic and environmental conditions, from deep river
valleys to high mountain peaks. Surveyors scanned in parallel tracts, with each survey
swatch separated by at most 4 km (Figure 2). In this way, we surveyed 13,440 500 × 500 m
grids, representing 3360 sq km, or about a third of our survey region. For each terrace
location, we extracted elevation and slope values and calculated the Euclidean distance to
the nearest modern-day settlement.

Figure 2. Multiscalar views of GEOPACHA interface showing parallel survey swaths (A), individual
tracts (B), and individual 2 × 2 km2 grids (C). Green squares indicate surveyed grids, while red
triangles indicate ancient terrace and site locations.
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Though we cannot determine precise chronological information for terraces based
solely on satellite imagery, even where obvious morphological differences exist [25,61,62],
we assume that all terraces were built, at the latest, before approximately AD 1600. We
make this assumption based on the aforementioned severity of population decline and
land abandonment taking place after Spanish invasion across the Andes, making it unlikely
that many new terraces were constructed over the past several centuries. We also draw
on the large body of terrace studies from the Andes that focus on rehabilitating and
expanding ancient agricultural terraces for the purposes of agricultural production and
erosion mitigation today [18,23,39,80–82]. Though these studies highlight cases where
terraces have been successfully (re)implemented by local communities, even those cases
demonstrate the significant obstacles and challenges disincentivizing terrace use today for
many communities across the Andes [29]. As in other regions, relict agricultural terraces in
our study region have been and continue to be degraded and destroyed by contemporary
farming practices [25] (p. 199), which is supported by our own anecdotal experience
working in the region. Thus, even in cases where agricultural terraces are in use today, we
assume that their initial dates of construction are prior to the seventeenth century AD.

2.4. Forest Loss Data

To investigate recent histories of land-use, we rely on Global Forest Change (GFC)
data processed and publicly provided by the Global Land Analysis & Discovery laboratory
at the University of Maryland [42]. Derived from 30 m resolution Landsat data, the most
recent available version of GFC data cover the period from 2001–2019 and include layers
pertaining to tree canopy cover, forest gain, and forest loss. Forest loss is defined as “a
stand-replacement disturbance or a change from a forest to non-forest state” and is coded
with values between 0 and 19, where 0 corresponds to no detected forest loss and 1–19
corresponds to the year in which forest loss was first detected [42] (p. 850). Thus, for
example, a cell coded as 5 indicates that forest loss was detected within the area of that cell
in 2005. These classifications are made based on time-series spectral metrics, training data,
and hierarchical decision trees. Elsewhere, GFC data have been successfully employed
for a wide range of scientific and public policy applications (e.g., [83–85]), including most
notably the Global Forest Watch platform [86].

For this study, we employ the forest loss layer of the GFC datasets (Figure 3). We began
by masking out the extent of our survey area and by calculating initial summary statistics
to characterize general trends in forest loss over the past two decades in this region. We
then proceeded to vectorize the data, aggregating congruent cells with identical values
such that an area made up of multiple cells where forest loss was detected in a certain year
was returned as a single polygon. We refer hereafter to such areas as Contiguous Forest
Loss Areas (CFLAs; n = 77,745), which we employ as our initial units of analysis and for
which we report additional summary statistics. These polygons are deemed to represent
single episodes of forest loss, as distinguished from forest loss that may occur immediately
adjacent to them in different years.

We subset this dataset according to procedures outlined in the Supplementary Ma-
terials, resulting in a final CFLA dataset of 1506 polygons that we employ for further
analysis. Additionally, another dataset of 1506 polygons was generated within the parts
of the forest loss layer that were coded as not having any forest loss. These polygons
(No Forest Loss Area, NFLA) measured 7385 sq m in area, which is the average area of
the CFLAs in our final dataset. For each CFLA and NFLA, team members used available
Google and Bing imagery, including Google Earth Pro’s historical imagery tool, to code
each polygon for whether it contained agricultural terracing. In cases where imagery was
unavailable or insufficient (see below) or where vegetation regrowth limited adequate
visibility of the ground surface, those polygons were coded as indeterminate. Once coded,
all individual datasets were joined back together. We then converted these polygons to
points, based on their centroids; extracted mean elevation and slope values from our 90 m
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SRTM DEM; and calculated the Euclidean distance from each CFLA and NFLA to the
nearest populated place.

Figure 3. View of the study region showing areas of forest loss (black).

2.5. Methodological Considerations

In conducting these analyses, we acknowledge several limitations, some of which are
particular to our survey area. First, this region is characterized by high annual precipitation,
steep and rugged terrain, and vast areas of still forested land. Moreover, frequent cloud
cover limits the number of usable observations that satellites are able to make, creating
frequent spatial and temporal gaps in available imagery. The result is large areas within
our survey region for which imagery is either unavailable or of such low resolution that it
is not possible to identify terraces within it. As discussed in the Supplementary Materials,
these limitations led us to exclude years after 2016 from our analysis due to the absence of
high resolution commercial imagery, despite forest loss data being available.

Second, regarding our use of forest loss data, we must contend with the fact that areas
coded as lacking in forest loss were in many cases themselves deforested prior to 2001,
when our forest loss data begins. It is thus more accurate to describe our general linear
regression model as modeling the relationship between our predictor variables and the
presence or absence of forest loss in the past 20 years. An additional limitation of the forest
loss data is that, by its very nature, it cannot be used to assess land-use changes in areas
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lacking in forests. For our study region, such areas are generally found above 3500 m
in elevation, though this treeline varies across the landscape and is, in part, the result of
anthropogenic processes [57,87,88] (pp. 22–23). However, agricultural terraces are found in
many places above this elevation, particularly around ridgetop sites that can be as high
as 4200 masl [2,28]. The exclusion of these areas from the forest loss data, which we use
as a proxy for modern-day land-use is therefore problematic. We can reasonably resolve
this issue; however, since use of these areas for subsistence today is limited and almost
exclusively limited to pasturage, with land modification largely restricted to intentional
burning events that land owners claim encourage the growth of highland grasses, we adopt
3500 m as a rough upper limit for modern-day agricultural land-use when comparing
ancient to modern land-use strategies.

Third, substantial parts of this region remain heavily forested, with limited LiDAR
applications to-date [89]. As a result, we cannot know the actual distribution of agricultural
terraces within the region nor how representative our dataset of remotely sensed terraces
is. Many areas that are coded as not having forest loss may indeed have terraces, which we
simply cannot identify due to the lack of regional airborne LiDAR data. In the same vein, it
is certain that ancient communities in this region practiced a wide assortment of land-use
strategies aside from terraced agriculture. Valley bottom cultivation, pastoralism, horti-
culture, and other such strategies would have been essential elements of local subsistence
strategies [63] but would not have left as enduring or visible landscape modifications as
the agricultural terraces studied here. Our characterization of ancient land-use is therefore
limited only to terraced land-use and to those environments where ground cover is visible.

3. Results
3.1. Where Are Ancient Terraces Located?

The results of our survey with GeoPACHA resulted in the identification of 2968
500 × 500 m grids with terraces located within them, representing 22% of our surveyed
area. Within the survey area, we identified terraces in every west-east transect. Gaps in our
survey swaths where no terraces were located were most frequently attributed to either
declines in visibility due to forest vegetation or imagery resolution, or to topographic
extremes such as the Marañón and Utcubamba river ravines or the highest elevation areas
of our study region. With respect to these topographic conditions, the mean elevation of
terrace locations was 2684 masl, with a standard deviation of 408 m. The distribution of
values, according to a Shapiro–Wilk’s test, was non-normal (W = 0.99, p < 0.01), with two
evident modes around the mean and a third, less pronounced, mode at around 3500 masl
(Figure 4). The mean slope at which terraces are found was 17 degrees, with a standard
deviation of 7 degrees, while the mean Euclidean distance of terraces from modern-day
inhabited places was 2332 m, with a standard deviation of 1637 m. Both slope (W = 0.98,
p < 0.01) and distance (W = 0.99, p < 0.01) also had non-normal distributions.

Figure 4. Density distribution plots showing elevation, slope, and distance values for ancient terraces.



Remote Sens. 2021, 13, 2274 11 of 19

3.2. Where Is Land-Use Taking Place Today?

Within our survey area, the total amount of forest loss measured between 2001 and
2019 was 221 sq km, or about 2% of our survey region’s total area. The yearly average
was approximately 11.63 sq km, though this loss was neither consistent nor linear through
time (Figure 5A). Rather, forest loss seems to fluctuate over two or three year cycles,
creating a jagged pattern through time that may be the result of interannual variability in
rainfall or market prices for agropastoral products. We note, for example, the occurrence
of several droughts in the region, most notably in 2005, 2007, and 2010, which have had
enduring effects on the region’s vegetation [90,91]. Having vectorized the forest loss data
and aggregated congruent cells of identical values, we obtain a dataset of 77,745 CFLAs,
with an average area of 2834 sq m. The average area of CFLAs per year is also variable,
holding relatively steady around the overall average for the first decade of our study range
and then fluctuating widely over the next decade (Figure 5B). In other words, the size of
individual deforestation events has since 2014 become more variable and, in some years,
much larger. As of 2019, for example, the average area of CFLAs had risen up to 3737 sq m,
from an average area of 2923 sq m in 2001.

Figure 5. Areal forest loss through time (A) and average size of forest loss areas per year through
time (B).

Investigating these inter-annual trends further in relation to elevation, slope, and
distance (Figure 6), we find that there is a clear negative trend in the elevation of forest loss,
indicating that deforestation has been occurring at progressively lower elevations from
2001–2019. Within this period, the mean elevation of forest loss was about 2319 masl, with
a standard deviation of 526 m. No apparent trend was observed for the slope at which
deforestation was taking place, with the mean slope of forest loss being 19 degrees, with a
standard deviation of 9 degrees. A positive trend was observed for distance, indicating
that the distance from modern settlements at which deforestation was taking place has
generally increased through time. The mean Euclidean distance to modern-day inhabited
places is 3613 m, with a standard deviation of 3835 m.

We also investigated the forest gain data layer provided by Global Land Analysis
& Discovery to evaluate whether forest loss trends were at all reversed by subsequent
reforestation. We found, however, that forest gain in our study region for the period
of 2001–2019 amounted to only 10.2 sq km in total, or less than 5% of the total forest
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loss during that same period. Reforestation has therefore had a minimal effect on net
deforestation trends.

Figure 6. Average elevation, slope, and distance values for CFLAs through time.

3.3. What Effects Does Ancient Land-Use Have on Modern Land-Use?

Comparing the distributions of these environmental variables between ancient ter-
races and modern-day forest loss, we find that ancient terraces are found, on average,
340 m higher in elevation than modern-day forest loss. Visual inspection of these density
distributions shows that while they are overlapping, ancient terrace elevation values have
a more restricted distribution than that of forest loss (Figure 7). We determine that these
distributions are statistically different through a K–S test (D = 0.34, p < 0.01). Likewise, for
slope, we find that ancient terraces are on average found on slopes about 2 degrees less
steep than where modern-day forest loss is taking place. Though these distributions are far
more overlapping than elevation, we find that they are nevertheless statistically distinct
(D = 0.10, p < 0.01). Finally, for distance, we find that ancient terraces are 1189 m closer to
modern-day settlements than areas of modern-day forest loss. These distributions are also
statistically different (D = 0.17, p < 0.01).

Figure 7. Comparison of density distributions of ancient terraces and modern forest loss areas.

Looking more closely at the effect of ancient terracing on modern-day forest loss,
based on our investigation of terrace locations within sampled CLFAs and NFLAs, we
fit a binomial general linear regression model to our data to test how well the presence
or absence of terraces, elevation, slope, and distance from settlements can predict the
occurrence of forest loss. Using ANOVA likelihood ratio tests, we find that the presence
or absence of terraces, elevation, and slope all have statistically significant impacts on the
probability an area will experience forest loss. The inclusion of distance as a predictor
variable did not significantly improve the model.

Plotting the effects of terrace presence on predicted forest loss, while holding the
others constant, we can see that the presence of terracing does increase the likelihood of
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forest loss taking place (Figure 8). While these results indicate some kind of relationship
between ancient and modern-day land-use, the overall explanatory power of the model is
ultimately quite low (D2 = 0.06). In other words, the presence or absence of ancient terraces,
while accounting for elevation, slope, and distance, can only predict about 6% of the total
forest loss. We can therefore say that, while the presence of ancient terraces does have a
significant impact on whether forest loss takes place, very little of the overall amount of
deforestation can actually be predicted based solely on the presence or absence of terraces.
The high amount of unexplained variance suggests that it is likely that there are additional
variables worth including in our model.

Figure 8. Effect of terracing on likelihood that forest loss takes place.

4. Discussion and Conclusions

Long-term and regional-scale studies of land-use histories are valuable because they
can reveal general trends that are often difficult to determine from studies of particular
periods or sites. These trends can show profound changes, reflecting perhaps a marked
transition in subsistence practices or settlement organizations, or alternatively little change
at all, reflecting long-term stability and continuity in land-use practices. Changes in land-
use may occur gradually, with incremental transitions over many centuries, or suddenly
all at once, perhaps in the context of a catastrophic event. However they occur, studying
long-term histories of land-use in the context of environmental, sociopolitical, economic,
and technological developments permits the investigation of the shifting motivations,
constraints, and opportunities that local communities experienced through time. Such
regional-scale generalizations may obscure local nuances, precisely those that site-specific
studies would help identify but nevertheless provide a useful model for defining macro-
scale trends. These models can also themselves help identify those local outliers and
evaluate the influences of certain variables on the overall pattern. Together, the combined
use of regional and site-specific studies can provide new insights into long-term histories
of land-use and landscape development over time.

Our study of the southern Amazonas region has thus sought to characterize the pattern
of land-use taking place in the past, as indexed by the presence of agricultural terraces, and
compare it to that taking place today, as indexed by evidence of deforestation. Relative to
elevation, we find that ancient terracing exhibits a multi-modal distribution, suggesting
either contemporaneous use of several elevation ranges or instead the use of these different
zones during different periods. If representing different periods, it is possible that one of
the higher of the modes represents an LIP settlement pattern common in other parts of the
Andes, when settlement moved to mountain tops and prioritized cultivation of otherwise
marginal slopes due to concerns for safety and the frequent risk of warfare [58]. Our ability
to test these scenarios is limited by the temporal resolution of our terrace dataset, but we
can nevertheless conclude that, of the elevation areas available to them, the pre-Columbian
communities of the region preferentially exploited relatively high elevation areas. This
pattern fits with previous appraisals of settlement and land-use in the region [44].
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However, what this multi-modal distribution also shows is that there is no necessarily
optimal elevation for terraced agriculture. We find terraces in our study region over a range
of some 1500 masl and well above the 3200 masl limit frequently cited for maize agriculture.
Such a broad range of elevation values demonstrates that other factors can influence the
suitability of terracing, such as the kinds of crops grown, agricultural technology (such
as footplow vs. oxen-drawn plow), integration with other subsistence regimes such as
pastoralism, and settlement and population density. Likewise, our consideration of slope
shows that the steepest slopes of the region are not actually those that are most frequently
terraced, as one might suspect. Indeed, terraced areas are, on average, found on less steep
slopes than modern-day areas of deforestation, though the difference is small (two degrees).
This pattern challenges the common conception that terracing is necessarily an adaptation
to steep slopes, which require terraces to be cultivated. Our results show that land-use in
the present often takes place on slopes of greater than 20 degrees, without terracing.

Areas of ancient terracing are also, on average, closer to modern-day settlements
than areas of contemporary forest loss. This pattern is, at first impression, somewhat
counterintuitive. While modern-day settlements may have some overlap with areas of
ancient settlement (e.g., La Jalca [62]), the overall pattern of resettlement to lower elevations,
begun by the Inka, should result in areas of ancient land-use being further from modern-
day settlements, rather than closer. We interpret this result as reflecting the fact that ancient
and modern-day settlements are likely separated more by elevation than actual linear
distance. Moreover, the ever expanding network of roads being built today throughout
southern Amazonas means that farmers can exploit much further afield in areas that may
not have been actively settled in the past. Though we do not include roads in this study
as a predictor variable, due to difficulties of associating individual road segments with
their years of construction, previous work has consistently shown the highly influential
role that roads play in directing rates and locations of deforestation in other parts of the
Amazon [43,92–94]. It is thus likely that similar effects are present in this region as well, as
seen in the trend of deforestation towards greater distances from settlement. We interpret
this pattern as indicating that roads are today providing the means for people to expand
their land-use at progressively greater distances from their homes (Figure 8). In Figure 8,
we also note the trend of deforestation towards lower elevations and therefore away from
areas where ancient terracing is most frequent. The fact that areas further away from
settlements are being prioritized over these higher elevation areas indicates that there
are some factors (such as the ever expanding road network) that make farming at higher
elevations less attractive than farming at greater distances away.

It is these kinds of factors that may explain the overall poor predictive power of
ancient terraces on modern-day deforestation in our model, and there are also likely
other variables at work that we have not sufficiently modeled. We have, for example,
operated under the assumption that all instances of forest loss sampled here are the result
of forest clearance for the purpose of agropastoral production [95,96]. Though we have not
quantified what proportion of forest loss is indeed due to clearance for subsistence practices,
it is demonstrably true that some percentage of forest loss detected by Global Land Analysis
& Discovery within our survey region is the result of mining, road construction, landslides,
and other non-agropastoral processes. There is therefore little reason to expect areas of
ancient terracing to have bearing on where these other non-agropastoral processes are
taking place, which likely contributes in part to the high variance in forest loss that remains
unexplained by our model.

However, even if we assume that all instances of modern-day forest loss are actually
related to agropastoral production and our model does in fact only explain about 6% of
its variation, such a result is still not necessarily surprising. The minimal influence of
ancient terracing on ongoing processes of land development and agropastoral expansion
today, even when accounting for the methodological considerations reviewed above, can
be explained, at least in part, by the fact that farmers today are likely to have different
requirements and preferences than farmers in the past (as seen by a shift towards lower



Remote Sens. 2021, 13, 2274 15 of 19

elevations). While research has indeed shown that areas with pre-existing agricultural
terracing have higher rates of soil nutrients, soil depth, and better drainage [10,34] and
while our own conversations with farmers in the region indicates that they are aware of
these benefits, the fact remains that ancient terraces are not being actively maintained and
preserved. In many cases, they are progressively being weakened and destroyed through
oxen-driven plowing [97], and the long-term benefits of terraced agriculture are often offset
by the high labor and capital costs of such improvements [81].

What this study has shown, therefore, is that terracing is not only environmentally
driven nor determined but also arises from particular historical and sociocultural contexts.
While the overlaps between areas of ancient and modern-day land-use are evident, both
from our analysis here and from more casual observations on-the-ground, we should not
necessarily assume that these overlaps confirm the innate benefits of ancient land-use
practices. We certainly do not dispute the benefits that terracing can provide or the ability
of these forms of landesque capital to retain those benefits into periods long after their
initial periods of construction, but we caution against the assumption that well-adapted
land-use practices of the past must be similarly appropriate for the present. As discussed,
farmers in the region are often well-aware of the benefits of terracing and eager to employ
them under the right circumstances [98]. It is possible that this is reflected in the statistically
significant relationship between ancient terracing and forest loss. However, we should also
be mindful of what those circumstances are, particularly when they arise from historical
legacies of colonialism and the modern-day effects of global market capitalism [27,99,100].

We conclude therefore with a call for continued investigation of land-use practices in
the past and present at regional scales, which together with site-based studies can provide
essential information about long-term environmental and social changes. Particularly in
the case of landscape modifications such as agricultural terraces, which are frequently
expansive in their extent and multi-temporal in the duration of their use, regional models
can help distinguish general trends from local variations. In doing so, we can gain a better
understanding of how and why local communities through time have modified, expanded,
or abandoned anthropogenic landscapes to suit their contemporary needs. Such knowledge
is critical for evaluating the relevance and role that ancient land-use practices may have for
confronting the challenges of the present.
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