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Abstract: Synthetic Aperture Radar Interferometry (InSAR) is a space geodetic technique used for
mapping deformations of the Earth’s surface. It has been developed and used increasingly during
the last thirty years to measure displacements produced by earthquakes, volcanic activity and other
crustal deformations. A limiting factor to this technique is the effect of the troposphere, as spatial
and temporal variations in temperature, pressure, and relative humidity introduce significant phase
delays in the microwave imagery, thus “masking” surface displacements due to tectonic or other
geophysical processes. The use of Numerical Weather Prediction (NWP) models as a tropospheric
correction method in InSAR can tackle several of the problems faced with other correction techniques
(such as timing, spatial coverage and data availability issues). High-resolution tropospheric mod-
elling is particularly useful in the case of single interferograms, where the removal of the atmospheric
phase screen (and especially the highly variable turbulent component) can reveal large-amplitude
deformation signals (as in the case of an earthquake). In the western Gulf of Corinth, prominent
topography makes the removal of both the stratified and turbulent atmospheric phase screens a
challenging task. Here, we investigate the extent to which a high-resolution WRF 1-km re-analysis
can produce detailed tropospheric delay maps of the required accuracy by coupling its output (in
terms of Zenith Total Delay or ZTD) with the vertical delay component in GNSS measurements. The
model is operated with varying physical parameterization in order to identify the best configuration,
and validated with GNSS zenithal tropospheric delays, providing a benchmark of real atmospheric
conditions. We correct sixteen Sentinel-1A interferograms with differential delay maps at the line-
of-sight (LOS) produced by WRF re-analysis. In most cases, corrections lead to a decrease in the
phase gradient, with average root-mean-square (RMS) and standard deviation (SD) reductions in
the wrapped phase of 6.0% and 19.3%, respectively. Results suggest a high potential of the model
to reproduce both the long-wavelength stratified atmospheric signal and the short-wave turbulent
atmospheric component which are evident in the interferograms.

Keywords: InSAR tropospheric correction; WRF; high-resolution modeling; tropospheric delay;
GNSS meteorology; atmosphere

1. Introduction

Synthetic Aperture Radar Interferometry (InSAR) is a technique successfully deployed
in recent years for mapping accurate fields (at the millimetre level) of ground deformations
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related to tectonic, volcanic and other activities [1,2]. InSAR has been applied to cases with
large displacements, such as coseismic deformation [3–5] or volcanic unrest [6–8]. It has
also been used for the study of low-amplitude deformation fields, such as those produced
by interseismic strain accumulation or postseismic motions [9,10], urban subsidence [11],
and permafrost [12]. Its accuracy is affected by a number of factors, including orbital errors,
phase decorrelation [13], topographic residuals, phase-unwrapping errors, and extra path
delay due to the propagation of the microwave signal through the atmosphere [2,14].
The majority of these error sources have been adequately accounted for in recent years,
with advances in InSAR technology or the employment of innovative techniques that
remove them in a consistent manner. For example, orbital errors for modern satellites with
precise orbits are small, and velocity uncertainties are of the order of 0.5 mm yr−1 over
100 km distance [15]. In addition, topographic residuals in repeat-pass interferometry can
be corrected by means of simultaneous analysis of a time series of SAR acquisitions or
the use of external topographic datasets (Digital Elevation Models) [16]. However, the
detection of low-amplitude, long-wavelength deformation fields, such as those resulting
from interseismic strain accumulation or postseismic motion, remains challenging, mainly
because of interferometric decorrelation and atmospheric propagation delays [17–19].

Today, atmospheric delay remains the main source of uncertainty for InSAR measure-
ments. Although InSAR uses microwave signals, similar to GNSS, it is more challenging in
terms of atmospheric phase delay corrections due to several reasons, including the small
number of satellites, the single-pass geometry and the gridded nature of the acquired data.
Several methods have so far been pursued to mitigate the tropospheric delay in InSAR data,
which can be divided into two general groups, the empirical and the predictive methods.
Empirical methods examine the correlation between interferometric phase and elevation
within individual interferograms or families of interferograms. Tropospheric delays are
estimated by assuming a linear relation between elevation h and the interferometric phase
∆φ in a non-deforming region [20] or in a spatial band insensitive to deformation [21]. A
modification of this method uses additional a priori information from a deformation model
to remove a preliminary displacement factor prior to estimating the linear correlation gra-
dient [9]. Although these phase-based methods are capable of reducing the tropospheric
delay, they have limited application as they assume a spatially uniform troposphere. There
have been attempts to overcome this limitation by means of a piece-wise slope correction
over multiple windows [18,21], which, however, could not remove the bias from other
phase contributions. An alternative empirical method to the linear approximation was
proposed [22], where a power-law model provides a better estimate of the spatially-varying
tropospheric signal in the presence of deformation. As a general rule, empirical methods
are not effective when the expected deformation signal correlates with topography, such as
over volcanoes [23] or across major topographic steps [9].

Predictive methods, on the other hand, use input data from external sources in order
to calculate the tropospheric delay of an interferogram. Several methods have so far been
pursued, including local atmospheric data collection [23], GNSS zenithal delay estima-
tions [24–26], satellite multispectral imagery analysis [27,28], zenithal delay estimations
from Numerical Weather Prediction (NWP) models [19,29–33]. In general, these methods
have also been partially successful as they rely on high-precision local data collocated in
space and time, which are not always available for the times of SAR acquisitions. However,
they are better suited for estimating the turbulent and coherent short-scale component of
the tropospheric term than phase-based methods, and as such, produce better results. Each
method has its strengths and weaknesses, for example, GNSS ground stations in most areas
are sparsely distributed, and tropospheric delay data can only be used at the exact location
of each station, especially where there is significant topographical and/or meteorological
variability. It is usually not adequate to use GNSS data as a standalone correction technique
but rather in combination with additional datasets, e.g., spectrometer measurements [33]
or output from weather models [34]. Furthermore, spectrometers can only provide precise
data under cloud-free and daylight conditions. However, their ability to measure precip-
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itable water vapour (PWV) accurately at high spatial resolution (250–1000 m) makes them
a highly efficient technique under suitable conditions. The Medium Resolution Imaging
Spectrometer (MERIS) PWV accuracy has been estimated close to 1 mm, equivalent to
6 mm of Zenith Wet Delay (ZWD) for each epoch, or 9 mm between two epochs [35].
This is equivalent to approximately 1 cm in radar line-of-sight for ENVISAT data with an
incidence angle of 23◦. With respect to the Moderate Resolution Imaging Spectroradiometer
(MODIS), PWV accuracy has been estimated at best equal to that of MERIS, and at worst
twice that of MERIS [22].

With regards to NWP models, recent studies have focused both on the use of Global
Atmospheric Models (GAMs) and Limited-Area Models (LAMs) to predict delays at the
time of SAR acquisitions and correct for the stratified tropospheric delays. In a study where
data from three GAMs (ERA40, OPERA and NARR) were used [29], it was shown that
tropospheric artefacts were better removed compared with InSAR derived delay/elevation
ratios in cases where the correlation between elevation and displacement is large. Fur-
ther attempts to exploit output from GAM products, such as ERA-Interim, NARR or
MERRA [19], for corrections in different geographical and tectonic environments, demon-
strated a better estimation of stratified tropospheric delay and rather poor results for
estimating turbulent patterns on single interferograms. Global Atmospheric Models suffer
from low temporal and spatial resolution, and output data need to be interpolated in space
and time in order to match the resolution of an interferogram and the exact acquisition
times. Therefore, the technique of using high-resolution regional weather models (LAMs)
nested within coarser, global weather models to estimate the atmospheric delay is gaining
ground [22,30–33,36–38]. Foster et al. [31] employed the MM5 regional model at high
horizontal resolution (3 km) to obtain tropospheric delay fields over the Island of Hawaii
and Mount St Helens in the United States (US) with mixed success, as the model config-
uration failed to accurately predict tropospheric delays at shorter wavelengths (under
8 km) in most cases. Wadge et al. [30] performed tropospheric delay corrections, using
the Unified Regional Mesoscale Model at high-resolution over Mount Etna in Sicily. The
study concluded that LAMs show promising potential in calculating the path delay due
to tropospheric water vapour in regions of high relief and high water vapour variance,
such as Mount Etna, and that the model was able, under certain conditions, to simulate
local modifications of water vapour content by mechanisms such as land–sea breezes. Nico
et al. [38] produced synthetic phase delay maps by deploying WRF at high-resolution
(1 km) over Lisbon and the Azores in Portugal, with results confirming a good agreement
between the interferograms and WRF-derived phase delays and minor statistically relevant
differences between them. More recently, Bekaert et al. [22] produced tropospheric delay
fields with the WRF regional model over three test regions with complex topography. The
model is nested at 7 km horizontal resolution and is initiated with data from the Global
Forecast System (GFS). Results are compared with tropospheric delays obtained with
other state-of-the-art methods, including MERIS and MODIS spectroscopy, ERA-Interim,
and both the conventional linear and power-law empirical methods, demonstrating that
weather models offered better performance when atmospheric turbulence and dynamic
local weather is present. On the whole, recent studies which employ LAMs for the removal
of tropospheric artifacts from InSAR data demonstrate the ability of weather models to
calculate detailed tropospheric delay fields under any atmospheric conditions and at the
exact times of SAR acquisitions, thus offering a reliable tool for tropospheric corrections.
Indeed, it is evident that in cases of atmospheric turbulence and dynamic local weather,
weather models can offer better performance [22,37]. However, the generic configuration
and parameterization of the LAMs used in these studies have prohibited, so far, the full
exploitation of the method.

Here, our work aims to maximise the potential of using LAMs for the calculation and
removal of the tropospheric component from SAR interferograms by evaluating a novel
methodology that integrates recent advances in the fields of remote sensing meteorology
(GNSS and InSAR) and high-resolution numerical weather forecasting (WRF). We inves-
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tigate the extent to which a high-resolution WRF 1-km re-analysis can produce detailed
tropospheric delay maps of the required accuracy by coupling its output, in terms of Zenith
Total Delay (ZTD), with the vertical delay component in GNSS measurements. One of the
main limitations in the estimation of precise ZTD fields is the presence of highly variable
water vapour signals, both in space and in time, which are exhibited in the differential
atmosphere as densely distributed short-wavelength phase gradients [19]. It is expected
that the high horizontal resolution and dense vertical layering of the model will be capable
of capturing near-surface atmospheric processes, such as sea breezes, orographic flows, tur-
bulent boundary layer interactions, etc., which influence the distribution of water vapour
in settings of complex topography, such as the western Gulf of Corinth in Greece, thus
overcoming this important limitation. The model is operated with varying physical param-
eterization in order to identify the best possible configuration, with GNSS measurements
used as reference data for fine-tuning and validating the model. We then compare sixteen
Sentinel-1 interferograms with differential delay maps at the line-of-sight (LOS) produced
by WRF re-analysis and perform tropospheric corrections of the atmospheric phase screen
(APS) in the wrapped interferograms.

2. Materials and Methods
2.1. Description of the Study Area and Experimental Setup

The experiment, with the code name PaTrop (Patras–Troposphere), was implemented
to provide the data needed for this study. The PaTrop test site covers an area of approxi-
mately 130× 90 km in the region of the Western Gulf of Corinth (GoC). It is one of the most
active intra-continental rifts in the world, and therefore a region with intense seismic activ-
ity. Geodetic studies conducted over the past 20 years with continuous GNSS and InSAR
observations have revealed north–south extension rates up to 1.5 cm yr−1 [39,40], one of
the highest worldwide. A network of GNSS stations used to monitor surface displacements
in the area continuously provided the in situ zenithal tropospheric delay measurements
for our study. These include nineteen permanent Topcon GB1000 and Topcon Net G3A
receivers fitted with Topcon PG-A1 antennas, the locations of which are shown in Figure 1b.
The stations cover a wide geographical extent while capturing a variety of different to-
pographical and meteorological conditions (i.e., coastal, inland, or mountainous terrain)
at elevations between 0 and 1020 m above sea level (ASL). This was necessary in order
to account for water vapour variations resulting from orographic, coastal, and frontal
gradients that could be present.
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Figure 1. (a) Map showing the four nested domains (d01–d04) used for WRF weather re-analysis over the Western GoC
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along with the SAR swaths of the two Sentinel-1 satellites on ascending track 175 and descending track 80. The red box
indicates the location of the 1 × 1 km inner domain of the WRF re-analysis run (Domain d04).
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The first objective of the PaTrop experiment was to couple the zenithal tropospheric
delay (ZTD) derived from GNSS data with the ZTDs derived from the output of a high-
resolution meteorological model (WRF) in order to investigate the model’s capability
to reproduce the tropospheric conditions that contribute to the InSAR noise signal (in
particular the highly variable water vapour distribution) and provide a benchmark of
real observational data for validating the model output. A series of re-analysis runs were
produced to determine the best possible configuration for our study, keeping the spatial
resolution of the inner domain at 1 km, which is an approach supported theoretically
and practically to tackle uncertainties in high-resolution modelling [41,42]. A parametric
analysis was performed for a two-week period (17–29 June 2016), during which the output
of five different model configurations was tested against GNSS tropospheric measurements
from the network of permanent stations in the study area [43]. The optimum model
configuration which resulted from the analysis was subsequently employed to provide the
data for the main part of the PaTrop experiment.

2.2. WRF Configuration and Parameterization of Physical Components

For the high-resolution dynamical downscaling simulation performed with WRF v
3.7.1 [44] over the PaTrop area of the western Gulf of Corinth, four nested domains were
used (d01–d04), with a horizontal resolution of 27, 9, 3 and 1 km, respectively, as shown
in Figure 1a; two-way nested, i.e., feedback from nest to its parent domain. The vertical
layer distribution consisted of 45 sigma levels up to a height of about 20 km (0.1 hPa),
with bottom layers being more densely populated (29 layers in the first 3 km). Boundary
conditions for the model initialization were taken from the ERA-Interim global climate
re-analysis database, with a 75 km horizontal resolution, 35 vertical layers and 6 h temporal
resolution. The model was initiated every day from the ERA-Interim input data at 18:00
local time, producing 30 h simulations with the first 6 h being spin-up time. Model output
was recorded every 30 min, from which Zenith Hydrostatic Delays (ZHD) and Zenith Wet
Delays (ZWD) were calculated, which as a sum give the Zenith Total Delay according to
the following equations:

ZTD (mm) = ZHD + ZWD (1)

With:
ZHD = (2.2779± 0.0024) Ps/ f (λ, H) (2)

where Ps is the total pressure (mbar) at the Earth’s surface, and:

f (λ, H) = (1− 0.00266 cos2λ− 0.00028H) (3)

accounts for the variation in gravitational acceleration with latitude λ and the height H of
the surface above the ellipsoid (in km).

And:
ZWD = (0.382± 0.004)K2mbar−1

∫ ( pv

T2

)
dz (4)

where pv is the water vapour pressure (mbar), and T the air temperature (K), integrated
along the zenith path z. In practice, we calculated one ZWD per vertical layer, and we
added the 45 values to obtain the total ZWD.

Land-use categories were taken from USGS 24-category data, which are available for
different horizontal resolutions (10′, 5′, 2′, 30”). The initial land topography dataset used
was the Global 30 Arc-Second Elevation Model (GTOPO30) provided by United States
Geological Survey (USGS), with a 30” resolution for the smaller domain (d04), and coarser
resolutions (10′, 5′, 2′) for domains d01–d03, respectively. However, in order to test the
impact of a more detailed topography on the re-analysis output, a high-resolution terrestrial
dataset of d04 was later introduced (ASTER 1” global GDEM v2), with a horizontal grid
of 30 m.

Five different physical parameterization schemes were tested, as listed in Table 1, in
order to evaluate each scheme for its forecasting skill. The schemes were selected based
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on existing studies where similar high-resolution WRF simulations were used [41,45–47],
ranging from relatively simple to more complex and computationally demanding physical
parameterizations suited for high-resolution runs. There have been numerous studies
validating the output of different model configurations with observations under specific
conditions [41,45–47], showing that globally there is no optimal scheme, but rather, different
schemes produce better results with respect to application, domain, season, variable, etc.
Similarly, we performed a parametric analysis for a two-week period (17–29 June 2016),
during which the output of the five different model configurations was validated against
GNSS tropospheric measurements from 16 permanent stations in the study area (d04).

Table 1. WRF parameterization options used for the PaTrop sensitivity analysis.

MOD1 MOD2 MOD3 MOD4 MOD5

Microphysics
(mp) WSM3 Morrison Morrison Morrison SBU-YLin

Land surface
(sf) NOAH NOAH Pleim–Xiu Pleim–Xiu NOAH

Surface layer
physics (sfclay)

Monin–
Obukhov

Monin–
Obukhov Pleim–Xiu Pleim–Xiu MM5

similarity

Radiation
physics (sw) Dudhia Dudhia Dudhia Dudhia Dudhia

Radiation
physics (lw) RRTM RRTM RRTM RRTM RRTM

Planetary
boundary layer
physics (pbl)

MYJ MYJ ACM2 ACM2 YSU

Cloud physics
(cu)

Kain–Fritsch at
27 km

Kain–Fritsch at
27 km

Kain–Fritsch at
27 km

Kain–Fritsch at
27 and 9 km

Kain–Fritsch at
27 and 9 km

2.3. Tropospheric Correction of SAR Interferograms

Based on the results of the parametric analysis, output data from the optimal WRF
high-resolution 1-km re-analysis configuration were used to calculate precise ZTD fields
over the PaTrop study area, at the exact times of Sentinel-1 SAR acquisitions for the ascend-
ing track 175 and descending track 80 (i.e., 1630 and 0430 UTM, respectively). Resulting
Zenith Total Delay (ZTD) values calculated from specific model output parameters (surface
pressure, air temperature and water vapour profiles) were validated against a dataset
of GNSS derived ZTD values, providing point measurements at the 19 points where the
stations were located.

Sentinel-1 SAR data were used in this study for the generation of InSAR interferograms
for 2016. The two ESA Sentinel-1 satellites (S1A and S1B) have a 6-day repeat time and carry
a C-band synthetic aperture radar with a 56 mm wavelength and four operating modes.
Acquisitions with a 5 × 20 m resolution in the Interferometric Wide (IW) mode were used.
In total, 17 acquisitions were combined to produce 8 interferograms for the ascending (S-N)
track 175 and 8 interferograms for the descending (N-S) track 80. Temporal baselines ranged
from 6 days to 42 days, and perpendicular baselines were in the order of 150 m. Multilook
was 6 in range and 2 in azimuth. Processing of InSAR data was done with the European
Space Agency’s Sentinel Application Platform (SNAP) version 5.0 software [48], following
several steps: SAR image formation, co-registration, interferogram formation, flattening
(using precise orbits from ESA), and topography removing using a three arc-second (about
90 m) Shuttle Radar Topography Mission (SRTM) DEM. The final georeferenced product
was resampled at 25 m using bilinear interpolation. The tropospheric correction process
took place before unwrapping the interferogram. This was done in order to minimise phase
ambiguities and improve the reliability of interferogram unwrapping in a region such as
the western GoC, where coherence is low due to the vegetation and rough topography,
which results in geometric decorrelation [49].
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The InSAR observations examined are listed in Table 3. Average values of WRF vs.
GNSS ZTD bias are also listed in the Table. ∆bias was calculated by averaging the absolute
bias (ZTDWRF–ZTDGNSS) differences between epoch 1 and epoch 2, at the 19 PaTrop stations,
and is an indication of the model’s performance with respect to the observational data.

∆bias = ∑|( fi1 − oi1)− ( fi2 − oi2)|
N

(5)

where fi1 and fi2 denote the model value at epochs 1 and 2, respectively, oi1 and oi2 the
observational value at epochs 1 and 2, respectively, and N is the number of observations.

For the tropospheric correction, the first step was to generate differential delay maps
of the total single-path tropospheric delay at the line-of-sight (LOS) at the times of the two
SAR acquisitions. This was done by subtracting the 1 × 1 km single ZTD map produced by
the d04 WRF output of epoch 2 from the corresponding ZTD map of epoch 1 (Figure 2). In
the resulting differential delay map, LOS total delay values were calculated at each 1-km
grid cell by multiplying the corresponding ZTD value with cosθ, where θ is the average
incidence angle of the S1 swath in IW mode (35◦). These values were then horizontally and
vertically interpolated, using the weighted average inverse distance to a power gridding
method, to a new 25 × 25 m grid corresponding to the pixel resolution of the interferogram.
The resulting differential delay map was then wrapped (LOS total differences are converted
into 2π interferometric phase fringes) and subtracted from the wrapped interferogram to
produce a phase map of residuals, as illustrated in Figures 7 and 8 in the Results Section.
Before the phase subtraction, the map of differential delay was “shifted” by minimizing
the RMS between the two GeoTIFF maps so that their average zero phases were aligned.
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interferogram.
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All Sentinel-1 interferograms examined have temporal baselines between 6 and
42 days, ensuring the highest possible coherence and negligible amounts of crustal deforma-
tion between acquisitions. The coherence maps of both the ascending and descending tracks
are shown in Figure 3. There were no major tectonic events or anthropogenic processes
within the selected time series, and therefore the phase signal should mostly be attributed
to tropospheric effects. Unlike historic SAR sensors, orbital errors for Sentinel-1A/B are
expected to be small due to highly accurate orbit information [15].
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3. Results
3.1. Parametric Analysis and Validation of WRF Schemes with GNSS Data

The parametric analysis was performed for a two-week period (17–29 June 2016), with
the aim to test the effect of different WRF parameterization schemes on the model output.
Tropospheric data (i.e., ZTD values) from the CRL GNSS network provided the benchmark
for the analysis for comparison with ZTDs derived from WRF at the nearest grid point.
Five different physical parameterization schemes were evaluated, as outlined in Table 2.
Results were tested for their statistical significance in terms of correlation and bias with
respect to the observational dataset and indicated that WRF schemes MOD4 and MOD5
exhibited a better prediction skill during the test period, with small differences between
them. A summary of all validation metrics (Pearson co-efficient, mean bias, mean absolute
bias and root-mean-square error) for the five parameterization schemes is presented in
Table 2.

Table 2. Statistical indexes of WRF ZTD vs. GNSS ZTD time series—17–29 June 2016.

WRF Scheme R MB (mm) MAB (mm) RMSE (mm)

MOD1 0.69 −14.9 21.4 27.8
MOD2 0.69 −15.9 21.9 28.5
MOD3 0.73 −14.9 20.7 26.2
MOD4 0.73 −11.8 19.4 24.6
MOD5 0.74 −11.6 19.5 24.4
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MOD5 overall exhibited the strongest correlation (Pearson correlation co-efficient R)
with observations, together with a lower mean bias (MB), lower root-mean-square error
(RMSE) than other parameterizations, and smaller spread of RMSE between stations than
MOD4 (Figure 4). It was therefore selected as the optimum configuration for producing
tropospheric delay maps for the entire PaTrop period (January–December 2016) [43].

The parametric analysis demonstrated that WRF schemes that included more complex
physical parameterization (MOD4 and MOD5), although more computationally demand-
ing, are better suited for high-resolution re-analysis simulations. The physical param-
eterization of MOD5 scheme included the SBU-YLin microphysics model, with a more
sophisticated scheme for ice, snow, rain and graupel processes in the lower troposphere,
the NOAH land surface model, the MM5 similarity scheme for surface layer physics and
the YSU planetary boundary layer model. In addition, MOD4 and MOD5 used a cumulus
convection scheme in both the 27-km and 9-km domains, thus simulating processes such as
convective fluxes and the associated evaporation or condensation of water more coherently
over a complex terrain with land-sea contrasts.
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3.2. InSAR Tropospheric Correction with the Use of WRF Derived Delay Maps

In order to provide a quantitative assessment of the corrections applied in every case,
the root-mean-square (RMS) and standard deviation (SD) of the phase distribution of
both the original and the corrected interferograms were calculated and their differences
recorded. A reduction in the RMS or SD of the wrapped interferogram after the correction
was applied is a clear indication that there was a decrease in the phase gradient and
fringe continuity was smoother. Table 3 lists the RMS and SD results together with the
corresponding ∆bias value for all 16 cases examined, while Figure 5 graphically illustrates
the correlation of RMS and SD with ∆bias.
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Table 3. Dates of Sentinel-1 interferograms examined, corresponding WRF vs. GNSS ZTD average
bias differences (∆bias), and RMS and SD differences between original and corrected interferograms.

Ifg Track Dates ∆bias (mm) RMS % Reduction SD % Reduction

1 175 30/09–06/10 20.4 7.5 23.7
2 175 30/09–24/10 7.1 2.9 13.4
3 175 30/09–05/11 20.7 2.9 17.4
4 175 06/10–24/10 16.1 2.9 17.1
5 175 24/10–05/11 19 7.7 18.9
6 175 24/10–17/11 9.8 9.4 23.2
7 175 24/10–23/11 8.0 2.8 13.7
8 175 24/10–05/12 8.7 5.1 16.0
9 80 25/08–18/09 31.0 0.0 14.2

10 80 18/09–30/09 7.2 3.8 19.0
11 80 18/09–06/10 23.8 4.4 13.7
12 80 18/09–18/10 18.9 12.3 23.5
13 80 06/10–24/10 7.6 2.3 15.5
14 80 18/10–24/10 4.9 7.3 15.5
15 80 17/11–23/11 6.3 10.8 30.6
16 80 05/12–11/12 3.9 14.1 32.7Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
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Figure 5. (a) Correlation of RMS reduction between original and corrected interferograms and ∆bias. (b) Correlation of
SD reduction between original and corrected interferograms and ∆bias. Colours correspond to coherence (red = high,
green = medium).

In most cases, corrections applied to the wrapped interferograms with the use of
high-resolution WRF-derived delay fields led to a decrease in the phase gradient, as
demonstrated by the corresponding RMS and SD reductions (Table 3). The RMS of the
corrected interferogram was improved in 15 out of 16 cases, with reductions ranging from
2.3% to 14.1% (6.0% on average), while SD was improved in all 16 cases, with reductions
ranging from 13.4% to 32.7% (19.3% on average). Furthermore, the degree of tropospheric
delay correction was correlated with WRF-GNSS average bias differences (∆bias) at the
times of acquisitions. This is demonstrated in Figure 5, where the slope of the reductions
in both indicators with respect to ∆bias was inversely proportional. Cases with medium
coherence (in green) had a slightly wider error margin than cases with high coherence
(in red). When the correlation between the two indexes was plotted (Figure 6), it was
confirmed that their variability was not random and that coherence was a determining
factor (interferograms with high coherence are more likely to produce better tropospheric
corrections).
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Apart from the quantitative assessment, corrections were also assessed qualitatively,
case by case, by identifying visible improvements in fringe continuity. In wrapped interfer-
ograms, the use of numerical indicators was not always adequate for assessing the degree
of tropospheric phase gradient improvement due to potential problems with pixel decorre-
lation (low coherence) in parts of the interferogram or the existence of other components
which contribute to the phase gradient. Here, two examples (out of the 16 examined) are
shown, one for ascending track 175 (Figure 7) and one for descending track 80 (Figure 8).
Four additional examples (Figures S1–S4) can be found in the Supplementary Materials
(addendum). Case-by-case comments can be found in the legend of each figure. Summaris-
ing, we see that as a general rule, in examples where interferogram coherence is high and
the forecasting skill of the WRF simulation is good, as predicted by GNSS measurements,
the differential troposphere is significantly removed, and the residual phase map exhibits
smoother fringe continuity. However, corrections are not always visible across the whole
interferogram, first of all, because of low coherence in the western part of the image (and
other parts as well), second, because of other errors (geometrical, etc.), third, because the
model does not always recreate the differential atmosphere properly. More specifically, out
of the sixteen interferograms that we examined: (a) in cases where coherence was good
(temporal baselines usually <30 days) and ∆bias was small (between 0 and 20 mm), the de-
gree of tropospheric correction was high, resulting in a significant reduction in the density
of tropospheric fringes in large sections of the interferogram, as illustrated in example S10
(Figure 8); (b) in cases where coherence was low (temporal baselines usually >30 days) and
∆bias was small (between 0 and 20 mm), the degree of tropospheric correction was high
only in areas with high coherence, as illustrated in example S2 (Figure 7); (c) in cases where
WRF-GNSS average bias differences were high (∆bias > 20 mm), the density of tropospheric
fringes was reduced at a lesser degree, and the correction was localised in smaller areas of
the interferogram.
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Figure 7. Wrapped interferogram from SAR acquisitions on 30 September 2016 and 24 October 2016, track 175 in radar
geometry (top left). Corresponding WRF-derived wrapped differential LOS delay map (top right). The correlation
between interferogram and meteogram is directly visible, for example, in the Mornos valley (red box) or around the
Panachaikon mountain (black box) as the model’s forecasting skill was high in both acquisition epochs (∆bias low). The
wrapped differential LOS delay map generated from WRF output data was subtracted from the corresponding wrapped
interferogram to produce a map of residual 2π phase cycles (bottom). The resulting residual map, in this case, demonstrates
tropospheric corrections in several areas of the interferogram where coherence was high, leading to a decrease in the phase
gradient.
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Figure 8. Wrapped interferogram from SAR acquisitions on 18 September 2016 and 30 September 2016, track 80 in radar
geometry (top left). Corresponding WRF-derived wrapped differential LOS delay map (top right). An example of good
consistency between WRF and GNSS is also reflected in the good correlation between the interferogram and the delay map,
with short and long wavelengths being observed. In the corresponding residual map after subtraction of WRF-derived
wrapped differential LOS delay map from the interferogram (bottom), good tropospheric corrections and an overall
reduction in the phase gradient were observed across the whole extent of the interferogram.

4. Discussion

High-resolution tropospheric modeling is particularly useful in the case of single
interferograms, as the precise knowledge of meteorological parameters can remove the
main source of error from the InSAR data, which is the delay due to the atmospheric
refraction of the signal, revealing large-amplitude deformation signals (as in the case of
an earthquake). In fact, it is the wet component of the delay present in the interferograms,
which can be used to generate accurate maps of the atmosphere’s precipitable water vapor
(PWV) over large areas [50,51], thus providing a useful tool in the domain of InSAR
meteorology and vice-versa for the assimilation of interferometric SAR data into numerical
weather models.
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Although computationally demanding, downscaling WRF at 1 km horizontal reso-
lution offers a detailed reconstruction of the 3-D tropospheric field over the study area,
necessary for capturing small-scale atmospheric processes (such as sea breezes, orographic
flows, turbulent boundary layer interactions, etc.) which cannot be captured by coarser
LAMS or GAMs. Furthermore, model output was validated with the use of GNSS tro-
pospheric data retrieved from a dense array of stations (nineteen receivers) covering the
study area. Model validation with vertical column data (GNSS zenithal delays) instead
of ground measurements offers the capability of evaluating the model’s forecasting skill
over the entire 3-D field, thus enabling fine-tuning of its physical parameterization. It
was demonstrated by the parametric analysis that schemes with a more complex physical
parameterization (MOD4 and MOD5) exhibited lower bias and better correlation with
respect to the GNSS observations. Additionally, turning the cumulus convection scheme
on for both the 27-km and 9-km domains simulated processes, such as convective fluxes
and the associated evaporation or condensation of water, more coherently over complex
terrain with land-sea contrasts.

The proposed methodology was tested in a location of complex topography (western
Gulf of Corinth), where the presence of highly variable water vapour signals made the
removal of short-wavelength phase gradients even more challenging. Our results suggested
a reduction in both long-wavelength (5–50 km) and short-wavelength (<5 km) phase delays
of the wrapped phase. Residual maps exhibited a reduction in the stratified topography-
correlated atmospheric signal, but most importantly, a reduction in the difficult to detect
turbulent atmospheric signal (i.e., “wet” delay) in complex topographical structures of the
scale of a few km, such as river incisions, valleys, etc.

Interferograms with a small temporal baseline (less than 12 days) had a higher coher-
ence (i.e., pixel correlation between the two acquisitions) and the reduction in tropospheric
“fringes” was more prominent, both visually and quantitatively. In interferograms with a
larger temporal baseline, low coherence (i.e., pixel decorrelation due to system noise or
terrain changes) masked many of the tropospheric artefacts. Therefore, a combination of
high interferometric coherence and low ∆bias (average model bias difference) between the
two epochs is a good indication that the tropospheric correction will lead to a reduction in
the phase gradient.

5. Conclusions

Overall, our study demonstrated the high potential and effectiveness of using high-
resolution atmospheric modelling (WRF in this instance), for correcting the effects of
tropospheric delay on InSAR observations and correcting atmospheric phase gradients
in interferograms. The proposed methodology augments the model’s ability to predict
zenithal delays in the western Gulf of Corinth, by fine-tuning its physical parameterization
with the use of in situ ZTD measurements from a network of permanent GNSS stations.
Furthermore, by introducing a high-resolution topography (ASTER 1s DEM), the calcu-
lation of ZTD delay fields became more accurate, and bias was minimised. The use of
high-resolution Limited-Area Models (LAMs), validated by GNSS measurements, has a
number of advantages over other methods which are currently used for removing the atmo-
spheric phase screen in InSAR observations. First of all, it can be used day and night and
under any weather conditions. The method can be applied in any geographical location,
as long as the LAM is locally configured and parameterized. Model output data can be
retrieved at the exact times of InSAR acquisitions, and the high spatial resolution (1-km)
and dense vertical layering are capable of capturing near-surface atmospheric processes
where complex topography is present. Finally, model validation with vertical column data
(GNSS zenithal delays) instead of ground measurements offered the capability of evalu-
ating the model’s forecasting skill over the entire 3-D field, thus enabling fine-tuning of
its physical parameterization with the use of a high-accuracy representative observational
dataset. This is particularly useful when it comes to estimating the highly variable water
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vapour signals which were exhibited in the differential atmosphere of the interferogram as
densely distributed short-wavelength phase gradients.

Tropospheric corrections performed over a set of 16 wrapped Sentinel-1 interferograms
with the use of high-resolution WRF-derived delay fields led to significant reductions in
atmospherically-related phase gradients, with average root-mean-square and standard
deviation reductions in the wrapped phase of 6.0% and 19.3%, respectively. The actual
degree of correction was related to the WRF-GNSS ZTD average bias difference (∆bias)
between the two acquisition epochs, and this can be a useful indicator for determining
the effectiveness of the approach based on the model’s forecasting skill. Results suggest
that both the stratified and the turbulent atmospheric signal can be reduced from wrapped
interferograms. This is a fair improvement compared with predictive methods based on
coarser GAMs, which are effective in reducing only lateral variations in stratification.

The removal of the differential tropospheric signal before the unwrapping process is
beneficial for the correct estimation of the remaining noise in the interferogram. The phase
ambiguity due to the aliasing of atmospheric gradients in regions of rough topography
is reduced, and this minimises unwrapping errors. This will eventually lead to more
reliable final products, thus enabling the detection of ground deformation signals in single
interferograms (i.e., in the case of an earthquake) and improving velocity field estimates by
resolving lateral variations in stratification in InSAR time series analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13122258/s1, Figure S1: and 23/11/2016, track 175 in radar geometry (top left). Correspond-
ing WRF-derived wrapped differential LOS delay map (top right). Figure S2: 06/10/2016, track 80 in
radar geometry (top left). Corresponding WRF-derived wrapped differential LOS delay map (top
right). Figure S3: 18/10/2016, track 80 in radar geometry (top left). Corresponding WRF-derived
wrapped differential LOS delay map (top right). Figure S4: 24/10/2016, track 80 in radar geometry
(top left). Corresponding WRF-derived wrapped differential LOS delay map (top right).
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