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Abstract: Any changes to the Earth’s surface should be monitored in order to maintain and update
the spatial reference system. To establish a global model of ground movements for a large area, it
is important to have consistent and reliable measurements. However, in dealing with mass data,
outliers may occur and robust analysis of data is indispensable. In particular, this paper will analyse
Synthetic Aperture Radar (SAR) data for detecting the regional ground movements (RGM) in the
area of Hanover, Germany. The relevant data sets have been provided by the Federal Institute for
Geo-sciences and Natural Resources (BGR) for the period of 2014 to 2018. In this paper, we propose a
data adoptive outlier detection algorithm to preprocess the observations. The algorithm is tested with
different reference data sets and as a binary classifier performs with 0.99 accuracy and obtains a 0.95
Fj-score in detecting the outliers. The RGMs that are observed as height velocities are mathematically
modeled as a surface based on a hierarchical B-splines (HB-splines) method. For the approximated
surface, a 95% confidence interval is estimated based on a bootstrapping approach. In the end, the
user is enabled to predict RGM at any point and is provided with a measure of quality for the prediction.

Keywords: regional ground movement; PSI; outlier detection; uncertainty modeling; bootstrapping

1. Introduction

Monitoring the RGMs and detecting any changes to the Earth’s surface is important
in updating the spatial reference system [1]. This is especially of high interest in areas that
are affected by activities such as salt mining, gas, and oil extraction, as well as fossil fuel
storage. In this research, we focus on the modeling RGMs. The area under study is located
in the region of Lower Saxony in Germany.

Ground movement detection on a large scale depends on the measurement approach,
as well as the modeling technique. One necessary step is to mathematically model the
measurements as a surface, therefore allowing the user to predict the changes to the Earth’s
surface at any position where measurements could be unavailable. The modeling and
spatial representation of such data come with different challenges. These types of data are
usually contaminated with noise and outliers and the main challenges include the irregular
distribution of data and the high variability of the precision of the measurements.

From the aspect of the measurement approach, there are different methods that can be
applied to track the changes through repeated point-wise measurements. Conventional
surveying approaches, such as levelling, the Global Navigation Satellite System (GNSS),
or total station will result in a limited number of observations. Although the resulted ob-
servations are considered precise, they have low spatial density and are usually restricted
to known geodetic stations. Additionally, these approaches are typically expensive, time-
consuming, and usually labor-intensive [2—4]. The disadvantage of sparse measurements
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can be mitigated by using satellite-based remote-sensing methods that can provide obser-
vations on a larger scale. The advanced methods of Interferometric Synthetic Aperture
Radar (InSAR), particularly the Persistent Scatterer Interferometry (PSI), are able to detect
and quantify the ground deformation in the range of millimeters per year [mm/year] in
many application fields [5-8]. In the current study, PSI observations are used to model
RGM specifically in the area of Hanover in Lower Saxony, Germany.

The PSI observations are prone to outliers. There are observations that might deviate
from the global or local distribution of the whole data set. Hawkins [9] defines an outlier as
“an observation that deviates so much from other observations as to arouse suspicions that it
was generated by a different mechanism”. The PSI observations show high spatial variabil-
ity due to different movement behavior of neighboring scatterers. These variations might
represent only an anomaly related to individual object movements, that does not necessar-
ily follow the global ground movement in the region. To accurately model the true RGM,
detecting and removing these outliers is an important step. There are a variety of methods,
which have been developed to detect outliers specifically in the field of statistics [9,10]. According
to Papadimitriou et al. [11], they are mainly categorized into distance-based, density-based,
clustering-based, depth-based and distribution-based methods. Distance-based methods
were first introduced by Knorr et al. [12], and applied by, for example, Shen et al. [13],
which defines an outlier as a point from which a certain portion of the neighbouring data
has a distance more than a specific threshold. However, such a method can lead to problems
when it comes to non-homogeneous distributed data [14]. Breunig et al. [14] proposed a
density-based approach, which is based on the Local Outlier Factor (LOF). This factor could
be derived by analyzing the data distribution density. In clustering-based approaches,
those data which are not assigned to any cluster are labeled as outliers [15]. Clustering for
detecting outliers have been used in different applications, which deal with point clouds,
such as laser scanning data and sonar data [16,17]. Distribution-based approaches focus
on a standard distribution model (e.g., Gaussian) and identify outliers as those points that
deviate from this distribution [9,10]. Finally, the depth-based approaches concentrate on
computational geometry, and the data are divided into different layers, wherein shallow
layers are more probable to contain outliers [18,19].

In detecting anomalies for spatial data, one should consider an important characteristic
of these data types, which is spatial correlation. Tobler [20] expresses this as: “Everything is
related to everything else, but near things are more related than distant things”. Algorithms
designed to deal with spatial data can be categorized into graphic approaches [21,22] and
quantitative tests [23,24]. The methods of Scatterplot [23] and Moran Scatterplot [24] can
be mentioned, which work with quantitative tests in detecting anomalies. In the direction
of quantitative testing, Liu et al. [25] used a local adoptive statistical analysis to detect
outliers, which was tested on SAR data. Lu et al. [26] proposed several statistical outlier
detection algorithms, and similarly, Chen et al. [27] introduced a robust median algorithm
to detect spatial outliers.

In this paper, a data adaptive algorithm is proposed to process the data and identify
the outliers. The anomalies are detected based on the deviation of the observations to a
fitted model in a hierarchical approach. The algorithm considers local behavior of the data
while globally testing the deviations of the observations to the model.

The other aspect in detecting RGMs is the modeling technique, which is mainly the
problem of finding the underlying function in the data set as a continuous surface that
best describes the behavior of the data. This makes it possible to propagate information
from the positions where information is available to new positions where no data exists.
Despite a flurry of activity in this area, scattered data interpolation remains a difficult
and computationally expensive problem. Mostly, the developed approaches do not allow
different data distributions or remain computationally inefficient [28,29]. In modeling
such data, one needs to consider the fact that it contains both deterministic and stochastic
parts [30]. Deterministic approaches mainly focus on the trend in the data, for example,
traditional polynomial surfaces and free-form surfaces, such as Bézier, B-splines, and non-
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uniform rational B-splines [31] (see Bureick et al. [32]). The stochastic methods model the
stochastic part of the data based on the spatial correlation among the data sets. The Least
Squares Collocation [33], Gaussian Processes [18] and Kriging [34] are examples of such
stochastic approaches.

In practice, for large data sets with high variability and large spatial gaps, it is chal-
lenging to choose a suitable approach. Mohammadivojdan et al. [35] modeled such a
dataset by using both ordinary Kriging and Multilevel B-splines Approximation (MBA)
methods. Ordinary Kriging is a powerful stochastic method that uses variograms to model
the correlation among data points; however, this approach has several drawbacks. Firstly,
as a stochastic method, this method best models the stochastic part of the data; therefore,
in order to have a reliable estimation, the trend in the data should be modeled separately.
Additionally, this method is computationally expensive, especially for large data sets.
In this study, an approach based on HB-splines was adopted to model the PSI observations.
Forsey and Bartels were the first to introduce a method for HB-splines refinement to inter-
polate a grid of data [36-38]. Lee et al. [29] proposed a similar approach that is also able
to approximate scattered data. The suggested MBA method generates a series of bicubic
B-splines functions based on a coarse to fine control lattice hierarchy. The approximation
at each level is improved by a correction term from the next level, and the sum of all the
levels forms the final approximation. Compared to Ordinary Kriging, the deterministic
method of MBA does not require a separate model for estimating the trend, takes less
computational time, and shows robust behavior against data gaps. At the same time,
the disadvantage of the MBA approach lies in model selection and choosing an optimal
control lattice hierarchy [35].

It is of high importance to also model the uncertainty of the approximated RGM. There-
fore, based on the modeled movement, a user should be able to predict deformation at any
position and have a measure of quality for the prediction. The uncertainty in the model can
be due to different reasons, namely noise and data gaps. The approximated model based on
MBA in each level is derived based on least squares minimization. Therefore, based on the
precision of the observations, an uncertainty measure could be derived mathematically for
the approximated model. However, the final model in MBA consists of more than one level.
Because each level is derived from the previous one, a highly mathematical correlation
exists between different levels. This makes the error propagation and the consideration
in an appropriate stochastic model a challenging process. Consequently, mathematically
modeling the uncertainty for the Multilevel method is not optimal, and for large data sets
the process is not computationally practical.

In order to solve this issue, a non-parametric approach based on the bootstrapping
method is adopted to approximate the sampling distribution of the estimated RGM. Boot-
strapping is a computer-intensive method, which can be used to obtain the sampling
distribution of an estimate. It was first introduced by Efron et al. [39,40]. The method is
based on intensive resampling from a limited existing sample and generating new samples.
Using the information from all samples, one can derive the bootstrap sampling distribution.
The standard error or confidence interval of an estimate can be derived based on the
bootstrap sampling distribution. However, in terms of PSI observations and approximation
surfaces, this non-parametric approach provides the uncertainty of the approximated sur-
face. The uncertainty will mainly represent the quality of the model, reflecting the general
noise and data gaps.

The rest of the paper is organized as follows: Section 2 gives an overview of the data
set that is used in this paper. Section 3 provides a detailed explanation of the implemented
methodologies, including the basics of the surface-based modeling method and an overview
of the implemented bootstrapping approach. In Section 4, the computational results of
applying the above-mentioned methodologies on the data set of interest are analysed and
evaluated. The main outputs of the research, along with the strengths and limitations of
the methods, are discussed in Section 5. Section 6 concludes and provides a discussion on
the characteristics of the developed method, and possible opportunities are presented.
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2. Data

Deformation of the Earth’s surface can be caused by various geological processes
or anthropogenic measures. Due to its high temporal and spatial resolution, radar inter-
ferometry provides valuable data for detecting areas influenced by ground movements.
The analyzed motions in the area of Hanover are based on SAR data from the Sentinel-1
mission, which is part of the European Space Agency (ESA) Copernicus Earth observation
program [41]. The identical radar satellites Sentinel-1A and Sentinel-1B were respectively
launched in April 2014 and April 2016, and offer a revisiting time of 6 days on a shared
orbit plane. The radar satellites operating in C-band have a spatial resolution of 5m x 20m
in Interferometric Swath mode and scan the Earth’s surface over a width of approximately
250 km. The data set for this paper provided by the BGR was generated by using PSI-WAP
(Wide-Area-Product) processing [42], and contains 319226 PSI velocities. To mitigate possi-
ble large-scale errors, such as residual orbital or atmospheric errors, the PSI-WAP analysis
includes independent velocities from GNSS reference stations for calibration. In the color-
coded points in Figure 1, the area with ground movement caused by salt mining in the
west of Hanover near Wunstorf is clearly visible. Besides this, the clustering characteristic
of PSI information in urban areas and the data gaps in rural regions become apparent.
The presented data material originates from an ascending satellite orbit, which covers an
acquisition period from 13.10.2014 to 01.04.2018. Overall, the PSI processing contains 138
SAR images, from which the acquisition of 20.09.2016 was selected as a master scene. The
derived velocities were determined in the line of sight (LOS) of the satellite and projected
vertically by assuming no horizontal displacement. Horizontal displacements, especially
in local ground motion areas, may lead to systematic errors of derived height changes if
neglected. To separate the LOS-movement into vertical and horizontal components, a com-
bined solution of data from ascending and descending radar satellites is necessary [43],
which is out of the scope of the current paper.
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Figure 1. Provided velocity information in the Hanover area by PSI processing.

The provided PSI information is corrupted by a high level of measurement errors.
The measurement errors can be divided into two parts: noise and outliers. The noise in the
data expresses the precision of the measured samples. By considering prior knowledge
about the performance of the measurement system, this can be considered in the surface
modeling process.
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The second type of errors, outliers, are those observations that do not follow the
general behavior of the neighboring points. The existing outliers can be caused by various
influencing factors, such as insufficient state modeling of the unknowns in PSI processing.
In addition, very local displacements (e.g., subsidence of new buildings) can also lead to
anomalies, which in practice do not represent the ground motions in wider areas. Before
any further processing and interpretation of the PSI velocities, the outliers have to be
eliminated from the data. Those outliers which are due to very local displacements in a
short period of time can usually be detected via a temporal outlier detection process [1]
(Section 2.1). The rest of the spatial anomalies are to be detected in spatial outlier detection,
which is the main focus in this research (Section 3.1).

2.1. Temporal Outlier Detection

The existing outliers in the time series of the scatters can be caused by local dis-
placements in a short period of time. Hence, the time series of the height changes of the
persistent scatterer were analyzed first, since they show varying quality levels. In order to
identify time series with high measurement noise, a temporal outlier detection approach
with subsequent elimination is adopted [1]. For this purpose, the time series of the PSI
points are de-trended (by using a linear regression model) and the remaining residuals
serve as a measure for the variability. If the standard deviation of the de-trended time
series exceeds the defined experimental threshold of 6 mm, the scatterer is considered as
an outlier and excluded from further processing.

Even after temporal filtering, the PSI velocities still show high spatial variability due
to different movement behaviors of neighboring scatterers. Therefore, to remove such
high-frequency outliers from the data set, a spatial outlier filtering has to be performed.
Details about the adapted method is explained in Section 3.1.

3. Methodology

Detailed explanation of the methodologies adopted to model the PSI data are pre-
sented in the following section. Figure 2 presents a flowchart of the main steps and
framework of the whole process.
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Figure 2. Flowchart of the main methodologies adopted.
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3.1. Spatial Outlier Detection: Data Adaptive Outlier Detection

Some observations that might deviate from the global or local distribution of the whole
data set: As described in Section 2, the PSI velocities show high spatial variability due to
different movement behaviors of the neighboring scatterers. This behavior might represent
individual object movements, which does not necessarily represent the global ground
movement in the region of interest. These anomalies should be detected and eliminated
before modeling the RGM. A data-adoptive algorithm is proposed to process the data and
identify the outliers. The outliers will be identified based on their deviation or distance
to a fitted model. The model is based on least squares minimization, which estimates a
HB-splines surface to approximate the data. The chosen method is based on MBA that is
described with details in Section 3.2.

The aim is to assess the distance of the observations to the approximated model.
The observations with the highest deviation are more suspected to be outliers. However,
two issues should be considered: firstly, if the model is not able to detect the local behavior
of the data, or in other words, the model has some smoothing effect, some correct data may
be misclassified as outliers. More precisely, some large deviations may be detected as a
result due to the low complexity of the model. The second issue is the masking effect of
the outliers, meaning that if there are extremely large outliers in a neighborhood, it may
affect the model estimation. Consequently, the estimated model will be shifted toward the
outliers and some correct observations might be misclassified as outliers, or some genuine
outliers may not even be detected.

In order to mitigate these challenges, the process of detecting outliers is broken down
into a few iterations. At every iteration, we model the data. Then, the deviations of the
data to the model are calculated. The estimation of the model is based on least squares.
Therefore, the assumption is that the residuals, or the deviations to the fitted model, are
normally distributed. Considering the distribution of the residuals, those data points with
residuals larger than a threshold are identified as outliers. The threshold for distinguishing
between outliers and clean data is defined as a multiplication of the residuals standard
deviation () by a factor (T). In this paper, based on a sensitivity analysis, T is chosen
to be 3, and the process of choosing this parameter will be explained in more detail in
the following. Then, the detected outliers are eliminated, and the remaining data will be
processed in the next iterations. The iterations will be terminated when the distribution of
the residuals is close to the expected noise of the data set (Algorithm 1). The reason for this
criterion is that the goal is detecting outliers, avoiding over-fitting the data, and modeling
the noise. An overview of the adopted symbols in the Algorithm is presented in Table A1l
(Appendix A).

Algorithm 1: Outlier detection algorithm.

1 Input: observations P = [x y z], ® = {®!,®?,.., ®T} , expected noise in data 0, multiplayer T
2 Output: cleaned observations P’ , outliers O
3 Initialization:

4 O=[]

5 141

6 while o, >0, do

7 compute &' from P (see Section 3.2)

8 estimate f(x, y) (see Section 3.2)

9 estimate residuals (r):= f(x,y) — z
10 0, := standard deviation of residuals
1 O' := points with residuals larger than T.o;
12 P’ := points with residuals less than T.o;
13 i<—i+1
14 0 =1[0;0/]
15 P=P
16 check criterion: compare o, and o,

17 return P/, O
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In the first iteration, a coarse global model ®! is used to approximate the observations
P. It will result in a rough approximation of the data. However, for choosing the initial
model, a minimum complexity should be considered. A very simple model would result
in assigning normal observations to outliers O, which could be avoided by taking into
consideration prior knowledge about data behavior. In each iteration, the complexity of
the model increases. Increasing the complexity of the models from one iteration to the next
will help to gradually take the smoothing effect of the approximation into account.

In order to assess the accuracy of the proposed method, the outputs are compared
with reference data in which the genuine outliers are already known. For this purpose,
a reference data set is simulated. The simulated data are a point cloud with three compo-
nents. Only the z-component is stochastic, while the x- and y-components are assumed
to be deterministic. The simulated data set consists of three parts: trend, noise and out-
liers. The noise is generated from a Gaussian distribution with zero mean and a standard
deviation of 0.05 m. In addition, the outliers are randomly generated from a Chi-square
distribution. The range of the Chi-square distribution lies in the 15% tails of a Gaussian
distribution with zero mean and standard deviation of 0.5 m. The simulated data represent
a scenario in which the measured data contain noise, as well as large outliers. A realization
of the simulated reference data is illustrated with different parts in Figure 3. To ensure
the functionality and performance of the algorithm, it is tested in a Monte-Carlo (MC)
simulation. In each MC run, a new set of noise and outliers are generated.

() (d)

Figure 3. One realization of the simulated reference data. (a) Trend. (b) Noise. (c) Outliers. (d) Trend + Noise + Outliers.
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The algorithm can be seen as a binary classifier that categorizes the points into inliers
and outliers. The two outcomes of the classifier can be positive (outlier) and negative
(inlier). The results can be expressed in a two-by-two confusion matrix (Table 1). True
Negative (TN) and True Positive (TP) present the outcomes in which an actual inlier and an
actual outlier are correctly predicted, respectively. False Negative (FN) and False Positive
(FP) represent the cases where an instance is assigned to the wrong class. To assess the
performance of the algorithm, four measures of precision, recall, the F;-score, and accuracy
are used, which are calculated based on the following formulas (Equations (1)—(4)).

Table 1. Confusion matrix.

Actual
Inliers /Negative Outliers/Positive
Inliers /Negative True Negative (TN) False Negative (FN)
Predicted - " " "
Outliers/Positive False Positive (FP) True Positive (TP)

Outliers correctly classified (TP)

L 1
precision Total outliers classified (TP+FP) )
Outliers correctly classified (TP)
II= 2
reca Actual Outliers (TP + FN) @
Fj-score = % 3)
L4
precision ' recall
accuracy = TP+ 1IN (4)
Y = TP TN + FP + FN

The results of the algorithm for different percentages of outliers and noise levels are
presented in Table 2. Each measure is the median of all calculated values for 1000 MC
runs. The whole simulated data set consists of 6561 points, and in the three scenarios,
the generated outliers are 5%, 10% and 15% of the data. The level of noise also varies for
three cases, and it shows the standard deviation of the Gaussian distribution from which
the noise is generated. For noise with ¢;, = 0.05 m, by considering 5% outliers, precision is
more than 90%. This means that the ratio of the correctly classified outliers is high. Recall or
sensitivity shows the ratio of detected outliers to the actual outliers. A recall of 1 means that
all the outliers are detected. However, some inliers are also classified as outliers (here the
median is 34). Such wrong classifications are best expressed by a F;-score, which is the
harmonic mean of precision and recall. For 10% of outliers, the algorithm still performs
well; however, this is no longer the case for 15% of outliers. Although with high percentages
of outliers the precision is still good, the sensitivity of the algorithm is decreased. Such
an effect can be improved by optimizing the selected criteria for eliminating the outliers
in each step, which is not the focus of the current paper. Furthermore, by increasing the
noise level, the sensitivity is affected. This is more critical when the noise level is close to
the outliers’ distribution; meaning with a high level of noise, it is difficult to distinguish
between the noise and outliers.



Remote Sens. 2021, 13, 2246 9 of 23

Table 2. Accuracy measures of the classification into outliers and inliers for simulated data for different scenarios (each
measure is the median of 1000 MC runs).

Noise Level (o) 0.05m 0.1m 0.5m

Outlier Percentage (O) 5% 10% 15% 5% 10% 15% 5% 10% 15%
N 6199 5862 5529 6206 5859 5539 6215 5900 5575
FN 0 0 483 0 0 578 189 573 938

FP 34 43 48 27 46 38 18 5 2

TP 328 656 501 328 656 406 139 83 46
Precision 091 0.94 091 0.92 0.93 0.91 0.89 0.94 0.96
Recall 1 1 0.51 1 1 0.41 0.42 0.12 0.05
Accuracy 0.99 0.99 0.92 0.99 0.99 0.91 0.97 0.91 0.86
Fl-score 0.95 0.97 0.65 0.96 0.96 0.57 0.57 0.22 0.09

To choose a suitable threshold for detecting outliers in each iteration of the outlier
detection algorithm, we performed a sensitivity analysis. The value of the threshold is
increased incrementally by changing the multiplayer T between 1.5 and 5. The performance
of the algorithm with respect to different threshold values in the range of [1.50;,50;] is
illustrated in Figure 4, by means of the four mentioned parameters: precision, recall,
accuracy and Fj-score. In Figure 4, the results related to the three mentioned scenarios
and the different outlier percentages are presented. The best performance of the algorithm
occurs when factor T is in the range of [2.8,3.5], for the first two scenarios where 0, is
0.05 and 0.1. The optimal value of the factor T is also sensitive to the outlier percentage.
For lower percentages, higher T values would suffice, and where more outliers are included
in the data, smaller values perform better. As explained previously, the last scenario
(0w = 0.5) does not perform well even with different T values. The reason is the high
range of noise, which makes it difficult for the algorithm to distinguish between noise and
outliers. In this paper, for the factor T, the value of 3 is chosen and used.

o =0.050_ =5% g =01,0 =5% o =050 =5%
n p n p n p

- —

Figure 4. Results of sensitivity analysis; performance of the outlier detection algorithm with respect to different values of
the chosen threshold.
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3.2. Multilevel B-Spline Approximation (MBA)

According to Section 2, the PSI observations of interest here represent a large area.
The 3D point cloud of PSI observations can be described as scattered data, since only
vertical velocities are considered. The data set contains a high level of noise, and due
to the clustering characteristics of PSI observations, especially in urban areas, the data
set is irregularly distributed. This varying density of the point cloud causes large areas
with very low density or no observation (data gap). The scattered data set does not
provide information on the connectivity between the points, and considering the mentioned
characteristics of the data, the global behavior is not visible. Therefore, it is important
to understand the underlying pattern in the data. By finding a suitable mathematical
model that describes the underlying function, the noise in the data can be eliminated and a
prediction surface for the data gaps derived, and as a result, the global behavior of the data
set will be uncovered.

In conversion from discrete points to a continuous surface, a deterministic technique
based on free-from surfaces is used [44]. The MBA method is an approximation method
based on hierarchical tensor product B-spline surfaces. This method was first developed in
the 1990s for specific image-processing applications, such as image morphing [45,46]. Lee
etal. [29] introduced a modified version of this approach that can handle scattered data. The
B-spline surface is defined by a control lattice ®,, , that contains (m + 3) x (n + 3) control
points. If we assume ®,, ,, is overlaid on the domain Q = {(x,y)|0 < x < m,0 <y < n},
any control point ¢;; on the lattice ®y, , overlaps with the integer values of (). The B-splines
surface f is defined as a linear combination of uniform bicubic basis functions (By(s), B;(t))
and control points of a control lattice ®, whereini = |x] —1,j = |y] —1,5s = x — [x],

t=y— Lyl

3 3
Foy) =YY Bi($)Bi(t)is(j1)- @)
k=01=0
The uniform cubic basis functions Bi(s) for 0 < s < 1 are defined as follows,
(1-5)3
B = ,
o(s) 6
353 — 652 +4
Bi(s) = %
(6)
(—3s% +3s2+3s+1)
By(s) = G
3
s
B = —.
3(s) G

Similarly, the basis functions B;(t) are calculated. Let P;j = {(x¢,Yc,2c) € Pli —
2 <x.<i+2,j—2 <y < j+2} be the proximity data points of each control point.
The proximity data are those points that lie in the 4 x 4 neighborhood of a control point ¢.
For each point P; in the proximity data set of a control point, one solution can be derived
¢c. The unique solution ¢;; for a control point is derived from minimizing the error term
(wegij — wee) for all points, wherein we = By(s)By(t), k = (i+1) — [xc], 1 = (j+1) — [yc],
s = X — [xc], t = ye — |yc]. The minimization is solved by means of a Least Squares
method, and the final solution is as follows:

ZC w%(PC
Yo w?
23%732”?”2. It should be noted that when the proximity data set is empty,

a=0 ~=b=0 ““ab
it implies that ¢;; does not influence the B-splines surface function (Equation (5)) and
therefore, any value can be assigned to the aforementioned control point. In this case, here
a value of zero is assigned to ¢;.

$ij = 7)

wherein ¢, =
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In their proposed algorithm for MBA approximation, Lee et al. [29] used a hierarchy
of control lattices to generate a sequence of f;. The sum of all B-splines surfaces in the
hierarchy approximates the final desired surface. The approximation starts with a rough
estimation, and the resolution of the control lattices increases in each step. For approxima-
tion, at the first step, a hierarchy of control lattices &g, P1,..., P, are defined, where the first
control lattice is ®(, and the lowest number of control points is the coarsest one. On the
other hand, the last control lattice, ®;, is the finest control-point lattice, which contains the
highest resolution of control points. The approximation process starts with the coarsest
control-point lattice (®g). Afterwards, by using the deviation of the estimated function to
the original observations Az based on (@), the control lattice of the next level is estimated.
Such a process should continue until the last control lattice is estimated. In general, at each
level k, for estimating the control lattices, the function f; is calculated based on Akz,..

k-1
Az=z-Y filx,y) =a"z2— fi 1(x,y) ®)
i=0

A’z =0 )

The final approximation function is defined as the sum of functions in the hierarchy
as follows,

k—1
fmwzgnmw (10)

As mentioned, the PSI data is a large data set that also contains large data gaps. These
gaps in the data not only introduce uncertainty to the modeled surface, but also create
numerical instability. The characteristics of MBA make it suitable to model the PSI data.
The proposed MBA algorithm by Lee et al. [29] is computationally efficient and the method
can easily handle large data sets. The model is numerically stable because in the estimation
of the unknowns, no inversion is required, and in combination with the regularization
option in the function, the method is powerful in dealing with data gaps.

3.3. Bootstrapping

The final approximated model is influenced by different elements, such as measure-
ment error, data gaps and the complexity of the chosen model. Therefore, it is important for
a user to have a measure of quality for the approximated surface. Based on the explained
method in Section 3.2, the approximated model based on MBA in each level is derived with
least squares minimization. Therefore, mathematically, a measure of uncertainty for the
model can be derived based on the precision of the observations. However, the final model
in MBA consists of more than one level. The levels are approximated sequentially based on
the previous ones. This creates a highly mathematical correlation between all layers. This
makes error propagation a challenging process. Doing so makes the process computation-
ally expensive and impractical in cases where there are large data sets. To overcome this
problem, we have adopted a non-parametric method called “bootstrapping”.

Bootstrap is a computationally intensive method, which was first formulated by
Efron et al. (e.g., [47,48]) to simulate a statistic distribution. This method provides the
possibility of inference from an existing sample with a limited size and no information
about the data distribution. The idea is to intensively resample from the existing samples
to generate new ones. The new samples are called “bootstrap samples”. Afterwards,
information from the empirical distribution of each bootstrap sample could be extracted.
Combining the information from all bootstrap samples will provide the possibility to infer
the distribution of the desired statistics related to the main population. Here, the goal is
to get information on the distribution of a predicted point through bootstrapping. The
variations of the predicted point, or in other words, of the model at a given location, need
to be investigated by applying different bootstrap samples. The variations will result in
a histogram showing the distribution of the predicted point. From this distribution, we
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can describe the standard deviation and confidence interval of the predicted surface at a
specific position.

In the first step of calculating the standard deviation ¢ of the approximated surface
based on this method, the bootstrap samples (P*) should be formed. A bootstrap sample is
generated from the original observations (P). Any point in the bootstrap sample is drawn
randomly and with equal probability from the original sample. In practice, the size of
the original sample may be large, and it might not be possible to enumerate all possible
bootstrap samples. Instead, a large number (B) of bootstrap samples are independently
drawn from the original sample.

In the scope of this paper, the goal is to get the standard deviation of the approximated
surface based on the original PSI observations P at a desired position. Based on each
bootstrap sample, a surface is approximated, which leads to available predictions at
the desired position from all bootstrap samples at the end (P;;;' .7)- This will represent
the possible variations of the prediction and its distribution. Based on the distribution,
the related bootstrap standard deviation (0p,otstrap) can be calculated as follows,

ZB (P*z — Px )2 P*i
i=1\" pred pred . % B pred
OBootstrap = \/ (B — 1) , with Pprgd = Zi:1 B’ (11)

wherein P;‘r .4 Tepresents the mean of the bootstrap predictions at the desired position.

A confidence interval (CI) of the predicted surface can also be obtained non-parametrically.
For a specific significance level of &, a 100(1 — 2a)% CI can be computed based on the
sorted predicted values from the smallest to the largest [49,50]. The lower and upper
bound of the CI are the (B + 1)ath and (B + 1)(1 — «)th values, respectively. In the case of
non-integer numbers, the nearest integer value is selected. Figure 5 illustrates the explained
bootstrapping algorithm which is implemented (see Algorithm 2). An overview of the
adopted symbols in the Algorithm is presented in Table A1.

Bootstrap ! Estimate surface Approximate at a

: . . Further inference
samples ! model paremeters desired location

. 4
d); — Piop

JBootstrap

Figure 5. Overview of the implemented bootstrapping algorithm.

As a result, point-wise standard errors can be derived. We can get information
on possible variability of the prediction. The bootstrapping algorithm does not require
theoretical calculations and provides information even for complicated problems. It should
be noted that the dispersion of the distribution related to a predicted point is dependent on
the observations, as well as the complexity of the modeled surface. Additionally, in areas
with less observations, the distribution will be stretched. Moreover, if the chosen model is
over-fitting the data, it leads to an increase in the uncertainty range.
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Algorithm 2: Bootstrap Algorithm.

1 Input: observations (P)
2 Output: distribution of prediction D; bootstrap standard deviation (¢peotstrap), 95% confidence interval

(€n

3 fori=1:Bdo

4 generate bootstrap sample (P*') from (P)

5 approximate the model (®*') based on P*!

6 make prediction (P;;'B 4) at the desired location based on o
7 let distribution of predictions D := {P;;rlg " P;rze g P;ri i)

8 Compute 95% CI of D
9 Compute ggotstrap Of D (Equation (11))

4. Results

This section entails the results of applying the explained methods from Section 3 on
the data set of interest (Section 2). In the first step, the data are pre-processed (Section 4.1) by
using the proposed outlier detection algorithm (Section 3.1). After eliminating the outliers,
in Section 4.2, the observations are modeled as a continuous surface according to the explained
surface approximation technique in Section 3.2. At the end in Section 4.3, 95% Cls are derived
for the approximated surface based on the bootstrapping method (Section 3.3).

4.1. Pre-Processing of Data

The real data, introduced in Section 2, are first processed for spatial outliers based
on Algorithm 1. The data set contains 301,386 observations. After running the algorithm,
15,201 outliers from 301,386 data points are detected. The process takes five iterations. The ini-
tial model starts with two levels &' {®P105, D010} and in each iteration, one layer is added to
the control lattice hierarchy in such a way that the next layer has five more control points in
each direction. The noise level in the data are not known, and therefore based on the dispersion
of the data around zero, a suitable noise level is chosen as a stop criterion for the algorithm.
Since the data are not normally distributed and also contain outliers, two-thirds of the standard
deviation is used. In Figure 6, the histogram of residuals from different iterations is illustrated.
The improvement in the shape of the histogram of the residuals from one iteration to the other
could be seen. The final histogram is still not exactly normally distributed, but it is symmetric
and is centered around zero. Figure 7 illustrates the detected outliers and shows reduction of
noise in the observations.

The genuine outliers are not known in this case, and therefore, to evaluate the accuracy
of the proposed algorithm, we try a comparison to a similar study. This data set has been
processed by Brockmeyer et al. [1]. They used a local neighborhood analysis to identify
the outliers. By comparing the individual PSI velocities with the associated neighborhood
functions, spatial variations are detected as outliers with a given probability of error [1].
As a result of the conducted outlier detection, 15,609 PSI velocities were detected as
outliers. This method has two disadvantages: firstly, it only compares the points locally,
and secondly, it requires a high computation time. Because each point is tested individually,
it therefore becomes even more challenging in large data sets. The output of our algorithm
is compared with results of [1], which are shown in Table 3. The results show high
compatibility of the estimations from both algorithms. The precision and accuracy is high
in comparison to recall, which means that the algorithm has classified some of the outliers
from [1] as inliers.
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Figure 6. Histogram of residuals; the red lines shows the best-fitted normal distribution to the residuals at each iteration in

the outlier detection algorithm.
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Figure 7. Detected outliers (red points) and the clean observations (blue points). (a) 2D view. (b) 3D view.

Table 3. Comparison of the proposed algorithm with the results from [1].

Accuracy Measure Precision Recall Accuracy F-Score

Value 0.93 0.89 0.99 0.91

4.2. Approximation of RGM

The next step after pre-processing the data and eliminating the outliers is to math-
ematically model the height velocities followed by approximating a continuous surface,
which represents the RGM in the area of Hanover. The RGM is approximated based on
the MBA method (Section 3.2). Based on the nature of the data set and prior information
of the general ground behavior of the region, a control lattice hierarchy of three levels
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D { D105, D2o,10, P25,15} is used. Figure 8a illustrates the approximated surface along with
the observed height velocities. In more detail, the approximated RGM is presented in
Figure 8b as a color-coded map. Aside from local movements (in the range of (—2,1)
[mm/year]) to the Earth’s surface, a large movement up to —6 [mm/year] is observed in
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Figure 8. Approximated RGM of Hanover based on PSI observations: (a) 3D view of the approximated surface and the
observations, (b) heat map of the RGM.
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4.3. Confidence Interval

Even after pre-processing and eliminating the outliers, the remaining PSI veloci-
ties contain high levels of noise. Additionally, spatial distribution of the velocities is
non-homogeneous, and there are large areas with sparse observations (Figure 7a). This
introduces a high level of uncertainty to the approximated RGM model (Section 4.2). To de-
rive an uncertainty measure that best describes these effects on the approximated model,
the bootstrapping method is implemented in accordance with Section 3.3.

As described in Section 3.3, at first, the bootstrap samples are generated. The ob-
servation sample after eliminating the outliers still consists of 286,185 points; therefore,
practically all the 286,185%%618% possible samples cannot be formed. Instead, a large number
of bootstrap samples (B = 1000) with equal probability is drawn from the observations.
Afterwards, for each bootstrap sample, the RGM is modeled.

To assess the quality of the approximated model, the difference between the PSI
velocity and the predicted value can be used as an error measure. These differences or
residuals are calculated for all the points in the observation set, over all approximated
models related to the bootstrap samples (P;;' »2)- The results for all residuals (1000 x 286,185)
are illustrated in Figure 9. The histogram shows that the residuals are symmetrically
distributed. However, there is a number of large deviations (around 20 [mm/year]) related
to a specific area in the observations where sharp local deformations have been observed,
which was not detected by the adopted model.

— Mean = 0.003

0 ) 10 15 20
Residuals [mm]

Figure 9. Histogram of approximation error (residuals) for all points and all bootstrap samples. Residuals are defined as the

difference between approximation and the observation.

In more detail, the variations of predictions (P];F ; od
for 10 arbitrary points are assessed. The 2D view of the location of these 10 chosen points
along with the histograms are shown in Figure 10. Histograms show less variations in
areas with more observations. The spread of the histograms is also affected by the spatial
distribution of neighboring points. This effect can be seen, for example, in the difference in
histogram for point 1 and point 6. Point 1 is located in an area with many observations in
the neighborhood. On the contrary, point 6 is in a sparse area. Such a neighbourhood effect
is directly reflected in the spread of the derived histograms and the corresponding boot-
strap standard deviations (0;, for point 1 and 6 is 0.008 and 0.04 [mm/year], respectively).
The histogram of observations for the points individually is not symmetrically distributed
in all cases; however, the histogram of all the points for the whole region represents a
symmetric distribution (see Figure 9).

) through all bootstrapping iterations
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Figure 10. Histogram of predicted value based on all bootstrap samples in 10 arbitrary points. (a) Observations and
10 chosen points (red). (b) Histograms.

Based on the performed bootstrapping process, a 95% confidence region can be
obtained for the whole area. The Cl is calculated from the quantiles of the bootstrap predic-
tions. In Figure 11, the range of the Cls is represented as a color-coded surface. The range
is derived based on the difference between the lower and upper bounds of the 95% per-
centile interval. For the whole area, the lengths of the CIs are between 0.01-0.4 [mm/year].
The minimum and maximum bootstrap standard deviations (c3,) for the whole region is
0.003 [mm/year] and 0.13 [mm/year], respectively.
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Figure 11. Heat map of the 95% percentile interval of the approximated RGM.The range of the CIs are color-coded. The black
points represent the PSI observations.
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The range of the CI of the approximation highly depends on spatial distribution of
the points. In the areas where less observations are available, there will respectively be
less observations in the bootstrapping sample, which directly affects the model. As a
result, the range of the CI in such regions increases automatically. In a closer look, such
an effect can be seen for example in two selected lines that are specified in Figure 12.
In Figure 12a, the position of the observations and the lines of interest are presented.
Line 1 is situated in the edge, and less observations are available in its neighbouring area.
On the other hand, line 2, which is closer to the middle region, is in an area with more
observations. It is expected that in areas with less observations, the approximated model is
more uncertain and shows higher variability in the distribution of prediction from bootstrap
samples. This can be observed in Figure 13. The CI of line 1 (see Figure 13a) shows that
the approximated model towards the edge of the area is highly uncertain, as expected.
In contrast, the interval is relatively small for line 2. The confidence bands describe the
uncertainty of the approximated model in Section 4.2, where all observations are used to
model RGM. In Figure 13, the continuous line represents the mentioned approximated
model, and the dashed line is the median of the approximations based on the bootstrap
samples. The median lies mostly over the approximated model.
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Figure 12. The two selected lines to observe the CI. (a) Observations (2D view). (b) Approximated surface (Figure 8) (3D view).
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Figure 13. CIs for lines 1 and 2 in Figure 12. (a) Line 1. (b) Line 2.
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As explained, the CIs (see Figures 11 and 13) describe the uncertainty of the approxi-
mated model by considering all the observations for the chosen control lattice hierarchy
in Section 4.2. However, the range of the interval depends also on the complexity of the
chosen model. This effect can be seen in Figure 14. The estimated CI for the two lines are
calculated for two different models with the following control lattice hierarchy for the two
models: @1 {P1g5, P0,10, P2s5,15} and @2{P1g 5, P20,10, P25,15, P30,20, 35,25, Pao 30 }-

95% confidence interval o,

0.5 95% confidence interval @, 05

Predicted height velocity [mm/year]
Predicted height velocity [mm/year]

95% confidence interval o,

—-1.5F —15} 95% confidence interval @,

. . . . . . . . . |
5811 5812 5813 5814 5815 5816 5817 5818 5819 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
North [km] North [km]

(a) (b)

Figure 14. CI from models with different complexities for the two lines in Figure 12. (a) Line 1. (b) Line 2.
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5. Discussion

The proposed spatial outlier detection algorithm shows compatible results to the
study by Brockmeyer et al. [1]. Since the ground truth behind the distribution of the
outliers in the real data is not known, it is not possible to evaluate these results more
comprehensively. The algorithm not only considers both local and global behavior of the
data, but the iterative process of the algorithm also helps to detect the anomalies more
precisely. By fitting a surface to the data in each iteration, the nature of the data which
represents a surface is taken into account. This makes the approach especially suitable for
these kinds of applications. The performance of the algorithm will be improved by having
some prior knowledge of the data set. For example, information regarding the minimum
noise level and rough expected RGM would help to decide on the complexity of the models
for the first and last iterations.

The MBA approach showed computational efficiency and numerical stability in deal-
ing with the real data set. Therefore, it is possible to choose a very complex model with a
high number of control points and many levels; however, the approximation of the data
based on the MBA approach is very sensitive to complexity of the chosen model. To avoid
over- or under-fitting the data, an appropriate control lattice hierarchy could be selected
based on the type of dataset and the prior information about the general ground behavior
of the region.

The calculated confidence bounds describe the quality of the model very well. The ef-
fect of data gaps and noise is directly reflected on the range of the Cls. In this research,
the CIs are determined based on the quantiles; however, an improved interval or the
"bias-corrected-BC,” could also be calculated [47].

The range of the ClIs is also influenced by the complexity of the model. Increasing
the complexity increases the uncertainty range of the approximation. This is particularly
important when there is a risk of over- or under-fitting the data or, in other words, the model
selection problem. The information from the Cls and standard deviations of the bootstraps
can be helpful in finding the most appropriate model for a given data set. This could lead
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to a solution to solve the model selection problem in similar situations. In the present work,
the initial model selected is based on the prior information of the global movement in the
region. The model selection concept is not the focus of the current paper.

In practice, the output of this process will help to detect areas affected by movement.
By considering the additional information on the uncertainty of the model (CIs), the user
can optimally pinpoint areas where new measurements by a more accurate geodetic tech-
nique are necessary to update the spatial reference system. Having a reliable mathematical
model not only helps to better understand the general behavior of the data, but also
provides the opportunity to keep track of any changes of the surface more efficiently, for ex-
ample by statistical testing. Additionally, the outputs of the outlier detection algorithm can
be used to detect the movements of individual objects. These anomalies might represent
very local changes that do not affect modeling RGM. However, this information can be of
high interest in monitoring infrastructure or other monitoring applications.

6. Conclusions

In this paper, processing and modeling PSI observations related to the area of Hanover,
Germany were discussed. The goal is to precisely model RGM as a continuous surface that
enables the user to predict movements at positions where no measurements are available.
The contribution of the current paper consists of three main parts: pre-processing of data,
modeling and ClIs for the model.

For pre-processing the data, a data-adaptive outlier detection algorithm is proposed.
The process considers both global and local behavior of the data. The algorithm is an itera-
tive process in which a model is fitted to the data and in each iteration, the largest deviation
to the model is globally detected. The proposed algorithm is tested in a MC simulation for
different reference data sets. Results show promising performance in detecting outliers
with an accuracy of 0.95 and F;-score of at least 0.95 for data sets containing up to 10% of
outliers. Moreover, the algorithm detects around 5% of outliers in the PSI observations.
The proposed methodology is not adopted for outliers of more than 10%, which is due to
the criteria for recognizing outliers within the algorithm. This aspect could be improved
by optimizing criterion selection, which was not within the scope of the current paper.
However, in the next steps, we plan to develop an approach to find the optimal criteria
based on individual data sets. For the real data set, 5% of outliers is detected.

The modeled RGM, based on MBA, shows mostly small movements in the area.
A large movement area is also detected with up to -6 [mm/year]. The method helps to
overcome the challenges in modeling PSI observations, which are mainly the large number
of observations and irregular distribution of points. The method is computationally efficient
and can numerically handle data gaps. However, it is difficult to model the correlation
between different levels, and especially due to the large amount of data, parametrical
modeling of uncertainty is not practical. Therefore, the uncertainty of the model is derived
from the non-parametric method of bootstrapping. As a result, a Cl is estimated for the
approximated surface. The CI for the whole area has a range between 0.01-0.4 [mm/year].

The derived ClIs reflect the sources of uncertainty in the model. An important source
is caused by data gaps in the PSI observation. Additionally, high local variations or noise
of the data affect the confidence bands. If the chosen model is not suitable for the data set,
the range of the Cls will also increase, which in turn leads to a higher level of uncertainty
in the model. Therefore, model selection is an essential step, which directly affects the
confidence bands. In the future, we will investigate ways of using the information about
the ClIs to solve the model selection problem.

Overall, we provided a pipeline for modeling RGMs based on PSI observations
including a series of steps. The steps have been designed to consider the nature of the data
and the general movement they represent. Although the PSI data provide a large amount
of information, the data are contaminated by high levels of noise and outliers besides
the irregular distribution of the data, which is challenging to model. The main steps of



Remote Sens. 2021, 13, 2246

21 0f23

preprocessing, modeling and quality assurance are done by temporal outlier detection,
spatial outlier detection, MBA and bootstrapping methods, respectively.

The combination of a mathematical model of the RGM and the quality measure of
the model (CIs) helps the user in identifying the critical locations for updating the spatial
reference system. The output of this research could be of high interest for monitoring
purposes. Having a mathematical model of the RGM and tracking any changes to the
model in time will give the possibility of statistically testing any significant changes to the
region in a systematic way. The detected outliers in the spatial outlier detection step may
carry important information of very local changes to important infrastructures or buildings.
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Table A1. Overview of the used symbols in Algorithms 1 and 2.

Symbol Description Algorithm
p observations Algorithms 1 and 2

P cleaned observations Algorithm 1

o outliers Algorithm 1

r residuals Algorithm 1

P bootstrap sample Algorithm 2

Pl predicted value based on ®* Algorithm 2

L control lattice hierarchy Algorithm 1

(i control lattice hierarchy based on P* Algorithm 1

T multiplier Algorithm 1

oy residuals standard deviation Algorithm 1

o expected noise in the data Algorithm 1

UBootstrap bootstrap standard deviation Algorithm 2

95% CI 95% confidence interval Algorithm 2

D distribution of predictions Algorithm 2
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