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Abstract: As a common form of light detection and ranging (LiDAR) in forestry applications, the
canopy height model (CHM) provides the elevation distribution of aboveground vegetation. A CHM
is traditionally generated by interpolating all the first LiDAR echoes. However, the first echo cannot
accurately represent the canopy surface, and the resulting large amount of noise (data pits) also
reduce the CHM quality. Although previous studies concentrate on many pit-filling methods, the
applicability of these methods in high-resolution unmanned aerial vehicle laser scanning (UAVLS)-
derived CHMs has not been revealed. This study selected eight widely used, recently developed,
representative pit-filling methods, namely first-echo interpolation, smooth filtering (mean, medium
and Gaussian), highest point interpolation, pit-free algorithm, spike-free algorithm and graph-
based progressive morphological filtering (GPMF). A comprehensive evaluation framework was
implemented, including a quantitative evaluation using simulation data and an additional application
evaluation using UAVLS data. The results indicated that the spike-free algorithm and GPMF had
excellent visual performances and were closest to the real canopy surface (root mean square error
(RMSE) of simulated data were 0.1578 m and 0.1093 m, respectively; RMSE of UAVLS data were
0.3179 m and 0.4379 m, respectively). Compared with the first-echo method, the accuracies of the
spike-free algorithm and GPMF improved by approximately 23% and 22%, respectively. The pit-free
algorithm and highest point interpolation method also have advantages in high-resolution CHM
generation. The global smooth filter method based on the first-echo CHM reduced the average
canopy height by approximately 7.73%. Coniferous forests require more pit-filling than broad-leaved
forests and mixed forests. Although the results of individual tree applications indicated that there
was no significant difference between these methods except the median filter method, pit-filling is
still of great significance for generating high-resolution CHMs. This study provides guidance for
using high-resolution UAVLS in forestry applications.

Keywords: canopy height model (CHM); pit-filling; unmanned aerial vehicle (UAV); light detection
and ranging (LiDAR); image filtering; canopy surface; simulated point cloud

1. Introduction

As an active remote sensing technology, light detection and ranging (LiDAR) can
penetrate the canopy to obtain the vertical structure of a forest, and it has been widely
used in forest inventory analyses [1,2]. LiDAR has two common data formats: one is
the original discrete point cloud, and the other is the spatially continuous raster surface
obtained from raw laser points, such as the digital elevation model (DEM) and digital
surface model (DSM) [3]. The canopy height model (CHM) is usually constructed by
subtracting the DEM from the DSM or by interpolating the normalized point cloud, which
is a direct manifestation of the absolute height distribution of the vegetation canopy above
the ground [4]. Compared with the original point cloud data, the storage volume of the
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CHM is smaller, the raster is more convenient to process (there are many fast and mature
image processing technologies), and it is more visually friendly and easier to combine with
other remote sensing data [5]. At the same time, the CHM also has important value in
individual tree crown segmentation, tree height measurement, biomass and stock volume
estimation [6–8].

In the CHM generation process, a common problem that seriously affected the CHM
quality was the unnatural black holes (pits exhibited within the tree crown) distributed in
the CHM [7,9]. Data pits are pixels whose heights are significantly lower than those of their
neighbours, and these data pits are typically visible in the CHM [10,11]. Many studies have
analysed the potential causes of data pits, such as natural intracrown gaps from sparse
foliage [12]. Laser beams penetrate the surface of the tree crown and hit the intracrown,
trunk or ground [12–14], indicating that data pits are also caused by merging multiple
flight lines and overlapping laser beams. Simultaneously, pits may even appear in single
flight lines at off-nadir scan angles [11]. In addition, the planimetric and vertical errors
caused by global navigation satellite system (GNSS) and inertial measurement unit (IMU)
measurements also create pits, particularly for small-footprint LiDAR [15,16]. These invalid
values will not only greatly reduce the CHM quality but also have a negative impact on
the subsequent application of the CHM.

Many studies have claimed that data pits create issues in data. First, pits can affect
the visual appearance of the CHM, and it is difficult to recognize the tree crown [9]. Such
data will increase the complexity of individual tree crown segmentation [13] and increase
the commission and omission errors of tree top detection [17,18]. Most importantly, the
height of the canopy surface will be underestimated [10], as will the individual tree height
and crown diameter [17,19]. Additionally, using the statistical attributes of these invalid
pixels in the noisy CHM to estimate biochemical parameters related to the forest inventory
may be inaccurate [9]. To avoid these problems, Reuter et al. [20] suggested detecting
and removing problem pixels. Therefore, accurate representations of canopy surfaces are
needed to ensure high-quality CHMs.

Researchers have proposed a variety of methods to improve the quality of CHMs.
These methods can be divided into two categories: raster-based (post-processing) and
point cloud-based (pre-processing). The raster-based method generates the CHM first
and then eliminates pits by image filtering algorithms. There are many commonly used
global filters that can be used to smooth CHMs, such as mean, median and Gaussian
filters [14,21–23]. These filters are simple and fast, but the heights of all pixels in the
CHM (including normal pixels) are altered, and the size of the kernel lacks sensitivity [7,9].
Ben-Arie et al. [10] used a Laplacian operator to detect data pits and used a median filter
(kernel 3 × 3) to replace the pit values in the original CHM. Zhao et al. [24] combined the
Laplacian operator and the morphological closing operator to determine and rescue invalid
values. Shamsoddini et al. [9] proposed an adaptive mean filter (AMF) to detect and fill
pits. Although these local filling algorithms improve the abovementioned problems, the
error in the original CHM generation process is not considered [25].

The other category involves direct processing of the point cloud and generation of a pit-
free CHM, which is pre-processing. First, some studies have attempted to filter out the part
of the point cloud that best represents the canopy surface in the point cloud to construct
a CHM. For example, Gaveau and Hill [19] used only first returns to generate CHMs.
Leckie et al. [12] used the highest points in each pixel to generate a CHM. Liu et al. [25]
used a selection and sorting mechanism followed by spatial interpolation to generate CHMs.
Chen et al. [11] used a robust locally weighted regression and robust z-scores to remove pits.
Khosravipour et al. [4] generated a series of partial CHMs from different height intervals of
the first returns and then combined these CHMs by selecting the maximum value of each
corresponding pixel to form the final CHM. Zhang et al. [26] developed a cloth simulation
algorithm for constructing a pit-free CHM and used post-processing to rectify the edge of
the tree crown. However, first returns may sometimes be false representations of canopy
surfaces [9,10] and these processed selections may miss points that represent accurate
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canopy surfaces [27]. Khosravipour et al. [17] proposed a spike-free method considering all
laser returns for generating DSMs, and they found that compared with using only the first
return DSM, the accuracy of treetop detection, especially for small trees, was significantly
improved. Hao et al. [27] developed a canopy surface point filtering algorithm called
graph-based progressive morphological filtering (GPMF), and they found that the CHM
generated with the GPMF method produced few pits while retaining canopy details. These
methods usually require several parameters to drive the model, and the effect of applying
them to specific data sets requires further evaluation.

In recent years, as an emerging remote sensing dataset, unmanned aerial vehicle laser
scanning (UAVLS) data have been widely used in the estimation of forest canopy structure
and forest parameters in small-scale forest inventories [28,29]. UAVLS can generate data
with point densities of 100–300 points per square metre, or even up to 1000 points per square
metre, representing a significant increase in point density compared with the data provided
by airborne laser scanning (ALS) [30]. High-density point clouds create high-resolution
CHMs because the CHM resolution is usually determined by considering the average
point cloud density [31]. A high-resolution (~10 cm) CHM can describe the morphological
structure of tree crowns in detail [17,32], and more small trees can be seen compared with
lower resolution data [7]. However, the high-resolution CHM has more complex height
variations [9] and will create more data noise [33,34]. Although a considerable amount of
literature focuses on the pit-filling method, to our knowledge, most UAVLS studies ignore
this point, and few studies have used the first return [35] and highest point interpolation
techniques [33,36,37] to generate CHMs. Moreover, the applicability of the abovementioned
pit-free methods in a CHM derived from high-resolution UAVLS requires discussion.

The main purpose of this study is to compare and evaluate the performances of eight
different pit-filling methods to generate high-resolution CHMs derived from UAVLS. The
most widely used, recently developed and representative CHM generation methods are
selected, including the first-echo interpolation method, smooth filtering (mean, medium
and Gaussian) method, highest points interpolation method [12], pit-free algorithm [10],
spike-free algorithm [17] and GPMF algorithm [27]. Furthermore, this study aimed to select
the most representative raster to describe the upper canopy surface to further improve the
accuracy of using high-resolution CHM data in individual tree detection and tree height
estimation. Finally, we provide guidance for improving the quality of UAV-LiDAR-derived
CHMs in forest inventory applications.

2. Materials

To quantitatively and accurately evaluate the differences between different CHM
generation methods and the real canopy surface, both simulated and real-world UAVLS
point clouds were employed for testing.

2.1. Simulated Data

We used two geometric models to generate simulated point clouds: cone and hemi-
sphere [38]. In the range of 50 m× 50 m, 50 cones and 50 hemispheres are randomly distributed.
The geometric surface points are randomly generated according to Equations (1) and (2), and
the average point space is 0.08 m.

Cone : z = l −
√

x2 + y2

r/l
, x2 + y2 ≤ r2 (1)

Hemisphere : z =
√
|r2 − x2 − y2| , x2 + y2 ≤ r2 (2)

where x, y and z are the spatial coordinates of geometric surface points, r is the radius of
the cone and hemisphere and l is the height of a cone. The r and l values are set to 1.5–3.5
and 2–6 m, respectively, and a basic height of 2–6 m is added to the simulated geometry.
The average height of the cone is 8.6 m, while that of the hemisphere is 8.8 m. If the
simulated geometry overlaps horizontally, the highest point in the vertical direction of the
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overlapped part is retained to ensure that the sunlit part is the crown surface. In addition,
ground points with the same density are added to the non-projection area of the simulated
geometry, and the z-value of these ground points is set to 0. Thus, two simulated surface
points are created (see Figure 1a,b). Moreover, the surface points were interpolated to the
reference CHM (CHMReference) for subsequent comparison. Then, different proportions
(10–60%) of noise points are randomly added below the simulated surface to create pits
with different sizes. The final simulated point clouds are shown in Figure 1c,d. It is worth
noting that the simulated points do not follow the laser scanning sensor geometry, so the
distributions of these under-canopy points will not be distributed as the simulated along
vertical strata in real data.
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to the cone and hemisphere, respectively.

2.2. Real-World Data
2.2.1. Study Area

The study area is the Maoershan Forest Farm, Shangzhi, Heilongjiang Province, North-
east China, ranging from 127◦18′0′ ′ to 127◦41′6′ ′E and 45◦2′20′ ′ to 45◦18′16′ ′N (Figure 2).
The slope ranges from 5◦ to 25◦, the terrain is high in the south and low in the north and
the average altitude above mean sea level is approximately 400 m. The forest type is a
typical natural secondary forest of Northeast China that is mainly composed of precious
broad-leaved forest, poplar birch forest and oak forest, as well as a small number of conifer-
ous plantations, such as Korean pine, larch and Scotch pine. In this study, a total of 3 sites,
which represent three forest stand types (broadleaf forest, coniferous forest and coniferous
and broad-leaved mixed forest), were established.
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Figure 2. Location of the study area and distribution of UAVLS data.

2.2.2. UAV-LiDAR Data

The UAV-borne LiDAR equipment used in this study was an extremely lightweight
RIEGL mini VUX-1UAV LiDAR scanner (www.riegl.com/products/unmanned-scanning/
riegl-minivux-1uav, accessed on 8 June 2021) carried by a Feima D200 UAV platform
(www.feimarobotics.com/en/productDetailD200, accessed on 8 June 2021). The laser
scanner operated at a pulse repetition rate of 100 kHz with scan speeds up to 100 scans per
second. The maximum measurement range is 250 m and the range measurement accuracy
is 15 mm. The footprint size is 160 mm × 50 mm at 100 m and the beam divergence is
1.6 × 0.5 mrad. The field of view is up to 360◦ and the angle measurement resolution is
0.001◦. The scanner has multiple target capabilities and can generate up to 5 target echoes
per laser shot. In addition to the laser sensor, the UAV platform is also composed of a
GNSS antenna, a high-precision inertial measurement unit (IMU) and a high-speed storage
control unit (see Figure 2). Three parallel batteries ensure the safe landing although two
out of three are off, which could support a 48 min hover.

UAVLS data were acquired in August 2019 at three sites. All flights were designed
as crossing transects with 80 m swath overlaps at 80 m altitude and 5.0 m/s speed. The
average point density for each site ranged from 150 to 250 pt/m2. The point clouds of these
three sites are shown in Figure 2.

2.2.3. Field-Measured Data

Three 100 m × 100 m plots were established across three sites. Each plot was divided
into 25 square sample subplots measuring 20 m × 20 m, and a total of 75 subplots were
obtained. The height of all trees in each subplot was measured using a Vertex IV instrument
with a height resolution of 0.1 m (Haglöfs, Sweden). Four corners of each subplot were
determined with a real-time kinetic (RTK) GNSS (UniStrong G10A, Beijing, China) with a
positioning error of approximately 0.1 m. The tree coordinates were recorded by measuring
their relative positions from the edges of the subplots by using a hand-held laser rangefinder.
Finally, 1456, 1157 and 1372 trees were observed among the three plots. The average heights

www.riegl.com/products/unmanned-scanning/riegl-minivux-1uav
www.riegl.com/products/unmanned-scanning/riegl-minivux-1uav
www.feimarobotics.com/en/productDetailD200
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of Plot 1, Plot 2 and Plot 3 were 12.7 m, 12.5 m and 12.5 m, respectively, and the standard
deviations were 3.3 m, 4.0 m and 5.2 m, respectively.

3. Methodology
3.1. UAVLS Data Pre-Processing

The raw UAVLS data are processed by a series of noise removal processes to remove
many air points, points below the ground and isolated points in the canopy [29]. Air
points and low points were removed manually, and isolated points were determined by
the number of points inside the search neighbourhood for a given search radius (5 m).
Subsequently, the remaining points were classified into ground and nonground points
using the progressive triangulated irregular network (TIN) densification method developed
by Axelsson [39]. Then, the ground points were interpolated into a digital terrain model
(DTM) using kriging interpolation with a 1 m pixel size [40]. According to the DTM, the
average slopes of the three sites were approximately 9◦, 11◦ and 7◦. The normalized height
of point clouds was obtained by subtracting the DTM value from the elevations of all
points [41].

3.2. Description of CHM Generation Algorithms

The most widely used, recently developed and representative eight pit-filling meth-
ods are selected to generate CHMs, including the first-echo (FE) interpolation method,
smooth filtering (mean, medium and Gaussian) method, highest point (HP) interpolation
method [12], pit-free algorithm [10], spike-free algorithm [17] and GPMF algorithm [27].
The smooth filtering method and pit-free algorithm are post-processing methods, while the
other four methods are pre-processing methods. Figure 3 shows the process of generating
CHMs by these eight methods. FE interpolation is a common CHM generation method
that is generated by interpolating all the first echoes in the normalized point cloud. Then,
the mean filter, median filter and Gaussian filter are used to smooth the FE CHM. HP
interpolation first generates 0.1 m grid cells and then extracts the highest point of each
cell for interpolation. The pit-free method, spike-free method and GPMF method are
described below.

Figure 3. An overview of the workflow of CHMs generated by eight methods.
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3.2.1. Pit-Free Algorithm

The pit-free method is a semiautomated pit-filling algorithm that uses a user-defined
threshold to detect pits and automatically fill them. Specifically, a Laplacian operator is
first applied to the FE CHM and a percentage of the cumulative histogram of the Laplacian
image is defined to determine the percent of pits. Then, the data pits are marked as one and
the non-data pits are marked as zero to generate a binary mask. At the same time, a median
filter (kernel 3 × 3) is used to smooth the FE CHM to generate a pit-filled CHM. Finally,
the pixel marked data pits (one) were replaced with the corresponding 3 × 3 median
filter CHM value, while the non-data pits (zero) were retained as the original value of the
FE CHM.

3.2.2. Spike-Free Algorithm

This algorithm uses all laser returns to generate a TIN and then rasterizes it. The TIN
generation starting from the HP and the Delaunay triangle increment is constrained by the
lengths of triangle edges and vertical spaces of returns, which suggests that triangles with
small edges are more relevant for accurately representing the canopy surface than those
with long edges in TIN. Hence, the triangles satisfying the three edge constraints (“freeze
distance”) will be frozen in the Delaunay triangle increment. If the elevation of the next
candidate point is smaller than the elevation of the triangle, it will be ignored to prevent the
appearance of pits. To prevent the triangle from being frozen in advance and causing the
pits to be overfilled, a height threshold called the “insertion buffer” is introduced. Before
the triangle freezes, the insertion buffer defines a vertical zone to ensure that all triangles
that still have points in the buffer will not be frozen. Thus, freeze distance and insertion
buffer jointly determine the generation of a spike-free TIN.

3.2.3. Graph-Based Progressive Morphological Filtering

This algorithm uses an adaptive morphological operation to filter surface points
from all normalized points in progressive filtering. First, a graph is constructed from
all normalized points to model the relationships within these points. Second, adaptive
morphological filtering is used to “pull up” the depression in the graph. In general, the
more depressed the connected neighbourhoods of points in the graph are, the more likely
there are data pits. A sharpness index (SI) is introduced to quantify concave tapering and
construct the alterable height threshold adaptive to the spacing value between a certain
point and its neighbourhood. The adaptive height threshold in graph-based morphological
filtering can filter out non-surface points. Then, a progressive process is conducted to
improve the adaptive morphological filter for eliminating spikes of various sizes until no
points are excluded. The remaining points are regarded as canopy surface points. Finally,
the pit-filled CHM is generated by interpolating the surface points.

To avoid errors caused by spatial interpolation methods, all methods used linear
interpolation to generate CHMs. According to previous studies, the spatial resolution
of a CHM is finer than one-fourth of the crown diameter [33], and it is determined by
considering the mean point space [31,42,43]. In our study, the minimum pulse density was
approximately 150 pulses/m2, which corresponds to a point spacing of 0.08 m. Therefore,
the resolution of the CHM was set to 0.1 m. All subsequent processing was performed
on the basis of CHM with 0.1 m resolution. The performance of the pit-free method was
analysed by the graphical user interface (GUI) developed by Ben-Arie et al. [10], and the
other methods were coded in MATLAB R2019b.

3.3. Accuracy Assessment

First, the CHM quality can be judged by its visual effect. A high-quality CHM not
only has no or few unnatural black pixels within the crown area but also has clear edges
and sufficient crown surface details, and this CHM can even reflect the crowns of small
trees [27]. Second, the difference between the optimized CHM and the real canopy surface
height is also an indicator of CHM quality [7]. Finally, the CHM application performance
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should be evaluated, such as the accuracy of individual tree detection (ITD) and tree
height estimation [4,7]. Herein, we evaluate the CHM generated by the eight methods in a
simulated dataset and a real-world dataset.

3.3.1. Accuracy Assessment of Simulated CHMs

The main purpose of constructing a simulated point cloud is to obtain an exact canopy
surface height (the upper surface points of the cone and hemisphere, see Figure 1a,b),
which can be used as a reference, and it can accurately quantify the height difference from
these processed CHMs. We introduced root mean square error (RMSE), mean bias error
(Bias), relative RMSE (RMSE%) and relative Bias (Bias%) as evaluation indicators [7,44]
(Equations (3)–(6)). A paired t-test was also used to examine whether there were sig-
nificant differences between the means of the eight CHMs and between them and the
reference CHM.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

Bias =
1
n

n

∑
i=1

(yi − ŷi) (4)

RMSE% =
RMSE

yi
× 100 (5)

Bias% =
Bias

yi
× 100 (6)

where n is the number of observations (pixels), yi is the reference height value of the
i-th observation, ŷi is the i-th pixel value in the processed CHM and yi is the mean of
the observations.

3.3.2. Accuracy Assessment of UAVLS-Derived CHMs

In addition to visual interpretation of the CHM generated by the UAVLS, a cross
comparison was carried out in pairs. The RMSE and Bias were calculated among these
CHMs derived from the eight methods. Unlike the simulated point cloud, the laser
scanning point cloud has no exact actual surface points [27]. Thus, a surface point selection
process was conducted to validate the accuracies of various CHMs. We interpreted canopy
surface points from the normalized point clouds in each subplot of three sites, including
two types: one is the peak of the canopy, and the other is the valley of the canopy. These
two types represent the ability of CHMs to express crown heights and crown edges,
respectively. A total of 454 points were eventually selected as reference canopy surface
points. The coefficient of determination (R2), RMSE and Bias were calculated to evaluate
the performances of different methods to express the canopy surface. Additionally, the
application of CHMs was evaluated by the accuracy of ITD and tree height estimation from
the CHMs generated by different methods. For ITD, a traditional local maximum (LM)
algorithm was introduced to automatically detect trees, which was the most commonly
used ITD method [6]. The detected trees were matched with field measurement trees
based on matching criteria developed by Hao et al. [28]. Both the horizontal distance
constraint (less than the reference crown radius) and the height constraint (less than 20%
of the top height of the plot) are used to determine the detected tree that matches the
reference tree. All correctly matched trees are true positives (TP). Detected trees without a
link to references were commission errors (false positives, FP), while reference trees that
were not matched to any detected trees were classified as omission errors (false negative,
FN). Accuracy assessments in terms of precision (Pr), recall (Re) and Fscore (Fscore) were
calculated as Equations (7)–(9). For the tree height estimation, RMSE% was used to evaluate
the difference between matched trees.

Pr =
TP

TP + FP
(7)
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Re =
TP

TP + FN
(8)

Fscore = 2× Pr× Re
Pr + Re

(9)

4. Results
4.1. Sensitivity Analysis

Among the eight CHM generation methods, only the FE method and the HPs methods
are parameter-free, and the other six methods require at least one user-defined parameter.
These parameters will indeed impact the performance of the methods. To obtain the
optimal result of each method and enable a fair comparison, a sensitivity analysis of the
parameters was carried out using simulated point clouds with pits of different proportions.

For the global filtering method, mean, medium and Gaussian filtering were performed
on CHMFE with 3 × 3, 5 × 5 and 7 × 7 window sizes, respectively. The results of the
comparison of the CHMReference against filtered CHMs are shown in Supplementary S1
in the Supplementary Materials, Table S1. The results showed that the median filter and
Gaussian filter have the highest accuracies in the 5 × 5 window size, while the mean
filter has the highest accuracy in the 3 × 3 window size. The accuracies of the mean
filter and median filter were not affected by the proportion of pits or the geometric shape
(cone or hemisphere). For a hemisphere with 10% pits, a smaller window is more suitable
for Gaussian filtering, and large pits use a large window for Gaussian filtering with
higher accuracy.

A user-defined threshold of the pit-free method was controlled from 1% to 30%. The
results showed that the accuracy of CHMpit-free was progressively increased by gradu-
ally increasing the threshold (starting from 1 at 5% intervals) (Supplementary S1 in the
Supplementary Materials, Table S2). The threshold corresponding to a small proportion
of pits reached the optimal solution earlier than the large proportion of pits. When the
threshold was 20%, the accuracy reached the highest and remained unchanged.

For the spike-free method, the “freeze distance” and the “insertion buffer” constrained
the construction of the TIN. When the freeze distance is increasing, filtered pits also
increase, and when the insertion buffer is increased, the constraints loosen. We tested the
two parameters through the control variables, and the results showed that although the
accuracy was nearly the highest when the freezing distance and the insertion buffer were
0.3 and 0.3 (Supplementary S1 in the Supplementary Materials, Table S3), the visual effect
of CHMSpike-free was the best when the freezing distance and the insertion buffer were 0.4
and 0.5, respectively (Supplementary S1 in the Supplementary Materials, Figure S1).

As the core parameter of the GPMF method, an SI was used to express the depression
degree between a point and its neighbourhoods. Here, we adjusted the SI from 0 to 10
with a step of 1 to test the changes in RMSE between the CHMReference and the CHMGPMF.
The results showed that the accuracy of the cone gradually decreased from SI = 4, while
that of the hemispherical sphere first increased and then decreased with increasing SI
(Supplementary S1 in the Supplementary Materials, Table S4). Since the accuracy difference
between SI = 3 and 4 was only one in ten thousand, we chose 4 as the optimal parameter
of SI.

The comparison of the accuracy of CHMs generated by various methods with optimal
parameters and reference CHMs with different proportions of pits is shown in Table 1.
Notably, the accuracy of all methods decreases with the increase in the proportion of pits.
The trend of different methods in different proportions of pits is consistent, which indicates
that the data quality has no significant influence on the performance of different methods.
Overall, the GPMF method had the lowest RMSE among all the methods, and the spike-free
method was the second lowest. The FE method was undoubtedly the worst. The optimal
parameters of these methods were used for subsequent applications.
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Table 1. The RMSE (m) of the comparison of CHMReference against processed CHMs.

Proportion of Pits FE Mean Median Gaussian HP Pit-Free Spike-Free GPMF

Cone

10% 0.6624 0.4681 0.2547 0.4503 0.4320 0.2195 0.1613 0.0952
20% 0.9114 0.6601 0.4087 0.6425 0.5461 0.3896 0.1602 0.1096
30% 1.0808 0.8103 0.5732 0.7935 0.6143 0.5254 0.1648 0.1161
40% 1.2115 0.9336 0.7214 0.9178 0.6521 0.6437 0.1737 0.1283
50% 1.3074 1.0294 0.8360 1.0146 0.6656 0.7355 0.1707 0.1337
60% 1.3933 1.1202 0.9507 1.1061 0.6808 0.8271 0.1707 0.1370

Hemisphere

10% 0.6350 0.4520 0.2421 0.4339 0.4338 0.2124 0.1481 0.0975
20% 0.8789 0.6277 0.3715 0.6093 0.5497 0.3563 0.1554 0.1090
30% 1.0392 0.7683 0.5218 0.7511 0.6013 0.4817 0.1579 0.1149
40% 1.1699 0.8897 0.6578 0.8732 0.6429 0.5956 0.1605 0.1220
50% 1.2721 0.9901 0.7803 0.9747 0.6721 0.6920 0.1660 0.1311
60% 1.3612 1.0803 0.8928 1.0656 0.6897 0.7805 0.1659 0.1351

4.2. Comparison of Simulated CHMs
4.2.1. Visual Performance

Taking the data with 20% pits as an example, the 0.1 m resolution CHMs generated by
the simulated surface points and the eight processing methods are shown in Figure 4. A
visual comparison of these CHMs was implemented. In general, CHMFE has the largest
number of randomly distributed dark pixels, while other CHMs have different degrees
of pit-filling. Among them, the visual performance of CHMSpike-free and CHMGPMF are
closest to that of CHMReference. The smooth filtered CHM (CHMMean, CHMMedian and
CHMMaussian) made the image blurry, and the pits did not disappear. The performance of
CHMHP and CHMPit-free were also not satisfactory. The small pits in the CHMPit-free sample
were removed, but clustered pits still occurred. A further comparison of CHMSpike-free and
CHMGPMF found that CHMGPMF has a clearer crown edge, and the connection between
adjacent canopies is also better processed, while there is adhesion at the adjacent canopy of
CHMSpike-free (see the red circle in Figure 4). In addition, we found that there are many pits
in the overlapping crown of the hemispherical model, and only the spike-free and GPMF
methods can filter these pits well.

Figure 4. Comparison of CHMs generated by different methods based on simulated point clouds with 20% pits.
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4.2.2. Quantitative Analysis

A further quantitative comparison of the differences between these methods is shown
in Figure 5. The results indicated that only CHMSpike-free and CHMGPMF have no significant
difference from CHMReference (RMSEs are 0.1602 m and 0.1096 m, and RMSE% values are
1.86% and 1.27% of cone, respectively). The difference between CHMReference and CHMFE
was the largest (RMSE = 0.9114 m, RMSE% = 10.6%), which was approximately 9% lower
than CHMSpike-free and CHMGPMF. There was no significant difference between the mean
heights of CHMMean and CHMGaussian and that of CHMFE. Additionally, the mean heights
of CHMHP and CHMPit-free showed no significant difference. In terms of Bias, we found
that the spike-free and GPMF methods slightly overestimated the crown surface height,
and the other six methods underestimated it. The results also showed that the median
filtering method has the highest accuracy among the three smooth filtering methods. The
application of the eight processing methods was not different in the cone and hemisphere.

Figure 5. Differences across all the CHMs generated by the simulated point cloud. The lower left corner of the matrix is the
RMSE, and the upper right corner of the matrix is the Bias. The asterisk indicates that the t-test was not significantly different.

4.3. Comparison of UAVLS-Derived CHMs
4.3.1. Visual Performance

For clarity, the CHMs of four subplot sizes in Plot 3 were selected as examples and are
shown in Figure 6. The median filter method eliminates almost all the pits, but the image
is excessively smooth and the crown shape is blurred. Although the HP method makes
the crown clearly visible, it produces more clumps and black pits than the FE method.
The Gaussian filter is more blurred than the mean filter, and at the same time, it does not
improve the pit problem. Overall, the spike-free and GPMF methods achieved the best
visual performances of all the methods, followed by the pit-free method.

Figure 7 provides an example of a 0.1 m wide canopy profile highlighting the difference
between laser points and the CHMs generated by eight methods. The FE points are not
only distributed on the surface of the canopy but also distributed in the canopy or even
on the ground, which directly leads to CHMFE with many depressions. Among all the
methods, we first noticed the HP profile because it produced sharper and deeper peaks
than FE. The pit-free method only fills in the local pits, and the other parts are consistent
with the FE profile. In general, the CHMSpike-free and CHMGPMF were closest to the surface
of the point cloud, while the smoothed CHMs were seriously underestimated. Notably, the
GPMF pulled up some valleys between the two crowns, but this phenomenon is likely due
to the influence of the Y-axis neighbourhood and not just the X-axis neighbourhood; thus,
the GPMF accuracy needs to be further evaluated.
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Figure 6. Visual comparison between CHMs generated by different methods and UAVLS normalized point clouds (PCs).

4.3.2. Quantitative Analysis

Table 2 shows the RMSE and Bias values between the eight CHM generation methods.
The cross-comparison results showed that there was no significant difference between
CHMMean and CHMGaussian. The mean heights of the CHMSpike-free and CHMGPMF were
not significantly different in broad-leaved forests. The difference between FE and other
CHMs was higher than 1 m, of which the largest was HP (2.4499 m of Plot 3). The Bias
between mean filtering and median filtering and FE is 0, indicating that these two filtering
methods have not changed the average height of the CHM. Among the eight CHMs,
CHMSpike-free had the highest average height in broadleaf forests, while CHMGPMF had the
highest average height in coniferous and mixed forests. The average value of CHMHP is
the lowest, which may be because too many extremely deep pits reduce the average HP
based on the abovementioned canopy profile (Figure 7). In coniferous forests, the difference
between the eight methods was the largest.
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Figure 7. Profile of the UAVLS point cloud against the CHMs generated by eight methods (slice thickness is 0.1 m).

Table 2. Differences across all the CHMs generated by the UAVLS point cloud. The lower left corner of the matrix is the
RMSE (m), and the upper right corner of the matrix is the Bias (m).

Method FE Mean Median Gaussian HP Pit-Free Spike-Free GPMF

Plot1

FE - 0.0000 −0.2798 0.0000 0.0105 −0.3264 −0.6280 −0.6273
Mean 1.1291 * - −0.2799 0.0000 0.0104 −0.3264 −0.6280 −0.6273

Median 1.4089 0.7120 - 0.2798 0.2903 −0.0466 −0.3482 −0.3475
Gaussian 1.0650 * 0.1650 * 0.6608 - 0.0105 −0.3264 −0.6280 −0.6273

HP 1.8070 1.7031 1.7973 1.6789 - −0.3369 −0.6385 −0.6378
Pit-free 1.1468 0.6940 0.6323 0.6647 1.6962 - −0.3016 −0.3009

Spike-free 1.7900 1.3391 1.0497 1.3102 1.8219 1.0789 - 0.0007
GPMF 1.7425 1.2841 0.9677 1.2494 1.9408 1.0216 0.9356 * -

Plot2

FE - 0.0000 −0.3070 0.0000 0.1037 −0.4020 −0.8574 −0.9324
Mean 1.3112 * - −0.3069 0.0000 0.1038 −0.4019 −0.8574 −0.9323

Median 1.6450 0.8114 - 0.3070 0.4107 −0.0950 −0.5505 −0.6254
Gaussian 1.2459 * 0.1938 * 0.7492 - 0.1037 −0.4020 −0.8574 −0.9324

HP 2.1693 2.0782 2.2074 2.0526 - −0.5057 −0.9612 −1.0361
Pit-free 1.2624 0.8422 0.8646 0.8174 2.0750 - −0.4555 −0.5304

Spike-free 2.2619 1.7930 1.5187 1.7636 2.2716 1.5274 - −0.0749
GPMF 2.2495 1.7740 1.4720 1.7382 2.4812 1.5107 1.3075 -

Plot3

FE - -0.0001 −0.2580 0.0000 0.1854 −0.3489 −0.7381 −0.7485
Mean 1.1884 * - −0.2580 0.0001 0.1854 −0.3488 −0.7380 −0.7484

Median 1.4536 0.7054 - 0.2580 0.4434 −0.0909 −0.4801 −0.4905
Gaussian 1.1215 * 0.1748 * 0.6497 - 0.1854 −0.3489 −0.7381 −0.7485

HP 2.4499 2.3126 2.3662 2.2942 - −0.5343 −0.9234 −0.9339
Pit-free 1.1670 0.7407 0.7105 0.7126 2.3038 - −0.3892 −0.3996

Spike-free 2.1171 1.7104 1.4729 1.6850 2.2822 1.4845 - −0.0104
GPMF 2.0048 1.5767 1.3130 1.5450 2.4923 1.3449 1.2313 -

* t-test shows no significant difference.

When the reference surface points were introduced to evaluate the performance of the
eight methods, the results are shown in Table 3. Overall, the spike-free method showed
the best performance in terms of overall accuracy, and the GPMF was suboptimal. The
HP method showed good performance in the peak canopy but poor performance in the
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valley. In contrast, the median performed well in the valley of the canopy but poorly in the
peak. The mean filter performed the worst not only in the peak of the canopy but also in
the valley. Compared with the canopy valley, the accuracy loss of the canopy peak was
the main disadvantage of FE. The spike-free and GPMF methods have a strong ability to
explain canopy surface height variation (R2 close to 1, and RMSE% less than 3%). Overall,
all the methods underestimated the reference surface (Bias > 0), of which the mean filter
method underestimated the surface the most (Bias% = 7.73%) and the spike-free method
underestimated the surface the least (Bias% = 1.32%).

Table 3. Verification results of different CHMs and reference canopy surface points.

Method
Peak Valley Overall

R2 Bias (m) RMSE (m) R2 Bias (m) RMSE (m) R2 Bias (m) RMSE (m)

Plot1

FE 0.82 0.5703 0.9928 0.93 0.3427 0.6356 0.88 0.4543 0.8301
Mean 0.86 0.8258 1.0654 0.84 0.8002 1.1172 0.86 0.8128 1.0921

Median 0.91 0.7139 0.8832 0.98 0.3715 0.4494 0.95 0.5393 0.6967
Gaussian 0.86 0.8668 1.0908 0.89 0.7329 0.9747 0.89 0.7986 1.0332

HP 0.98 0.1585 0.3037 0.91 0.2112 0.6318 0.94 0.1854 0.4987
Pit-free 0.95 0.4140 0.5773 0.95 0.2827 0.5053 0.95 0.3470 0.5418

Spike-free 0.99 0.1801 0.2766 1.00 0.0829 0.1315 0.99 0.1306 0.2152
GPMF 0.99 0.2186 0.2998 0.98 0.1453 0.3269 0.98 0.1812 0.3139

Plot2

FE 0.52 1.0193 2.1159 0.70 0.7952 1.6607 0.67 0.9058 1.8990
Mean 0.72 1.4988 1.8005 0.83 1.1116 1.4945 0.83 1.3026 1.6526

Median 0.87 1.1726 1.3415 0.88 0.8567 1.2020 0.90 1.0126 1.2727
Gaussian 0.75 1.4979 1.7743 0.85 1.1134 1.4524 0.84 1.3031 1.6192

HP 0.90 0.3282 0.6553 0.88 0.4779 0.9246 0.92 0.4041 0.8031
Pit-free 0.91 0.5997 0.8012 0.87 0.5869 1.0497 0.91 0.5932 0.9354

Spike-free 0.99 0.2139 0.2895 0.97 0.2245 0.4448 0.98 0.2193 0.3763
GPMF 0.99 0.3037 0.3710 0.95 0.2375 0.5728 0.97 0.2702 0.4839

Plot3

FE 0.53 0.5059 1.6823 0.74 0.4354 1.5109 0.70 0.9414 1.5983
Mean 0.69 0.6556 1.5872 0.82 0.6037 1.5287 0.81 1.2594 1.5580

Median 0.80 0.5384 1.2751 0.89 0.4986 1.2282 0.89 1.0370 1.2517
Gaussian 0.71 0.6597 1.5690 0.83 0.6127 1.5212 0.83 1.2724 1.5451

HP 0.94 0.1181 0.4526 0.77 0.2761 1.1566 0.86 0.3942 0.8804
Pit-free 0.80 0.3717 1.0157 0.89 0.3299 0.9703 0.89 0.7016 0.9931

Spike-free 0.97 0.1188 0.3450 0.98 0.1066 0.3785 0.98 0.2255 0.3622
GPMF 0.97 0.1521 0.4043 0.94 0.1733 0.6063 0.96 0.3254 0.5160

Avg.

FE 0.62 0.6985 1.5970 0.79 0.5244 1.2691 0.75 0.7672 1.4425
Mean 0.76 0.9934 1.4844 0.83 0.8385 1.3801 0.83 1.1249 1.4342

Median 0.86 0.8083 1.1666 0.92 0.5756 0.9599 0.91 0.8630 1.0737
Gaussian 0.77 1.0081 1.4780 0.86 0.8197 1.3161 0.85 1.1247 1.3992

HP 0.94 0.2016 0.4705 0.85 0.3217 0.9043 0.91 0.3279 0.7274
Pit-free 0.89 0.4618 0.7981 0.90 0.3998 0.8418 0.92 0.5473 0.8234

Spike-free 0.98 0.1709 0.3037 0.98 0.1380 0.3183 0.98 0.1918 0.3179
GPMF 0.98 0.2248 0.3584 0.96 0.1854 0.5020 0.97 0.2589 0.4379

4.3.3. Individual Tree Application Evaluation

The local maxima algorithm was applied to all the processed CHMs. Figure 8 illus-
trates the accuracy of ITD and tree height estimation plotted against window size (WS) of
the local maxima algorithm. Overall, with the increase in WS, the Pr of all the methods
increases, the Re and RMSE% decrease and Fscore presents a “mountain” shape, which
first increases to a maximum value and then decreases. That is, the commission error
always increases with increasing WS, while the omission error is the opposite. When
the commission and omission errors become balanced, the overall accuracy reaches the
maximum value. The accuracy of tree height estimation decreased with increasing WS.
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Figure 8. Accuracies of individual tree detections and tree height estimations using different window sizes (each cell size is
0.1 m) in the local maxima algorithm.
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Further analysis showed that the sensitivity of different CHMs to the LM of different
WSs was slightly different. In terms of the accuracy of ITD, the median method was
the main outlier in the eight methods. Basically, the median filtering CHM performed
best in controlling omission errors, but mass commission errors led to the lowest Pr and
Fscore values. In addition, almost all methods achieved the highest overall accuracy (Fscore)
when WS was 17 × 17 (1.7 m × 1.7 m). Therefore, the small window in Figure 8 is
partially enlarged when WS is equal to 17. The dotted line and the solid line represent four
post-processing methods and four pre-processing methods, respectively. As there is little
difference between these methods, we evaluated them by 50% of the rankings. Specifically,
for broadleaf forest, the HP, GPMF and spike-free methods were in the top 50% due to
their excellent performances in controlling the commission error. For coniferous and mixed
forests, the mean and Gaussian filter showed remarkable performances. For the spike-free
method, even if there is an enormous omission error, the extremely high commission error
control gives it a high overall accuracy in each stand type. In addition, we found that
the post-processing method (mean, median, Gaussian and pit-free method) had a small
omission error (Re is usually high), which may benefit from excessive detection.

In terms of tree height estimation (RMSE%), we found that coniferous forest has
the highest accuracy compared with broad-leaved forest and mixed forest, and the WS
has the greatest influence on the estimation accuracy of mixed forest. The GPMF and
spike-free method always achieved high accuracy regardless of the forest stand. The HP
method performed well in broadleaf and coniferous forests, and the mean filter performed
well in mixed forests. In coniferous forests, when WS gradually increases, the tree height
estimation accuracies of the three smooth filtering methods become increasingly lower,
and the difference compared with other methods increases significantly. The accuracy of
the median filter method was significantly lower than that of the other methods in mixed
forests. In addition, the difference from other methods was not obvious.

5. Discussion

In recent years, an increasing number of studies have directly used UAVLS as a mea-
surement tool due to the high-density point cloud data, which requires data processing
to minimize the loss of accuracy. As one of the inherent problems in the processing of
LiDAR data, pits will seriously affect the quality of the CHM [9]. Although many studies
focus on pit-filling of the CHMs, most of these algorithms were developed and applied to
low-density ALS (0.7–8 pt/m2) to generate CHMs from 0.2 m to 0.5 m [7,9,11,12,25–27]. In
the present study, we evaluated the performances of several pit-filling methods for generat-
ing 0.1 m resolution CHMs by using both high-density simulated data and UAVLS data.
A comprehensive visual performance, quantitative analysis and application evaluation
framework was used to compare these CHMs.

Compared with real laser scanning data, artificially constructed simulated PCs can
define the exact canopy surface to intuitively and quantitatively compare the effects of dif-
ferent methods [11,26]. In terms of the simulated data results, we obtained a clear ranking
of the advantages and disadvantages in the eight methods (the order is GPMF, spike-free,
pit-free, median, HP, Gaussian, and mean). In contrast, there are many uncertainties in
the real UAV point cloud, which makes the results more complicated. In particular, the
UAVLS data for this study were collected from natural secondary forests with diverse tree
species, high stand density and complex forest layers. The sources of data pits may vary,
and it is difficult to find a true canopy surface as a reference to verify different CHMs.
Previous studies have used different techniques to assess the accuracy of these pit-filling
algorithms. Ben-Arie et al. [10] visually compared the efficacy of the pit-filling algorithm
through CHM and its X-axis profile. Khosravipour et al. [4,17] evaluated the spike-free
method using the accuracy of ITD. Hao et al. [27] first segmented individual trees and then
selected convex hull vertices above the maximum crown diameter of each individual tree
as reference surface points. Mielcarek et al. [7] tested and evaluated five CHM generation
methods by the accuracy of tree height estimation. Chen et al. [11] and Zhang et al. [26]
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evaluated the accuracy of only plot-level maximum tree height estimation. By comparison,
the evaluation framework we used can comprehensively and systematically compare the
effects of different methods.

Regarding the results of the UAVLS-derived CHM evaluation, the GPMF and spike-
free method showed optimal visual performances, similar to the simulated data, and
they produced few pits while preserving details of the crown. The verification of canopy
surface points indicated that the spike-free method performed slightly better than the
GPMF method. The accuracy of ITD for broadleaf forest and tree height estimation of
the GPMF method was slightly better than that of the spike-free method. For the FE
method, since the first return not only exists on the canopy surface but is also distributed
inside the canopy and on the surface (Figure 7), it produced the most data pits among all
methods. This confirmation is consistent with the results from [9,10,28]. For the global
filtering method, the accuracy of the median filter CHM construction was better than that
of mean and Gaussian, but the accuracy of the median filter CHM application showed
outliers. Further analysis found that the median filter produced many consecutive equal
pixel values, which led to multiple continuous treetops in the LM filter and significantly
increased the commission error (shown in Figure 9). The canopy height was significantly
underestimated, and this method produced a mass commission error [27]. For the pit-free
method, the ITD and tree height estimation results are almost consistent with those of the
FE method because it only fills the filtered pits based on FE [7,27]. Thus, although the
post-processing methods based on the original CHM have eliminated partial pits in the
visual effect, they show limited improvement in the quality of the CHM and are even lower
than the original CHM [27]. For the HP method, although it eliminates some small pits,
this method produces deeper pits compared with the FE method, which will greatly reduce
the average height. However, a small number of deep pits do not affect LM detection,
so it is not restricted to individual tree applications. Hao et al. [27] claimed that the HP
method is sensitive to the density of the point cloud; when the pixel is too large, the details
of the crown are missed. Leckie et al. [12] set the grid pixel size at 25 cm according to the
average point spacing. Our average point spacing was between 0.06 m and 0.08 m, so a
0.1 m resolution was appropriate.

Figure 9. An example of median filtering: (a,b) the filtering process with a 17 × 17 window size; (c) the obtained continuous
local maxima are shown in the blue box.

According to the description of Shamsoddini et al. [9], a robust pit-filling algorithm
needs to satisfy the following criteria: identify pits using an adaptive threshold, perform
oriented detection of pits without changing the maximum value, fill the pits with suitable
values to represent the crown shape as closely as possible and preserve canopy gaps.
Considering the driving parameters of the algorithm, the GPMF method and pit-free
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algorithm are parameter-driven algorithms, the spike-free method has two user-defined
parameters, the filter method requires the WS be set, and the FE and HP methods have
no parameters. The spike-free and GPMF differ fundamentally from the others; they
used all laser returns to generate CHMs while improving the potential pits. Using all
returns avoids the loss of crown information and eliminates some errors caused by using
only the first return [7,45]. The difference between them is that the spike-free algorithm
prevents spike formation during TIN construction [17], while GPMF excludes non-surface
points from all returns in a progressive filtering process [27]. GPMF is similar to ground
point filtering [11]; it screens surface points from laser scanning data and can be used for
other canopy surface studies. Compared with other methods, the spike-free method was
developed based on high-density PCs, which is beneficial to the application of this method
in high-resolution CHM generation. Although the CHM filtering method underestimates
the canopy height, it is simple to process and could prove useful for other applications.
For example, Shamsoddini et al. [9] pointed out that CHM filtering combined with linear
regression has an excellent performance in estimating tree height. The error of the post-
processing method mainly comes from the canopy peak, and the error of the pre-processing
method mainly comes from the valley (Table 3), which proves that the pre-processing
method can orient the detection of pits without changing the maximum value.

By comparing the results of different forest types, the average height difference in
the CHM generated by different methods in coniferous forests is the largest (Figure 5
and Table 2), indicating that the impact of pits is worth consideration when generating a
CHM of coniferous forests. The FE and filter CHM severely underestimated the heights
of coniferous forests, especially for the peak canopy (Table 3), because coniferous crowns
are conical and easy to wear during filtration. The accuracy difference between the GPMF
method and spike-free algorithm mixed forests is larger than that of the other forest types,
which indicates that the adaptability of the GPMF method in complex forests is not as good
as that in spike-free forests. Regarding the detection of individual trees, coniferous forests
have higher overall accuracies than broad-leaved forests and mixed forests because of
their lower commission errors (Figure 8). Likewise, the tree height estimation accuracy of
coniferous forest was the highest among the three forest types when the detection WS was
the same. The accuracies of ITD and tree height estimation of mixed forest were the lowest.

This study demonstrated that the effect of the pit-filling method on individual tree
applications of high-resolution CHMs is small. The outliers of the median filter in broad-
leaved forest, coniferous forest and mixed forest were 12%, 9% and 8%, respectively. The
differences from other methods for different forest types are very small (the difference of
Fscore was 1–3%), while the accuracies of different methods for estimating tree height in any
forest was less than 0.1%. This result indicated that the effect of data pits on individual
tree applications (ITD and tree height estimation) is not significant when using a high-
resolution CHM. Perhaps with the decrease in resolution, the difference will be more
obvious. For example, the results of Mielcarek et al. [7] showed that the difference in tree
height estimation accuracy between spike-free and Gaussian filters is 3.29% when using a
0.5 m resolution CHM. Hao et al. [27] showed that the difference in the overall accuracy
of ITD between GPMF and FE is 17.43%. The results of Khosravipour et al. [4] show that
the accuracy difference between the pit-free CHM developed by Khosravipour et al. [4]
and the Gaussian smoothed CHM is 3.6% when using a 0.15 m resolution CHM, while the
difference is 32% when using a 0.5 m resolution CHM.

This study aims to compare and evaluate the performances of different pit-filling meth-
ods to generate high-resolution CHMs. To reduce the uncertainty of complex parameter
selection in the ITD algorithm, a single parameter and commonly used local maxima detec-
tion method are used. Although there is little difference in the application of individual
trees, notably, CHMs without artefacts are more useful and reliable, with better reproduc-
tions of crown shapes [7]. Other CHM applications should be further evaluated, such as
crown delineation and other tree metric estimations, and more data set from complicated
natural forests would be recommended to take into account for evaluating the effectiveness
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of the framework on the diverse tree species, high stand density, and complex forest layers.
Notably, this study area is a natural secondary forest with high-density stems, and it is
difficult to measure individual tree position and height. Due to many uncertainties in field
measurements [7], many studies suggest that LiDAR be directly used as a measurement
tool [46,47]. Based on the topography of the study area (7◦ to 11◦), there is no significant
difference between the CHM generated by normalized PCs and the CHM obtained by the
DSM minus DEM, regardless of the method used.

6. Conclusions

The high sampling density near-ground UAVLS system can extract fine forest canopy
structures. Quantifying the accuracy of high-resolution CHM construction derived from
UAVLS is an important precursor to the use of UAVLS data to obtain other forest parameters.
This study compared and evaluated several CHM generation methods from multiple
aspects. The results demonstrated that different processing methods can affect the quality
of the CHMs generated by high-resolution UAVLS data. The GPMF [27] and spike-free [17]
methods have excellent performance in generating CHMs; they effectively remove data
pits and preserve crown details, while minimizing the loss of canopy height under complex
stand conditions. Using the first echo of laser scanning will produce massive amounts
of data noise and result in the incorrect expression of the canopy surface. Although the
global filtering method (mean, median and Gaussian filter) of the CHM decreases the noise
visually, it significantly reduces the canopy surface height. A median filter is not suitable
for individual tree applications based on LM detection when using a high-resolution CHM.
The pit-free method [10] detects and fills pits locally in the original CHM, and it can
improve limited accuracy, similar to other post-processing methods. The HP interpolation
method [12] has a good performance in the generation of high-resolution CHMs, but a
small number of deep points are introduced. In high-density and complex forests, the
suppressed tree crown is also an important source of CHM pits. Compared with broad-
leaved and mixed forests, coniferous forests are more sensitive to data pits, so selection
of the CHM generation method should be considered. Although these high-resolution
CHM generation methods show little difference in the application of ITD and tree height
estimation, a CHM without noise is also valuable. This study provides a comprehensive
reference for CHM generation using high-resolution LiDAR data and demonstrates the
potential of UAVLS as a forest measurement tool in obtaining forest inventories.
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