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Abstract: The scope of this work was to evaluate simulated carbon monoxide (CO) and aerosol op-

tical depth (AOD) from the CAM-chem model against observed satellite data and additionally ex-

plore the empirical relationship of CO, AOD and fire radiative power (FRP). The simulated seasonal 

global concentrations of CO and AOD were compared, respectively, with the Measurements of Pol-

lution in the Troposphere (MOPITT) and the Moderate-Resolution Imaging Spectroradiometer 

(MODIS) satellite products for the period 2010–2014. The CAM-chem simulations were performed 

with two configurations: (A) tropospheric-only; and (B) tropospheric with stratospheric chemistry. 

Our results show that the spatial and seasonal distributions of CO and AOD were reasonably re-

produced in both model configurations, except over central China, central Africa and equatorial 

regions of the Atlantic and Western Pacific, where CO was overestimated by 10–50 ppb. In config-

uration B, the positive CO bias was significantly reduced due to the inclusion of dry deposition, 

which was not present in the model configuration A. There was greater CO loss due to the chemical 

reactions, and shorter lifetime of the species with stratospheric chemistry. In summary, the model 

has difficulty in capturing the exact location of the maxima of the seasonal AOD distributions in 

both configurations. The AOD was overestimated by 0.1 to 0.25 over desert regions of Africa, the 

Middle East and Asia in both configurations, but the positive bias was even higher in the version 

with added stratospheric chemistry. By contrast, the AOD was underestimated over regions asso-

ciated with anthropogenic activity, such as eastern China and northern India. Concerning the cor-

relations between CO, AOD and FRP, high CO is found during March–April–May (MAM) in the 

Northern Hemisphere, mainly in China. In the Southern Hemisphere, high CO, AOD, and FRP val-

ues were found during August–September–October (ASO) due to fires, mostly in South America 

and South Africa. In South America, high AOD levels were observed over subtropical Brazil, Para-

guay and Bolivia. Sparsely urbanized regions showed higher correlations between CO and FRP 

(0.7–0.9), particularly in tropical areas, such as the western Amazon region. There was a high corre-

lation between CO and aerosols from biomass burning at the transition between the forest and 
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savanna environments over eastern and central Africa. It was also possible to observe the transport 

of these pollutants from the African continent to the Brazilian coast. High correlations between CO 

and AOD were found over southeastern Asian countries, and correlations between FRP and AOD 

(0.5–0.8) were found over higher latitude regions such as Canada and Siberia as well as in tropical 

areas. Higher correlations between CO and FRP are observed in Savanna and Tropical forests (South 

America, Central America, Africa, Australia, and Southeast Asia) than FRP x AOD. In contrast, bo-

real forests in Russia, particularly in Siberia, show a higher FRP x AOD correlation than FRP x CO. 

In tropical forests, CO production is likely favored over aerosol, while in temperate forests, aerosol 

production is more than CO compared to tropical forests. On the east coast of the United States, the 

eastern border of the USA with Canada, eastern China, on the border between China, Russia, and 

Mongolia, and the border between North India and China, there is a high correlation of CO x AOD 

and a low correlation between FRP with both CO and AOD. Therefore, such emissions in these 

regions are not generated by forest fires but by industries and vehicular emissions since these are 

densely populated regions. 

Keywords: carbon monoxide; aerosol optical depth; FRP; MOPITT; MODIS; CAM-chem 

 

1. Introduction 

In the last decade, studies have shown that one of the consequences of climate change 

is the intensification of anthropogenic fires, which lead to changes in land cover, mainly 

in forested regions. Such activity is considered an important source of greenhouse gases, 

aerosols and pollutants to the atmosphere. Fires produce extensive plumes of smoke, 

mainly in the dry season [1,2]. This is alarming in the sense that significant changes in 

atmospheric composition and air quality may occur [3], which can be studied by using 

remote sensing data. However, these data are still underexplored in air quality studies 

over the southern hemisphere, although there is great potential here as some environmen-

tal satellites (Aqua and Terra) allow the monitoring of the concentration of pollutants with 

sensors such as Measurements of Pollution in the Troposphere (MOPITT) and Moderate-

Resolution Imaging Spectroradiometer (MODIS). 

Global monitoring surveys using satellites can be used to determine the sources of 

concentration of CO, NO2, O3, formaldehyde, aerosols and other pollutants, demonstrat-

ing the great potential for the analysis of air pollution. Lacking aerosol optical depth 

(AOD) and CO concentration measurements on the surface and even at altitude can be 

complemented by using global remote information obtained through sounders onboard 

environmental satellites. Studies such as those presented in [4,5] show the advantage of 

using information from the environmental satellite MODIS (Aqua and Terra) to detect and 

monitor the concentration of gases. 

On the other hand, the biogeochemical cycles are influenced by anthropogenic and 

natural activities. Therefore, it is important to understand these influences by monitoring 

the temporal and spatial distribution of gases, identifying the source and sink origins. 

Carbon monoxide (CO) is present in the atmosphere, has roughly a 2-month lifetime and 

diverse natural and anthropogenic sources, such as methane (CH4) oxidation, non-

methane hydrocarbons (NMHC) oxidation, biomass burning, fossil fuel burning, etc. CO 

affects the hydroxyl radical (OH), so it influences tropospheric chemistry. Its sources are 

essentially anthropogenic (500–600 Tg yr−1) and biomass burning (300–600 Tg yr−1), both 

with a significant annual variation. For these and other reasons, CO is used as a transport 

tracer [6,7]. Biomass burning is considered a relevant source of trace gases and particulate 

matter (mainly composed of organic and black carbon substances) to the atmosphere [8]. 

On a regional scale, the influence of biomass burning is also significant in Africa 

[9,10], South America [11,12], northwest America [13], East Asia [14], Southeast Asia [15], 

Australia [16] and Russia [17]. The combustion process of the biomass under ideal 
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conditions of complete combustion releases carbon dioxide (CO2) and water vapor (H2O) 

into the atmosphere, according to Equation (1) [18]: 

CH2O + O2 → CO2 + H2O,  (1)

where CH2O represents the plant biomass; however, complete combustion during bio-

mass burning usually does not happen. It is common to find other species of gases consti-

tuted by carbon molecules such as carbon monoxide (CO), methane (CH4), non-methane 

hydrocarbons (NMHC) and suspended carbon particles (C). In addition to these gases, 

nitrogen oxides (NOx), methyl chloride (CH3Cl), sulfur dioxide (SO2) and other species 

are produced in the combustion process [19]. Trace gases and aerosols released during 

biomass burning are mainly composed of oxidized organic materials. They have molecu-

lar properties that interact with the electromagnetic radiation (EMR) in the atmosphere, 

causing absorption and/or scattering. The interactions of these radiatively active com-

pounds with EMR, along with changes in the Earth’s surface properties, cause significant 

changes in latent and sensible heat fluxes, biogeochemical cycles and cloud nucleation 

[20]. 

The fire radiative power (FRP) is used to relate the total emissions of trace gases and 

aerosols injected into the atmosphere by the occurrence of fires. FRP is proportional to the 

amount of biomass consumed in the burning process and can be considered to be an in-

dicator of trace gases and particulate matter emitted to the atmosphere due to biomass 

burning [21]. The first studies on FRP used MODIS Airborne Simulator (MAS) in the 

Smoke, Cloud and Radiation, Brazil/California experiments (SCAR-B and SCAR-C, re-

spectively), presented in [22,23], used a semi-empirical relationship between the FRP and 

infrared spectral radiance. It used MODIS band 21 centered at 4 μm, associating the FRP 

with the pixel brightness temperature (Tf4μm) and the background temperature (Tb4μm) of the 

respective bands. A total emitted power value was assigned to each fire pixel. The total 

emitted power was deemed a proper quantity in the estimation of fire emissions [23]. A 

relationship between the rate of emitted energy, Ef, and the detected temperature difference 

in the 4 μm channel is approximated by Equation (2) [22,23], and Equation (3) represents 

the FRP obtained through the MODIS sensor. 

�� = �(����� − �����) (2)

��� = �� ∗ Asampl (3)

where K is a constant (4.3 × 10−19), �� is the rate of emitted energy (W/m2 or equivalently, 

MW per pixel) and Asampl represents the size of the pixel area (km2). 

Trace gases and the direct and indirect effects of aerosols can affect the energy bal-

ance of the atmosphere. Fires, which occur mainly in tropical areas of the planet, are im-

portant sources of pollutants to the atmosphere [8,24]. During the winter months, hun-

dreds of thousands of fire outbreaks occur in the tropical regions, mainly in savanna and 

forest ecosystems. During the combustion of biomass, gases, including some greenhouse 

gases and precursors of tropospheric ozone, are emitted into the atmosphere, and aerosol 

particles that interact efficiently with solar radiation and affect the processes of micro-

physics and cloud formation dynamics and the quality of air. Therefore, the effects of these 

emissions exceed the local scale and regionally affect the composition and physical and 

chemical properties of the atmosphere and neighboring ocean areas, with potential impact 

on a global scale. 

On regional and global scales, these emissions from fires alter the radiative balance 

of the atmosphere through the direct effects of aerosol particles by reflecting and spread-

ing solar radiation back into space, reducing the amount absorbed by the Earth’s surface, 

and by absorbing solar radiation, heating the atmosphere. [25] suggests that atmospheric 

heating due to aerosols of the black carbon type could balance the cooling effect associated 

with other types (sulfates), and that their direct radiative forcing may exceed that associ-

ated with CH4. In this way, aerosol particles, the product of incomplete combustion 
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processes, would be second only to CO2 in the contribution to the radiative heating of the 

atmosphere. 

The radiation balance and the hydrological cycle can also be indirectly affected by 

the emissions from fires, via changes in microphysics and the dynamics of cloud for-

mation, due to greater availability of cloud condensation nuclei (CCN) and ice in the at-

mosphere, which promotes changes in the cloud droplet spectra [1,26,27] and thermody-

namic stabilization [21]. The increase in the concentration of aerosol particles imposes the 

production of smaller and greater cloud droplets, producing two effects: first, the greater 

amount of droplets reflects more solar radiation back into space (thus cooling the atmos-

phere), and, second, the smaller size will be less favorable for rain production, as very 

small droplets do not tend to clump together to form the large drops that fall like rain. On 

the other hand, the thermodynamic stabilization imposed by the direct interaction of aer-

osol particles with solar radiation (decreases heating in the lower atmosphere by reducing 

solar radiation) restricts the rise of convective cells generated close to the surface and, 

thus, inhibits the formation of clouds. This set of factors suggests that the effects of fires 

can go beyond the local scale and significantly affect the hydrological cycle on a regional 

scale and the pattern of planetary redistribution of energy from the tropics to mid and 

high latitudes. 

On the other hand, changes in land use cause changes in the energy, water and mo-

mentum balances on the surface, due to the corresponding changes in the surface albedo 

and evapotranspiration capacity associated with the vegetation cover and its spatial struc-

ture. In particular, the replacement of forested areas with a deep root system by pasture 

areas implies an increase in albedo and low accessibility to deep soils with high water 

storage. This change generally leads to an inversion in Bowen’s ratio, producing drier, 

hotter and deeper planetary boundary layers, mainly during the dry season. 

Another relevant and little-studied aspect corresponds to the effect of land-use 

change on dust aerosols. With more exposed soils and more intense winds (which is ex-

pected with the reduction of the roughness of the land when exchanging forests for pas-

tures) there may be a significant increase in the production and lifting of soil dust, which 

also impacts the radioactive balance, cloud microphysics and hydrological cycle. 

Thus, changes in land use are, by themselves, inducing changes in the pattern of the 

hydrological cycle and these changes can be evaluated using numerical models and land 

occupation scenarios. Therefore, this is crucial for their adequate representation in 

weather forecasting and climate models. Furthermore, the assimilation of trace gases and 

aerosol emissions was carried out to improve weather forecasts and climate modeling [28–

30]. The gases and aerosols emitted in the combustion process alter the incidence of solar 

radiation significantly. Consequently, the radiation and water budgets, cloud microphys-

ics and chemical composition of the atmosphere are influenced by aerosols and gases [31]. 

Besides, these particles and gases have significant impacts on public health. 

The damages to health and the absence of barriers for this type of contaminant in the 

air justify the concern regarding the identification of these pollutants in the atmosphere. 

Pollution emitted by a particular country or locality is not restricted to that location and 

can cause damage beyond its borders. According to the World Health Organization 

(WHO), 92% of the world’s population lives in places where air quality levels exceed the 

limits established by the WHO. Three million deaths per year are reported due to expo-

sure to air pollution in external environments. Of these, 90% occur in low and middle-

income countries [32]. The Global Burden of Disease 2015 Study (GBD 2015) showed that 

air pollution was directly linked to 19% of deaths from cardiovascular diseases world-

wide, 21% from stroke deaths or cerebrovascular accident, 23% from lung cancer and 24% 

from ischemic heart diseases [32]. 

Given the importance of these particles and gases in the atmospheric energy balance 

and for public health, our goal was to determine how well the global chemical models 

simulate these aerosol and trace gases compared to satellite observations. For that pur-

pose, we chose one of the most popular global models, the Community Atmosphere 
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Model with chemistry (CAM-chem). Two sets of CAM-chem simulations were performed: 

tropospheric-only and tropospheric with stratospheric chemistry included. Thus, this re-

search aims to evaluate the seasonal global representation of CO and AOD simulated by 

the CAM-chem model against observed satellite data. Finally, since 43% of inhalable par-

ticulate matter (PM10) and 41% of fine particulate matter (PM2.5) are emitted by forest and 

savanna fires [33], we analyzed the seasonality of FRP and explored the observational 

relationship between CO, AOD and FRP during the period 2010–2014. 

This paper is organized as follows: Section 2 describes the dataset and model config-

urations. Sections 3.1–3.3 describe the comparative study of CAM-chem-simulated CO 

and AOD against the remote sensing products from the satellite observational data. Sec-

tion 3.4 shows the correlations between global FRP, CO and AOD for the period studied. 

Finally, Section 4 presents our conclusions. 

2. Materials and Methods 

2.1. Satellite Data 

2.1.1. CO from MOPITT 

In this work, a priori gridded CO monthly data from Level 3 version 8 (V8) of the 

Measurement of Pollution in the Troposphere (MOPITT) based on simultaneous thermal-

infrared (TIR) and near-infrared (NIR) products with a mixing ratio of 1000 hPa is used 

[34,35]. The TIR–NIR product offers the greatest vertical resolution and considerable sen-

sitivity to CO in the lower troposphere. 

MOPITT is one of five remote sensing instruments on the satellite Terra, launched by 

NASA in December 1999. The basic operation of the MOPITT involves an infrared radi-

ometer in which the gas cell is used as an optical filter to measure the signal from the same 

gas in the atmosphere. It combines scanning actinography and meteorological spectrog-

raphy to measure the resurgent thermal emission of CO and CH4 in thermal channels. 

MOPITT is in orbit at 705 km altitude; the satellite passes over a given region every 16 

days, providing a near-complete global coverage every 3–4 days [36–39]. 

The MOPITT Level 3 data set provides global coverage of: (1) the total amount of CO 

in the column, (2) the CO mixing ratio at seven altitudes (1000, 850, 700, 500, 350, 250 and 

150 hPa), and (3) the view and time along the track. It has a horizontal resolution of 22 km 

and vertical resolution of 3 km, with an average accuracy of 10%. These data were vali-

dated and extensively described by [35]. We studied the spatial and temporal distribution 

of CO concentrations around the globe from 2010–2014 using MOPITT a priori gridded 

CO data (variable a priori CO surface mixing ratio day_MOP03), which has a spatial res-

olution of 1° × 1°. A correction of bias in the geolocation data in the previous iteration of 

MOPITT was introduced in V8. V8 retrieval processing utilizes Modern-Era Retrospective 

analysis for Research and Applications-2 (MERRA-2) reanalysis as the meteorological 

data source, offering an improved spatial resolution for atmospheric variables. Therefore, 

meteorological data required for Level 2 processing (specifically, water vapor, tempera-

ture profiles and surface skin temperature) are based on the MERRA-2 reanalysis product. 

MOPITT provides observations during the daytime and nighttime, which are processed 

separately with Level 3 processing (based on solar zenith angle), yielding separate day-

time and nighttime products within each Level 3 HDF file (c.f., [35,40,41]). Notably, over-

land, the a priori sensitivity is generally higher for daytime overpasses than for nighttime 

overpasses [42,43]. This work uses the V8 TIR–NIR a priori surface-level daytime CO. 

2.1.2. FRP from MODIS 

In this work, we used the monthly FRP data from the MODIS/Aqua 1-degree gridded 

MODIS Active Fire Product V005 (MYD14CM1)—Thermal Anomalies/Fire products, 

which were estimated by the MODIS sensor with the AQUA platform with 1 km of spatial 

resolution from January 2010 to December 2014. The gridded MODIS active fire products 

present statistical summaries of fire pixel information. 
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The global monthly products were generated at a 1° × 1° spatial resolution for the 

time of one calendar month. These products were derived from MODIS Climate Modeling 

Grid (CMG) 0.5° products (c.f., [44]) for the Northern Eurasia Earth Science Partnership 

Initiative (NEESPI) program, which were used in support of research on surface processes 

and climate modeling. There are 36 discrete spectral bands of the MODIS that observe the 

globe at each point every 1–2 days. The Terra AM (10:30 and 22:30) and Aqua PM (13:30 

and 01:30) platforms record fire observations four times a day. The resolution of MODIS 

fire products is 1 km, recorded at 3.9 and 11 μm. The pre-launch calibration of the high-

gain channels is improved by post-launch remote calibration due to the lack of on-board 

calibration of high-temperature sensors. The MODIS fire products based on heritage al-

gorithms used with Advanced Very-High-Resolution Radiometer (AVHRR) and Geosta-

tionary Operational Environmental Satellite (GOES) sensors provide information for op-

erational fire monitoring. MODIS provides information on emitted energy, the estimation 

of burned area, fire location and the smoldering and flaming ratio. MODIS algorithms, 

including the fire algorithm, are updated periodically, leading to different versions and 

generating a series of data set products [44,45]. 

Spaceborne instruments provide a unique view of global vegetation fire activity 

many times a day. In this study, we assessed the fire characterization information pro-

vided by the Aqua MODIS Thermal Anomalies product (MYD14) for FRP seasonal aver-

ages from 2010 to 2014. The detection limit for MYD14 (Aqua) is approximately 9 MW, 

and that for MOD14 (Terra) is 11 MW. In [46], a positive correlation was found between 

the FRP and the percentage of vegetation cover, indicating that the FRP is sensitive to 

biomass density. 

2.1.3. AOD from MODIS 

Satellite observations of AOD were obtained from MODIS using radiometers with 36 

bands ranging between 0.4 μm and 14.4 μm on the Terra and Aqua satellites of NASA 

[47,48]. In [46,49], the authors used AOD data from MODIS Aqua and Terra sensors. The 

combined ocean/land algorithm takes advantage of the wide spectral range and high spa-

tial resolution of MODIS with daily global coverage (e.g., 500 m at 0.47 to 2.12 μm with 

250 m at 0.66 and 0.86 μm and 1 km at 1.38 μm). The newest MODIS Collection 6.1 (C6.1) 

AOD products with various refinements and improvements made to both the radiation 

calibration and Dark Target (DT) and Deep Blue (DB) algorithms are available. These 

products have been validated against ground observations (e.g., [50–54]). 

Reference [50] validated the newest MODIS Collection 6.1 AOD products over land 

and ocean against ground based AOD data from the latest version (Version 3 Level 2.0) 

data derived from AERONET ground measurements observed at 384 sites to gain a 

knowledge of their accuracy and problems at global, regional, and individual site scales. 

They discussed the validations for high vegetation and low aerosol loading in Europe, 

eastern North America, and Southeast Asia. They found that in general C6.1 aerosol prod-

ucts improved in comparison to C6 products on local, regional and global scales. [51] pro-

vides a comprehensive validation and error analysis of the MOD04_3K C6.1 AOD data set 

against AERONET Version 3 measurements at different space-time scales from 2013 to 

2017 on the land and the ocean. Their results suggest that the data quality of the 

MOD04_3K AOD data set is globally improved at different spatial scales after quality con-

trol. Many studies have been carried out comparing products from different versions of 

MODIS against AERONET data to verify the gap problem in MODIS measurements be-

cause AOD is measured only in clear sky conditions and these studies show that MODIS 

AOD has generally excellent agreement with AERONET, as the data used in this work are 

monthly and not daily averages, the error due to the gap is reduced [52,55–58]. 

Our study used a monthly AOD at 550 nm from the MODIS Aqua and Terra Ensem-

ble Level 3 1 × 1 deg product (Collection 6.1) from January 2010 to December 2014 (total 

of 60 months). The AOD products can be accessed on the GIOVANNI NASA subset or-

dering web page (https://giovanni.gsfc.nasa.gov/giovanni/, accessed on 1 October 2020). 
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2.2. CAM-Chem Model 

2.2.1. CAM-Chem Model Introduction 

NCAR Community Atmosphere Model, version 5 (CAM5) with chemistry (CAM-

Chem) was used in this study. CAM5 is the atmospheric component of the Community 

Earth System Model version 1.2 (CESM-1.2). We conducted our simulations using CAM-

chem with the MOZART-4 chemical mechanism [59,60], which has demonstrated the abil-

ity to represent tropospheric and stratospheric conditions including temperature struc-

ture and dynamics [59,61,62]. Offline CAM-chem has been used in the Hemispheric 

Transport of Air Pollution (HTAP) assessments [63,64]. In [60,65], the authors describe 

CAM5 in detail. Some physical parameterizations are described here briefly. The deep 

convection parameterization uses the Zhang–McFarlane scheme [61] and shallow convec-

tion [62]. The large-scale microphysics parameterization follows the Morrison–Gettleman 

double moment scheme [66]. The moist turbulence uses the scheme presented in [62], and 

radiation parameterization follows the Rapid Radiative Transfer Model (RRTM) [67]. The 

aerosol model uses the three Modal Aerosol Model (MAM3) [68]; the three modes are 

accumulation, Aitken and coarse. MAM3 predicts the aerosol mass and the total number 

in each mode and includes internally mixed components including Black Carbon (BC), 

primary organic matter (POM), SOA, sea salt, dust and sulfate.  

CAM-chem includes the biogenic emission model MEGAN-v2.1 (Model of Emissions 

of Gases and Aerosols from Nature), through the coupling of the Community Land Model 

(CLM). This land model performs the online calculation of emissions from vegetation for 

more than 100 compounds such as isoprene, monoterpenes, oxygenated compounds, ses-

quiterpenes and nitrogen oxide [69,70]. Fire emissions are adopted from FINN (Fire in-

ventory from NCAR) version 1.5, which is a global database framework for emissions es-

timated from open burning and serves as an input to atmospheric chemistry and air qual-

ity models at both local and global scales. FINN provides daily emission estimates at a 

horizontal resolution of ~1 km2. It is unique in terms of the availability of products at high 

temporal and spatial resolution globally and for a large number of chemical species 

[71,72]. Combining the satellite observations of active fires with emission factors and esti-

mated fuel loading, FINN provides daily high-resolution (~1 km) open burning biomass 

estimates for use in global and regional chemical transport models. 

Anthropogenic emissions are adopted from the Precursors of Ozone and their Effects 

in the Troposphere (POET) database for 2000 [59]. Emissions of black and organic carbon 

resulting from fossil fuel and biofuel combustion for the year 1996 were studied in [73]. 

The anthropogenic SO2 and NH3 were obtained from the Emission Database for Global 

Atmospheric Research databases EDGAR-FT2000 and EDGAR-2. The Regional Emission 

inventory for Asia (REAS) was used for this region, along with the corresponding simu-

lated annual inventory for each year in [74]. While REAS is available for each year, the 

rest of the emissions were simulated on an annual average basis. Aircraft emissions have 

global annual totals of 0.63 Tg yr−1 for NO, 1.70 Tg yr−1 for CO and 0.16 Tg yr−1 for SO2. The 

monthly means for dimethyl sulfide (DMS) were taken from the marine biogeochemistry 

model HAMOCC5 and were representative of the year 2000 [75]. The GEIAv1 inventory 

provides SO2 emissions from continuously outgassing volcanoes [76]. Emissions are im-

plemented as a flux boundary condition for the vertical diffusion and are released at the 

bottom layer except for volcanic factors. CAM-chem is capable of interpolating the emis-

sion fields to the model resolution irrespective of the resolution with which they are pro-

vided. A simple bilinear interpolation is used, and therefore this does not ensure the exact 

conservation of emissions between resolutions. Errors are usually small and limited to 

areas of strong gradients. 

Two CAM-chem configurations were used in this work: (i) tropospheric chemistry 

with MAM3 (hereafter known as CAM-TROPMAM) and (ii) tropospheric-stratospheric 

chemistry with MAM3 (CAM-STRATMAM). CAM-TROP refers to Trop MOZART chem-

istry with 103 species, with an extensive tropospheric chemistry scheme including C2H2, 
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HCOOH, HCN and CH3CN and reaction rates updated to JPL-2006. The isoprene oxida-

tion scheme, which is relevant in the troposphere, now includes an increase in glyoxal 

production and is primarily intended for simulations. Long-term trends in the strato-

spheric composition are not crucial. Thus, in this configuration, the stratospheric distribu-

tions of long-lived species were specified from the earlier Whole Atmosphere Community 

Climate Model, version 4 (WACCM4.0) simulations. WACCM4 is an extension of the 

CAM4 [65,77,78]. On the other hand, CAM-STRAT refers to Trop-Strat MOZART chemis-

try and extensive tropospheric and stratospheric chemistry, including the entire strato-

spheric chemistry from WACCM4 [77]. 

2.2.2. CAM-Chem Model Simulation 

Two simulations of global atmospheric composition CAM-TROPMAM and CAM-

STRATMAM at a horizontal resolution of 1.9° (latitude) and 2.5° (longitude) were per-

formed. The model was integrated for the period 2009–2014. The first-year simulation cor-

responded to the model’s initiation (i.e., 2009), and the subsequent years (2010–2014) were 

used in the analysis. Vertical levels were divided into 30 unevenly spaced layers, from the 

surface up to approximately 4.0 hPa (40 km). The required datasets for setting up the sim-

ulations for both configurations are available for download at www.cesm.ucar.edu, (ac-

cessed on 9 September 2017). The CAM-chem simulated monthly outputs were interpo-

lated to a horizontal resolution of 1.9° (latitude) and 2.5° (longitude). CO and AOD were 

analyzed on a seasonal basis; i.e., December–January–February (DJF), March–April–May 

(MAM), June–July–August (JJA), and September–October–November (SON). An addi-

tional analysis for August–September–October (ASO) was considered to evaluate the pe-

riod with the maximum biomass burning, particularly in South America [79]. 

The output AOD variable of the two model configurations was directly compared 

with the observed AOD (MODIS). In contrast, the output CO profile was necessary to 

transform to account for the vertical resolution of the MOPITT retrieval [80] by using the 

following equation: 

�(�) = �� + �(�(�) −  ��) (4)

where A is the kernel of the MOPITT average on the surface, and �(�) is the CO output 

from the CAM-Chem model on the surface, interpolated onto the MOPITT grid. �� is the 

a priori concentration of MOPITT on the surface [80]. After the transformation, the mod-

eled CO at the surface was compared to the surface-level MOPITT CO (Figures 1–5b–d). 

We also performed a direct comparison of surface CO concentrations in both CAM-chem 

configurations, as shown in Figures S1–S5b–d. 

2.3. Calculating RMSE and Pearson’s Correlation Coefficient 

For the model-observation comparisons, we used the NCAR Command Language 

(NCL). To calculate the root-mean-square error (RMSE) and the Pearson correlation coef-

ficient are used the dim_rmsd_Wrap and escorc functions, respectively. The 

dim_rmsd_Wrap function computes the temporal root-mean-square-difference at each 

latitude/longitude grid point, and the escorc function correlates all grid points for each 

time of the two variables. For more details, see example 3 at 

https://www.ncl.ucar.edu/Document/Functions/Built-in/dim_rmsd.shtml (accessed on 8 

June 2018) and example 5 at https://www.ncl.ucar.edu/Document/Functions/Built-in/es-

corc.shtml (accessed on 8 June 2018).  

3. Results and Discussion 

In this section, we evaluated the CO and AOD variables simulated for 2010–2014 by 

the CAM-chem model against global satellite-obtained concentrations of surface aerosols 

(AOD) and CO data to verify the spatial and temporal reproducibility of the model. Two 

different model configurations, as explained in Section 2, are used. The model results were 
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compared with a priori satellite CO observations from the Measurements of Pollution in 

the Troposphere (MOPITT) instrument and AOD from the Moderate-Resolution Imaging 

Spectroradiometer (MODIS). Additionally, in Section 3.4, we evaluated FRP and its corre-

lations with CO and AOD. 

3.1. Seasonal and Spatial Variations of Global CO (Observations and Simulations) 

In this section, we evaluate model simulation against observations, we present the 

results of the observed CO concentrations (Figures 1a–5a) and results from experiments 

with CAM-TROPMAM (Figures 1b–5b) and CAM-STRATMAM (Figures 1d–5d) for dif-

ferent seasons (DJF, MAM, JJA, SON) and also for the period with maximum biomass 

burning over South America (ASO). The gray values in the CO observations are missing 

values in the satellite data. The model results have no missing value (see the Supplemen-

tary Figures S1–S5). Therefore, the results from Equation (4) take into consideration of any 

missing data. A calculation recommended in the MOPITT manual is performed to com-

pare the CO data from MOPITT against the model. After performing this calculation, 

shown in Equation (4), the model results present missing values equal to the observed 

data. 

In Figure 1a, the highest CO concentration occurs during DJF, primarily in eastern 

China, which must be related to urban air pollution. This CO plume also prevails over 

Southeast Asian countries, such as Bangladesh, Myanmar, Thailand, Laos, Cambodia, Ma-

laysia and western Indonesia, which is associated with biomass burning and can be con-

firmed in the FRP results. Likewise, the Indian subcontinent shows high CO concentra-

tions during this period, due to biomass burning and urban air pollution, and showed a 

positive correlation between FRP x CO results and FRP results. This reveals biomass burn-

ing processes in southern India and thermoelectric emission, industrial and vehicular 

emissions in northern India, as suggested in [81]. Higher CO concentrations were also 

observed in central Africa due to biomass burning in Congo’s Equatorial Forest as also 

shown in the FRP results. 

The comparison of the model’s results against observations (Figure 1b,d with Figure 

1a) shows that both configurations of CAM-chem successfully simulate the spatial distri-

bution characteristics of CO concentration during DJF, such as a higher concentration over 

Eastern China, Central Africa, Europe and the United States. Nevertheless, the CAM-

TROPMAM configuration slightly overestimates CO concentrations (over Africa, Aus-

tralia, North America, Southern South America, etc.), while underestimating it over 

China, Bangladesh and Myanmar (Figure 1c,e). The version of CAM-chem that uses the 

chemical mechanism in the stratosphere (CAM-STRATMAM) reduce these positive bi-

ases, except over India. 
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Figure 1. (a) CO (ppb) observed by MOPITT sensor for December-January-February (DJF), in the period of 2010–2014, (b) 

CO simulated by the CAM5-MAM3 model using tropospheric chemistry and (d) tropospheric/stratospheric chemistry 

mechanisms using the calculations of Equation (4). The right side of the figure shows the model difference minus the 

observation (MOPITT), (c) for tropospheric chemistry and (e) for tropospheric/stratospheric chemistry. 

During the period of March–April–May (MAM), higher CO concentrations are ob-

served (Figure 2a) in countries south of China, such as Myanmar and Laos and over Eu-

rope. In [82], the authors also studied aerosols in China, focusing on the Yangtze River 

Delta in December 2013 and January 2014. They found that dust aerosols in that region 

make little difference to cloud properties, and the primary source is anthropogenic activ-

ities. Higher CO concentrations were observed over Eastern China than other parts. The 

highest CO concentrations occur during MAM in Europe in densely industrialized areas 

such as the central portion of the continent, including Germany, the Netherlands and Po-

land and expanding eastward through Ukraine to the western part of Russia, as well as 

industrialized regions of Italy, France and the British Isles. In Europe, CO concentrations 

are spatially more homogeneous, reflecting the greater urbanization of the continent. Sim-

ilar to DJF, both configurations of CAM-chem (Figure 2b,d) successfully simulate the spa-

tial distribution characteristics of the CO concentration in MAM. Here, the bias (Figure 
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2c,e) in both cases is smaller than in DJF; however, the CAM-STRATMAM configuration 

shows fewer positive biases than the CAM-TROPMAM configuration. 

 

Figure 2. (a) CO (ppb) observed by MOPITT sensor for March-April-May (MAM), in the period of 2010–2014, (b) CO 

simulated by the CAM5-MAM3 model using tropospheric chemistry and (d) tropospheric/stratospheric chemistry mech-

anisms using the calculations of Equation (4). The right side of the figure shows the model difference minus the observa-

tion (MOPITT), (c) for tropospheric chemistry and (e) for tropospheric/stratospheric chemistry. 

In North America, higher concentrations are observed also throughout the Midwest-

ern portion of the US, especially in the densely industrialized northeast and Great Lakes 

region, where pollution spreads to Southern Canada in the Toronto region. During JJA, 

the observed CO concentration (Figure 3a) increases in the northeastern US (regions of 

New England and Mid Atlantic of) compared to DJF and MAM. There are higher concen-

trations also throughout the state of California, near the border with Mexico. In [13], the 

authors also detected CO emissions from large forest fires in North America using 

MOPITT, indicating the power of a satellite instrument to assess the surface processes. 

Figure 3a also shows that CO concentrations increase over central South America and 

western and central Africa (Congo’s Equatorial Forest and the transition between forest 

and savanna in central Africa) in comparison to MAM due to biomass burning. As with 
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the previous seasons (DJF and MAM), both configurations of CAM-chem (Figure 3b,d) 

perform reasonably in the spatial distribution of CO concentration during JJA. However, 

both configurations underestimate levels over the central part of South America (Figure 

3c,e). Over Africa and Europe, the CAM-STRATMAM configuration slightly reduces the 

positive bias shown by the CAM-TROPMAM configuration. In contrast, it increases the 

negative bias over Eastern China. 

 

Figure 3. (a) CO (ppb) observed by MOPITT sensor for June-July-August (JJA), in the period of 2010–2014, (b) CO simu-

lated by the CAM5-MAM3 model using tropospheric chemistry and (d) tropospheric/stratospheric chemistry mechanisms 

using the calculations of Equation (4). The right side of the figure shows the model difference minus the observation 

(MOPITT), (c) for tropospheric chemistry and (e) for tropospheric/stratospheric chemistry. 

During SON, the observed CO concentrations (Figure 4a) have increased in the 

Southern Hemisphere compared to the previous season, including central Africa and 

northern Australia; and in the Northern Hemisphere, over the south Asian countries. CO 

concentrations are highest over the Southern Hemisphere during ASO (Figure 5a). In 

South America, the highest CO concentrations were observed over Brazil, in the west and 

central portions of the country (in Mato Grosso, Pará, Rondônia, Acre and Amazonas), 

and on the Brazilian border with Bolivia. The main reason for this is agriculture in regions 

close to the Amazon Forest and the expansion of the agricultural frontier in this region. 

These months correspond to the dry season, favoring the accumulation of pollutants in 
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the troposphere. The analysis also shows that CO concentrations started to increase dur-

ing JJA (Figure 3a) over central Africa, US, central South America and other parts of the 

Southern Hemisphere and reached their peak in the Southern Hemisphere during ASO 

(Figure 5a). Similar to the model results in JJA, the CAM-chem model performs well re-

garding the spatial distribution of the CO concentration in SON (Figure 4b,d) and ASO 

(Figure 5b,d). Over Africa and India, the CAM_STRATMAM configuration slightly re-

duces the positive bias shown by the CAM-TROPMAM configuration (Figure 4c,e). How-

ever, similar to JJA, it increases the negative bias over Eastern China. 

 

Figure 4. (a) CO (ppb) observed by MOPITT sensor for September-October-November (SON), in the period of 2010–2014, 

(b) CO simulated by the CAM5-MAM3 model using tropospheric chemistry and (d) tropospheric/stratospheric chemistry 

mechanisms using the calculations of Equation (4). The right side of the figure shows the model difference minus the 

observation (MOPITT), (c) for tropospheric chemistry and (e) for tropospheric/stratospheric chemistry. 
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Figure 5. (a) CO (ppb) observed by MOPITT sensor for August-September-October (ASO), in the period of 2010–2014, (b) 

CO simulated by the CAM5-MAM3 model using tropospheric chemistry and (d) tropospheric/stratospheric chemistry 

mechanisms using the calculations of Equation (4). The right side of the figure shows the model difference minus the 

observation (MOPITT), (c) for tropospheric chemistry and (e) for tropospheric/stratospheric chemistry. 

In summary, in this section, both configurations of CAM-chem (CAM-TROPMAM 

and CAM-STRATMAM) simulate reasonably well the spatial distribution characteristics 

of the CO concentration during all seasons (DJF, MAM, JJA, SON and ASO). In the CO 

simulations with the version of CAM-chem that uses the chemical mechanism in the strat-

osphere (contrary to the tropospheric-only version, CAM-TROPMAM), impacts occur 

mainly in the tropical and temperate regions of the globe; i.e., up to ±40 degrees. Over 

these regions, while the tropospheric version overestimates the CO concentrations, mainly 

over Africa, and equatorial regions (especially over the Atlantic and western Pacific 

Oceans), the inclusion of stratospheric chemistry results in a decrease in the positive bias. 

The decrease in the positive bias and the intensification of the negative bias (e.g., over 

China) in the CAM-STRATMAM configuration is probably related to the higher CO con-

sumption. This configuration contains 28 photolysis reactions more than CAM-TROP-

MAM. There is an underestimation in CO emission inventories in China due to a severe 

underestimation of residential coal combustion for heating and potentially for cooking 
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[83,84] and underestimation of Northern Hemisphere (NH) extratropical CO found in 

global models [85,86] there are other confounding factors. Reference [87] found large in-

ter-model variability in the regional distribution of OH and an overestimation of OH in 

the Northern Hemisphere. 

Reference [88] examined in detail a one-year global reanalysis of CO based on the 

assimilation of conventional meteorological observations and MOPITT multispectral CO 

retrievals in CESM. Their results showed that the total tropospheric estimate CO burden 

in 2002 is around 371 Tg for MOPITT Reanalysis and 291 Tg for the Control run, suggest-

ing that direct emissions of CO and hydrocarbons are too low in the inventory used, and 

chemical oxidation, transport, and deposition processes are not accurately represented in 

the model. Increases in CO led to the net reduction of OH and subsequent longer lifetime 

of CH4 (Control Run: 8.7 years versus MOPITT Reanalysis: 9.3 years). CAM-chem model-

ing helps explain the source contributions and highlights the importance of fire, the miss-

ing variability in the empirical model could be due to anthropogenic sources [89]. 

Furthermore, the amounts of CO in the two model configurations are different, as 

shown in Table 1. The emission, burden, dry deposition, loss by chemical reaction, and 

CO lifetime are also presented annually. 

Table 1. Global balance of CO in the two configurations of the model: tropospheric chemistry only 

(CAM-TROPMAM) and tropospheric and stratospheric chemistry (CAM-STRATMAM). 

 CAM-TROPMAM CAM-STRATMAM 

CO burden (Tg) 341.919 280.386 

CO emissions (Tg/year) 1116.925 1116.925 

CO dry deposition (Tg/year) - 118.412 

CO loss by chemical reaction (Tg/year) 1464.426 1522.102 

CO lifetime (years) 0.233 0.171 

Using stratospheric chemistry (STRATMAM), there is a dry deposition effect for CO 

which is not present in the configuration with tropospheric chemistry only (TROPMAM). 

CO loss due to chemical reactions is greater in STRATAM than in TROPMAM, and the 

CO lifetime is shorter in the STRATMAM configuration than in TROPMAM. This explains 

the decrease in positive bias in the STRATMAM configuration and the intensification of 

the negative bias in the same configuration. 

3.2. Seasonal and Spatial Variations of Global AOD (Observations and Simulations) 

During DJF, high AOD concentrations are observed (Figure 6a) over central and 

northern Africa, central and south Asia due to dust emission and eastern China due to 

urban pollution, increasing substantially during MAM (Figure 7a), intensifying the con-

centration of dust in these regions, as can be seen in [90] and increasing the concentration 

of pollutants from urban emissions in eastern China. During the MAM period, higher 

AOD values are observed over Vietnam, Laos, Bangladesh, Pakistan, Iraq and Kuwait, 

and North Africa. The increasing AOD over North Africa is due to dust and higher AOD 

values in Southeast Asia is due to the burning of biomass, as shown in Figure 13 in DJF 

and MAM. In [91], following the pattern shown in Figure 7a, the authors identified a pos-

itive AOD pattern over large parts of the Middle East during 2001–2012 when linking the 

annual AOD to precipitation, soil moisture and surface winds to identify regions in which 

these attributes are directly related to AOD in Saudi Arabia, Iraq and Iran. With regard to 

the surface wind speed, the coastal area of the Red Sea in Africa is relevant to Saudi Ara-

bia’s AOD. Using multiple linear regression, the authors showed that AOD patterns and 

interannual variability can be attributed to soil moisture, precipitation and surface winds, 

as the main factors that control the dust cycle in this region. The positive trend of AOD is 

related to a negative trend of soil moisture. Since lower soil moisture translates to in-

creased dust emissions, anthropogenic aerosols and aerosol precursors alone not neces-

sarily explain these observations. Instead, this study suggests that the increase in 
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temperature and the decrease in relative humidity in the last decade have promoted soil 

drying, leading to increased emissions of dust and AOD; consequently, an increase in 

AOD is expected due to climate change [92]. 

The comparison of the model results for DJF (Figure 6b,d) and MAM (Figure 7b,d) 

with the observations (Figures 6a and 7a) shows that both configurations of CAM-chem 

simulate the spatial distribution characteristics of AOD substantially reasonable. Never-

theless, both configurations overestimate AOD levels for central Africa and underestimate 

them over China. Over Africa, CAM-STRATMAM overestimates AOD levels even more 

than CAM-TROPMAM. 

 

Figure 6. (a) AOD observed by MODIS sensor for December-January-February (DJF), in the period of 2010–2014, (b) AOD 

simulated by the CAM5-MAM3 model using tropospheric chemistry and (d) tropospheric/stratospheric chemistry mech-

anisms. The right side of the figure shows the model difference minus the observation (MODIS), (c) for tropospheric chem-

istry and (e) for tropospheric/stratospheric chemistry. 
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Figure 7. (a) AOD observed by MODIS sensor for March-April-May (MAM), in the period of 2010–2014, (b) AOD simu-

lated by the CAM5-MAM3 model using tropospheric chemistry and (d) tropospheric/stratospheric chemistry mecha-

nisms. The right side of the figure shows the model difference minus the observation (MODIS), (c) for tropospheric chem-

istry and (e) for tropospheric/stratospheric chemistry. 

During JJA (Figure 8a), the highest AOD average occurs because of the increased 

aerosol concentration in central Asia, the Sahara region in Africa, central South America, 

India, Pakistan, Iran, Oman, Yemen, Saudi Arabia and Syria. This can be related to the 

resuspension of particulate matter in the form of dust associated with transboundary pol-

lutants from several desert terrains which influence regions such as the Arabian desert. 

The dominance of coarse dust particles in desert regions of Saudi Arabia and the transport 

of dust aerosol from the Arabian Peninsula towards western India and Pakistan have been 

discussed in detail in [91,92]. During JJA, there is a peak in aerosol concentrations in the 

Northern Hemisphere when compared to the other seasons of the year. 

JJA is recognized as a peak AOD season over the Chinese and Arabian desert regions 

[92]. High AOD values are also found in northern and western Africa due to the Sahara 

desert and in Congo and Gabon, probably due to biomass burning (c.f., [93]). The model 

results for JJA (Figure 8b,d) show that both configurations of CAM-chem overestimate 

AOD levels over Africa, Saudi Arabia and South America but underestimate them over 
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India and China. Over South America and Africa, CAM-STRATMAM overestimates AOD 

levels much more than CAM-TROPMAM. 

 

Figure 8. (a) AOD observed by MODIS sensor for June-July-August (JJA), in the period of 2010–2014, (b) AOD simulated 

by the CAM5-MAM3 model using tropospheric chemistry and (d) tropospheric/stratospheric chemistry mechanisms. The 

right side of the figure shows the model difference minus the observation (MODIS), (c) for tropospheric chemistry and (e) 

for tropospheric/stratospheric chemistry. 

Higher values of AOD are observed during SON and ASO (see Figures 9a and 10a) 

in the Southern Hemisphere, as well as the highest concentration of CO as described 

above, in the Brazilian states of Mato Grosso, Rondônia, Amazonas and Pará and the Bra-

zilian border of the states of Mato Grosso and Rondônia with Bolivia and Paraguay, which 

occurs due to biomass burning in the dry period in the region (c.f., [94,95]). The distribu-

tion of AOD over the globe for the period of July 2002 to December 2009 was analyzed in 

[96], using the seasonal climatology of MODIS Aqua AOD combined with the Deep Blue 

algorithm’s measured AOD at 550 nm. In [96], the authors found a global distribution of 

AOD similar to our study, with global averages that were only 7.1% and 5.9% higher dur-

ing DJF and MAM and 5.9% and 7.7% lower during JJA and SON, respectively, when 

compared to this study. 
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In SON and ASO seasons, the decreased pollutant content (AOD) over India, Paki-

stan, China and other South Asian countries may be due to the washout of pollutants from 

the atmosphere as a result of precipitation. A detailed discussion on the removal of pollu-

tants from the atmosphere due to precipitation can be found in [97]. The rainfall washout 

process limits the aerosol prevalence over the Chinese and Arabian desert region as re-

ported in [92]. Using 12 years of in situ and satellite observations, in [98], the authors 

found positive correlations between aerosol loading and cloud properties as well as rain-

fall over the Indian summer monsoon region. In [98], the authors reported that desert dust 

aerosol levels over the Arabian Sea, west Asia and the Arabian Peninsula are significantly 

correlated with the intensity of the Indian summer monsoon. Due to the heating of the 

atmosphere, dust aerosols induce large-scale convergence over North Africa and the Ara-

bian Peninsula, increasing the flow of moisture over India. 

The model results for SON (Figure 9b,d) and ASO (Figure 10b,d) compared with ob-

servations (Figures 9a and 10a) show that both configurations of CAM-chem overestimate 

levels over northeastern Africa and underestimate them over southern Africa, eastern 

China and northern India. CAM-STRATMAM overestimates the levels much more than 

CAM-TROPMAM over Africa. However, the model performs better over South America 

during SON and ASO. Furthermore, the amounts of the species of aerosols in the two 

model configurations are different, as shown in Table 2. The emission burden of the spe-

cies of aerosols are also presented annually. 

 

Figure 9. (a) AOD observed by MODIS sensor for September-October-November (SON), in the period of 2010–2014, (b) 

AOD simulated by the CAM5-MAM3 model using tropospheric chemistry and (d) tropospheric/stratospheric chemistry 
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mechanisms. The right side of the figure shows the model difference minus the observation (MODIS), (c) for tropospheric 

chemistry and (e) for tropospheric/stratospheric chemistry. 

 

Figure 10. (a) AOD observed by MODIS sensor for August-September-October (ASO), in the period of 2010–2014, (b) AOD 

simulated by the CAM5-MAM3 model using tropospheric chemistry and (d) tropospheric/stratospheric chemistry mech-

anisms. The right side of the figure shows the model difference minus the observation (MODIS), (c) for tropospheric chem-

istry and (e) for tropospheric/stratospheric chemistry. 

Table 2. Global burden of aerosols in the two configurations of the model: tropospheric chemistry 

only (CAM-TROPMAM) and tropospheric and stratospheric chemistry (CAM-STRATMAM). 

 CAM-TROPMAM CAM-STRATMAM 

Black carbon aerosol burden (g/m2 year) 18.44 18.67 

Dust aerosol burden (g/m2 year) 6130.85 9382.13 

Particulate organic matter burden (g/m2 year) 131.76 133.05 

Sea salt aerosol burden (g/m2 year) 2438.23 2425.96 

Sulfate aerosol burden (g/m2 year) 361.53 366.75 

Secondary organic aerosol burden (g/m2 year) 234.62 371.45 

In summary, the model has difficulty capturing the exact location of the maxima of 

the seasonal AOD distributions in both configurations. In both configurations, AOD levels 
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were overestimated over the desert regions of Africa and the Middle East in all seasons 

but significantly underestimated over eastern China and northern India. CAM-

STRATMAM overestimates the AOD much more than CAM-TROPMAM over Africa and 

the Middle East, as seen in the amount of dust aerosol in CAM-STRATMAM is 35% than 

in CAM-TROPMAM. Similar results were found in the works of [60,65,78,99,100] where 

comparison of the CAM-chem model with observed data from MODIS show an overesti-

mated bias over North Africa and Central Asia desert regions. The highest dust aerosol 

emission in the model is probably higher than in reality [66]. These works also show un-

derestimations over Central and North America, Europe, Russia, and East China, similar 

to those found in the current work. In [78], authors report that the underestimated AOD 

in these regions may be related to underestimating black carbon emissions in the model. 

Finally, CAM-chem (in both experiments) successfully simulates the spatial distribution 

characteristics of AOD over South America during the period with the maximum biomass 

burning in ASO. 

3.3. Modeled Results vs. Observation: Correlation and RMSE 

Figure 11a,b (Figure 11c,d) show the comparison of the annual correlation between 

observed and simulated global AOD (CO) in both model configurations: using tropo-

spheric chemistry and tropospheric/stratospheric chemistry mechanisms. Both simula-

tions present very similar results (Figures 11a,b and 12a,b). The CAM-chem model simu-

lation with reactions in the stratosphere yields a positive amplified bias for North and 

West Africa. The AOD tends to be underestimated in both the versions for latitudes above 

30° N, as shown in Figures 6–10, except for some regions; i.e., Iran, Turkmenistan, Uzbek-

istan (Turkestan Desert), Taklamakan and the Gobi Desert. The annual cycle is analyzed 

in terms of the correlation coefficient calculated from the monthly average data set, and 

the model simulations indicate that the biomass burning is still a persisting problem, pro-

ducing AOD due to anthropogenic activities and wildfires. Correlation coefficients range 

from 0.4 to 0.8, which shows a reasonable representation of AOD variations. The RMSE 

values in Figure 12a,b show good agreement between the measurements of AOD from the 

satellite and model-predicted values for both configurations. 

 

Figure 11. Correlation maps between the annual average of observed and simulated AOD (a,b) and CO (ppb) (c,d) in both 

model configurations. 
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Figure 12a,b show the RMSE maps between annual averages of observed and simu-

lated AOD. The root mean square error (RMSE) is commonly used to assess the quality of 

the fit of a model. It is the root of the mean square error of the difference between the 

modeled value and the observed value. Unlike the bias and the correlation coefficient pre-

sented in this article, the RMSE has a unit (dimension) similar to the dimension of the 

observed and simulated values. The zero value of RMSE indicates a perfect forecast, and 

this value increases as the difference between the model and observation increases. Figure 

12a (tropospheric chemistry) and Figure 12b (tropospheric and stratospheric chemistry) 

show lower RMSE values for almost every part of the globe. However, higher values of 

RMSE were obtained in South and Northeast Africa, Kazakhstan and Uzbekistan for the 

version that includes reactions in the stratosphere. It also shows higher RMSE values in 

the extreme north of India and eastern China, but there is no amplification of the values 

when stratospheric chemistry is included. In Figures 6–10, a greater bias difference is 

shown for the observed and modeled data for these regions. 

 

Figure 12. Root mean square error (RMSE) maps of annual average simulated AOD (a,b) and CO (ppb) (c,d) in both model 

configurations relative to the observations. 

Figure 12c (tropospheric chemistry) and Figure 12d (tropospheric and stratospheric 

chemistry) show the RMSE between CO values of the CAM-chem model. Low RMSE val-

ues were obtained over most regions, except on the border of Mexico and Guatemala in 

Central America, Northern Mato Grosso state in Brazil, Central Africa, Northeast India, 

eastern Russia and Singapore. 

Differences between observations both from the MODIS AOD and MOPITT CO to 

the model simulations can also be attributed to the uncertainties in the emission files used 

as input data in the CAM-chem model. For the period of the simulation considered in this 

study—i.e., 2009–2014, with 2009 regarded as the initialization time for the model—the 

emission files available as input to run the model are representative of the year 2000. It is 



Remote Sens. 2021, 13, 2231 23 of 34 
 

 

important that studies with models using different emission inventories as input data are 

carried out and compared with observed data for aerosols and pollutant gases. 

Table 3 shows the results for the global seasonal mean and standard deviation for CO 

and AOD observed from MOPITT and MODIS (Terra and Aqua), respectively, and global 

the seasonal mean and standard deviation for CO and AOD with the CAM5-MAM3 

model using tropospheric chemistry and tropospheric/stratospheric chemistry mecha-

nisms for the period of DJF, MAM, JJA, ASO and SON in 2010–2014. 

Table 3. Global Annual means and standard deviations for CO (ppbv) and AOD observed from MOPITT and MODIS 

(Terra and Aqua), respectively, and for CO and AOD by the CAM5-MAM3 model with tropospheric chemistry and trop-

ospheric/stratospheric chemistry mechanisms for the period from 2010 to 2014. 

 
CO 

(Observed) 

CO 

(Modeled) 

TROPMAM 

CO 

(Modeled) 

STRATMAM 

AOD 

(Observed) 

AOD 

(Modeled) 

TROPMAM 

AOD 

(Modeled) 

SSTRATMAM 

DJF 98.62 ± 1.17 94.44 ± 4.65 93.73 ± 4.10 0.16 ± 0.02 0.10 ± 0.02 0.13 ± 0.02 

MAM 97.71 ± 0.84 99.76 ± 2.99 98.61 ± 2.70 0.18 ± 0.02 0.12 ± 0.02 0.15 ± 0.03 

JJA 93.63 ± 0.70 93.42 ± 2.77 91.93 ± 2.67 0.19 ± 0.02 0.15 ± 0.02 0.18 ± 0.03 

SON 98.03 ± 0.81 95.18 ± 2.95 93.95 ± 2.46 0.16 ± 0.02 0.11 ± 0.02 0.13 ± 0.02 

ASO 98.77 ± 0.76 96.68 ± 3.10 95.31 ± 2.65 0.18 ± 0.02 0.13 ± 0.02 0.15 ± 0.02 

The high CO average found in the MAM period can be attributed mainly due to the 

high concentration for the entire Northern Hemisphere, mainly in eastern Asia (China). 

Higher concentrations of aerosols in JJA are found due to dust in desert regions in the 

Northern Hemisphere and also during the ASO period due to biomass burning in South 

America and South Africa. 

In general, both versions of the model accurately represented the spatial and tem-

poral distribution of CO. The global seasonal and annual cycles are reasonably repre-

sented by the model, as observed in Figures 1–5. Both versions of the model yield a posi-

tive correlation between 0.4 and 0.8 for almost the entire globe, except for the eastern USA 

and California Bay, south-central Argentina and the Sahel region in Africa and East Asia, 

where the correlation is negative. There are a few differences in the concentrations of sur-

face CO from the results of simulation using the model with mechanisms of reactions in 

the troposphere and also including 28 photolysis reactions in the stratosphere. 

In summary, both versions of the model reasonably represented the spatial and tem-

poral distribution of AOD. Overall, the correlation is between 0.3 and 0.8, except for the 

North and South Pacific Ocean, South Atlantic, the Indian Ocean, South Africa, Southern 

Australia, countries in Southeast Asia such as the Philippines and Indonesia, where the 

correlation is lower or negative. In both experiments, AOD levels were overestimated over 

the desert regions of Africa and the Middle East in all seasons but significantly underesti-

mated over eastern China and northern India. CAM-STRATMAM overestimates the lev-

els much more than CAM-TROPMAM over Africa. 

In DJF, in general, aerosol concentration is lower over the globe, except for the far 

north of India and eastern China, where it is higher due to pollution generated by vehic-

ular, thermoelectric, and industrial emissions. Also is higher in the transition from savan-

nas to tropical forests in Africa due to biomass burning. 

Observing Figures 11 and 12, correlation coefficient and RMSE, the model has a better 

ability to represent CO than aerosols, probably the operation and better calibration of the 

chemistry module in the MOZART model than the MAM3 aerosol module. 

The two experiments were carried out over 6 years with monthly outputs, consider-

ing the first year as initialization (2009). The experiment that also included stratospheric 

chemistry had a simulation time that was four hours longer, using the same number of 

processors. 
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3.4. FRP vs. CO vs. AOD Correlation 

Figure 13 shows the FRP pattern during DJF, MAM, JJA, ASO and SON (in W m−2) 

from the MODIS (Aqua) sensor with seasonal global averages and standard deviations of 

1.14 ± 0.62, 1.47 ± 0.74, 1.58 ± 0.92, 1.83 ± 0.91 and 1.97 ± 0.96, respectively. DJF shows the 

highest values in southeast Asia (Indochina region), in countries such as Vietnam and 

Laos, among other agricultural-based countries, where 70% of the population live in rural 

areas. Besides, we highlight southeast China as a region prevailing agricultural activity in 

the tropical zone. 

Several studies using small experimental fires demonstrated that the total FRP re-

leased over the lifetime of a fire has a simple linear relationship with the total amount of 

consumed fuel biomass [101]. On the northern coast of Australia, fires occur in the densely 

forested portion near the region of the islands of Indonesia except during DJF and MAM. 

The African continent has generally moderate values of FRP during DJF and MAM, but 

higher values are observed over South Africa, Angola, the southern part of the Republic 

of Congo, South Sudan, Chad and the border of Guinea with Senegal during JJA, SON. 

Africa is said to be the largest continental source of biomass burning emissions, according 

to previous studies (c.f., [102]). 

South America presents lower FRP during DJF and MAM, whereas the seasons of 

JJA, SON and ASO show high values of FRP over these regions. In South America, Brazil 

has high values of FRP, except for the state of Amazonas (the most preserved part of the 

Amazon Forest). High values are observed in the state of São Paulo, Mato Grosso, Bahia, 

Piauí, Maranhão and Tocantins, which belong to the axis of agricultural expansion and 

cattle raising in Brazil. 

Biomass burning is one of the problems still present in South American agriculture. 

More than 600,000 square kilometers of forest have been lost since the 1970s, and the cur-

rent trend predicts losses of up to 40% of the forest by 2050, when rains could be reduced 

by 21% in the dry season [103]. The forest is crucial for the water cycle and current precip-

itation values over the important agricultural regions of all center-south of Brazil, which 

may be negatively impacted. A scientific campaign by Brazilian and American research-

ers, called Green Ocean Amazon (GOAmazon), began testing the hypothesis published in 

Science that the pollution produced in the city of Manaus, in Amazonas state, is affecting 

the formation process of rain in the forest. The decrease in precipitation leads to fewer 

fires being put out, fueling this cycle, as more soot reaches the clouds. The problem is 

further aggravated by the fact that these particles end up being scattered to the central 

and southern portions of the country, which can also jeopardize the precipitation cycle in 

these regions. Machado explains that the Low-Level Jet, a stream of wind that transports 

the humidity of the Amazon to the center–south of Brazil, favoring precipitation [104]. 

According to this author, these winds would absorb more pollutants on their way to the 

south, especially from biomass burning, which would disturb the formation of precipitat-

ing clouds in the region. 

Recent work shows that large emissions of particulate matter from fires alter the 

mechanisms of cloud formation and their growth and precipitation patterns, which can 

suppress the formation of shallow clouds and delay or even inhibit precipitation in large 

areas affected by the emissions of fires, which may represent hundreds or thousands of 

kilometers of emissions [105]. About 60% to 80% of the natural aerosol particles in the 

Amazon act as cloud condensation nuclei (CCN). The difference in the CCN concentration 

in the rainy season and in the dry season (from about 200 to 20,000 cm−3 particles) in large 

areas of the Amazon profoundly changes the microphysical properties of clouds. If the 

environment is relatively clean, there are few CCN. In the competition over existing water 

vapor, if there are some relatively large or water-soluble CCN, they will grow rapidly, 

collide with the smaller ones and precipitate as rain. The cloud grows quickly, reaching a 

maximum height of 4 or 5 km. If the atmosphere is polluted, with a larger number of CCN, 

as in the burning season, the competition over available water vapor increases, and the 

droplets grow slowly as the cloud grows. Often, these clouds do not even precipitate in 
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the form of rain; the drops evaporate before reaching a critical precipitation size, and the 

water, along with the aerosols, does not return to the ground but is carried away by the 

winds [106]. 

Regions in South America such as in Paraguay, Northern Bolivia, Northern Argen-

tina, Southern Chile, Colombia and Venezuela also have high values of FRP. In the USA, 

there are higher values of FRP in the region of the Gulf of Mexico and in Florida peninsula. 

Regarding the annual average correlations between CO and FRP and between AOD 

and FRP, for the period 2010–2014, Figure 14a,b show that the highest values of correlation 

are in less densely urbanized regions of the globe, particularly in the tropical latitudes. In 

Asia, correlation indexes between FRP and CO vary from 0.6 to 0.8 in areas such as Cam-

bodia, Laos, Thailand, Myanmar, and Singapore, as well as central Siberia. There is a very 

high correlation in the extreme north of Australia and also in the African continent, in 

most tropical regions south of the Sahara Desert. In Central America, high correlations are 

found on the border between Guatemala and Mexico and in Cuba. In South America, 

some features stand out: high correlations between FRP and CO are found in the Western 

Amazon region, such as Rondônia, the south of Pará and Amazonas states and Acre, as 

well as in the borders of these states with Bolivia and Peru. This region corresponds to the 

deforestation arc located in the fringes of the Amazon Forest, where fires present a sea-

sonal and interannual variability that is directly associated with land use and agriculture 

expansion. The most significant fire concentrations are found in areas of dense rainforest 

and deciduous seasonal forest, followed by shrub and arboreal vegetation (pasture, sa-

vanna and shrublands) and mosaics comprising (1) agriculture (50–70%) and pasture, 

shrubland and forest (20–50%) and (2) pasture, shrubland and forest (50–70%) with agri-

culture (20–50%). 

 

Figure 13. Seasonal mean fire radiative power (FRP) detected by the MODIS sensor with AQUA active fire products over 

the globe during DJF, MAM, JJA, SON and ASO from 2010 to 2014. 
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It can be presumed that these correlations around the globe reflect the occurrence of 

natural fires in remote regions, as well as of fires associated with agricultural activities. 

Figure 14c shows a correlation of 0.7 to 0.85 between CO and AOD in Southeast Asia in 

countries such as Laos, Myanmar and Singapore. There is also a strong correlation of CO 

and AOD in the extreme North of Australia, Indonesia, and Malaysia as well as over Mex-

ico’s border with Guatemala in Central America. In East and Central Africa, there is a high 

correlation between CO and aerosols from biomass burning from the transition environ-

ment between forest and savanna, and it is also possible to observe the transport of these 

pollutants from the African continent to the coast of Brazil. In South America, throughout 

Brazil, the correlation between CO and AOD is positive, as well as in countries bordering 

Brazil, such as Colombia, Peru, Bolivia, Paraguay and northern Argentina. 

 

Figure 14. (a) Correlation coefficient between FRP (MW) MODIS and CO (ppb) from MOPITT, 

showing the highest prevalence of both parameters over the agricultural regions such as southeast 

Asia and southern China. (b) Correlation coefficient between FRP (MW) with AOD from MODIS, 

showing a positive correlation over less dense regions such as forested and agricultural lands across 

the globe. (c) Correlation coefficient of CO from MOPITT (ppb) with AOD from MODIS, showing 
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different trends compared to correlations between FRP and CO and FRP and AOD (a,b). The AOD 

prevalence is higher in the tropical and sub-tropical regions. 

As can be seen in Figure 14a,b, although many regions demonstrate strong correla-

tions between CO and FRP and also between FRP and AOD, they may occur in spatially 

distinct forms. Depending on the type of vegetation and climate conditions, an increased 

CO concentration and/or aerosols may be favored. For example, in the Northern Hemi-

sphere, the correlation between FRP and AOD (Figure 14b) is higher at high latitudes 

compared to the correlation between FRP and CO (Figure 14a). We observed this in the 

regions of Siberia and Canada, whereas the correlations between FRP and CO are higher 

in tropical regions of South America, southeast Asia and central Africa concerning the 

correlations between FRP and AOD. Different regions are prone to different spatial tem-

poral patterns of FRP measurements. MODIS FRP has already been used to show that 

Boreal fires in North America burn, on average, more intensely than in Russia [44,107]. 

The negative correlation between FRP and AOD in Figure 14b may be related to places 

with a high concentration of biogenic aerosols such as sea salt transported from the ocean 

to the continent, dust, organic aerosols emitted by plants and secondary organic aerosols 

(SOA) derived from biogenic volatile organic compounds (VOCs). According to emission 

estimates, approximately 73% of global aerosols come from biogenic sources [108–110]. 

4. Conclusions 

The objective of this study was to investigate and compare global simulations of car-

bon monoxide (CO) and aerosol optical depth (AOD), performed with the CAM-chem 

model, against observed satellite data and, additionally, to explore the empirical relation-

ship between CO, AOD and fire radiative power (FRP). 

Two different model configurations were used: (1) using tropospheric chemistry only 

and (2) including both tropospheric and stratospheric chemistry. The main findings are 

summarized as follows: 

(1) In the Northern Hemisphere, the highest AOD concentrations are observed during 

March–April–May and June–July–August. In the Southern Hemisphere, the highest 

AOD concentrations are observed mainly during August–September–October. Over 

South America, the highest AOD values are observed over subtropical Brazil, Para-

guay and Bolivia. 

(2) Although both configurations of the model reasonably simulated the spatial and tem-

poral distributions of CO and AOD concentrations, the model has difficulty in cap-

turing the exact location of the maxima of the seasonal AOD distributions. CO con-

centrations are overestimated over central China, central Africa and equatorial re-

gions of the Atlantic and western Pacific Oceans. The inclusion of stratospheric chem-

istry resulted in a significant decrease in this positive bias, due to the CO dry deposi-

tion, which is not present in the configuration using only tropospheric chemistry, and 

also due to a greater CO loss resulting from the chemical reactions and a shorter life-

time of these species in this configuration. AOD is overestimated over desert regions 

of Africa, the Middle East and Asia in both experiments, but the positive bias is even 

higher in these regions in the version with added stratospheric chemistry. In contrast, 

AOD is underestimated over regions associated with high anthropogenic activity, 

such as eastern China and northern India. During the rapid industrialization in the 

previous decades, east Asia shows differences of up to 500% for CO emissions com-

pared to the REAS and EDGAR version 4.2, as reported in [111]. 

(3) Both model configurations considered in this study resulted in an underestimation of 

the CO concentrations over Canada, Europe and Russia. There was no CO increase in 

the period of study in these regions, indicating that anthropogenic emissions may be 

underestimated. Both versions of the model show positive correlations between mod-

eled and observed CO (ranging from 0.4 to 0.8) for the whole globe, except for the 
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coast of California, south–central Argentina, the Sahel region and east Asia (where the 

correlation is negative). 

(4) High correlations were observed between FRP and CO in the western Amazon region, 

such as in the Brazilian states of Rondônia, Acre, the south of Pará and Amazonas, as 

well as at the border between Brazil, Bolivia and Peru. This region corresponds to the 

deforestation arc located in the fringes of the Amazon Forest, where fires present a 

seasonal and interannual variability that is directly associated with land use change 

and agriculture expansion. 

(5) High correlations were observed between CO and aerosols (AOD) from biomass 

burning at the transition between the forest and savanna environments over east and 

central Africa. It is also possible to observe the transport of these pollutants from the 

African continent to the Brazilian coast. 

(6) Savanna and Tropical forests, as in South America (western Amazon), Central Amer-

ica, Africa, Australia, and Southeast Asia, show a higher FRP x CO correlation than 

FRP x AOD. In contrast, boreal forests in Russia, particularly in Siberia, show a higher 

FRP x AOD correlation compared to FRP x CO. This may be related to differences in 

vegetation, temperature, and humidity at the time of burning. In tropical forests, it is 

likely that CO production is favored compared to aerosols, and in temperate forests, 

aerosol production is more likely than CO when compared to tropical forests. On the 

east coast of the United States and the eastern border of the USA with Canada, there 

is a high correlation of CO x AOD and a low correlation between FRP with both CO 

and AOD. It also occurs in eastern China, on the border between China, Russia, Mon-

golia, North India, and China. Therefore, such emissions in these regions are not gen-

erated by forest fires but by thermoelectric industries, other types of industries, and 

vehicular emissions since these are densely populated regions. 

Our results show that, in general, the seasonal and global distributions of the AOD 

and CO concentration are reasonably reproduced by the two configurations of CAM-

chem. However, the model overestimates the results for AOD over desert regions of Af-

rica, the Middle East, and Asia due probably to the overestimation of dust in these regions. 

This bias is even more significant in the version with tropospheric and stratospheric chem-

istry. Therefore, the CAM5-MAM3 with stratospheric chemistry, which requires more 

computational cost, does not improve the results for AOD over desert regions. On the 

other hand, in both experiments, AOD levels over eastern China and northern India are 

significantly underestimated, probably because the fire emissions and vehicle, industrial 

and thermoelectric emissions are underestimated in emission inventories used in the 

model. Probably, emissions of black carbon, primary and secondary organic carbon from 

anthropogenic sources, are also underestimated in the emission inventories used in the 

model.  

With the increasing environmental degradation worldwide, particularly in tropical 

developing nations, such as in the Brazilian Amazon forest in recent years, it is crucial to 

understand and model such processes with high precision and accuracy. Global satellite 

products and models can provide important insights to better understand deforestation 

processes, their temporal and spatial dynamics and their consequences, which are key 

aspects to implement policies and take action in order to protect the environment. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/rs13112231/s1, Figure S1: a) CO (ppb) observed by MOPITT sensor for DJF, in the period 

of 2010-2014, (b) CO simulated by the CAM5-MAM3 model using tropospheric chemistry and (d) 

tropospheric/stratospheric chemistry mechanisms without calculating Equation (4). The right side 

of the figure shows the model difference minus the observation (MOPITT), (c) for tropospheric 

chemistry and (d) for tropospheric/stratospheric chemistry., Figure S2: (a) CO (ppb) observed by 

MOPITT sensor for MAM, in the period of 2010–2014, (b) CO simulated by the CAM5-MAM3 model 

using tropospheric chemistry and (d) tropospheric/stratospheric chemistry mechanisms without 

calculating Equation (4). The right side of the figure shows the model difference minus the observa-

tion (MOPITT), (c) for tropospheric chemistry and (d) for tropospheric/stratospheric chemistry., 
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Figure S3: (a) CO (ppb) observed by MOPITT sensor for JJA, in the period of 2010-2014, (b) CO 

simulated by the CAM5-MAM3 model using tropospheric chemistry and (d) tropospheric/strato-

spheric chemistry mechanisms without calculating Equation (4). The right side of the figure shows 

the model difference minus the observation (MOPITT), (c) for tropospheric chemistry and (d) for 

tropospheric/stratospheric chemistry., Figure S4: (a) CO (ppb) observed by MOPITT sensor for SON, 

in the period of 2010-2014, (b) CO simulated by the CAM5-MAM3 model using tropospheric chem-

istry and (d) tropospheric/stratospheric chemistry mechanisms without calculating Equation (4). 

The right side of the figure shows the model difference minus the observation (MOPITT), (c) for 

tropospheric chemistry and (d) for tropospheric/stratospheric chemistry., Figure S5: (a) CO (ppb) 

observed by MOPITT sensor for ASO, in the period of 2010–2014, (b) CO simulated by the CAM5-

MAM3 model using tropospheric chemistry and (d) tropospheric/stratospheric chemistry mecha-

nisms without calculating Equation (4). The right side of the figure shows the model difference mi-

nus the observation (MOPITT), (c) for tropospheric chemistry and (d) for tropospheric/stratospheric 

chemistry. 
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