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Abstract: Land surface temperature (LST) is an essential climate variable (ECV) for monitoring the 

Earth climate system. To ensure accurate retrieval from satellite data, it is important to validate 

satellite derived LSTs and ensure that they are within the required accuracy and precision thresh-

olds. An emissivity-dependent split-window algorithm with viewing angle dependence and two 

dual-angle algorithms are proposed for the Sentinel-3 SLSTR sensor. Furthermore, these algorithms 

are validated together with the Sentinel-3 SLSTR operational LST product as well as several emis-

sivity-dependent split-window algorithms with in-situ data from a rice paddy site. The LST re-

trieval algorithms were validated over three different land covers: flooded soil, bare soil, and full 

vegetation cover. Ground measurements were performed with a wide band thermal infrared radi-

ometer at a permanent station. The coefficients of the proposed split-window algorithm were esti-

mated using the Cloudless Land Atmosphere Radiosounding (CLAR) database: for the three surface 

types an overall systematic uncertainty (median) of –0.4 K and a precision (robust standard devia-

tion) 1.1 K were obtained. For the Sentinel-3A SLSTR operational LST product, a systematic uncer-

tainty of 1.3 K and a precision of 1.3 K were obtained. A first evaluation of the Sentinel-3B SLSTR 

operational LST product was also performed: systematic uncertainty was 1.5 K and precision 1.2 K. 

The results obtained over the three land covers found at the rice paddy site show that the emissivity-

dependent split-window algorithms, i.e., the ones proposed here as well as previously proposed 

algorithms without angular dependence, provide more accurate and precise LSTs than the current 

version of the operational SLSTR product. 
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1. Introduction 

Land surface temperature (LST)—like near-surface air temperature—is a key varia-

ble in a wide variety of studies, since it is linked to land–atmosphere energy transfer and 

flux balances [1,2]. Thus, it is required for monitoring evapotranspiration and climate 

change [3,4], as well as for providing estimates of fire size and temperature [5,6], volca-

noes and lava flow [7,8], and vegetation health [9–11]. According to the Global Climate 

Observing System [12], the World Meteorological Organization (WMO) considers LST as 

one of the essential climate variables (ECVs). The Climate Change Initiative (CCI) was 
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launched by the European Space Agency (ESA) for improving the prediction of climate 

change trends by means of satellite data [13]. The CCI considers LST an important variable 

for monitoring the Earth climate system; therefore, they included it in the list of ECVs 

required for understanding and predicting the evolution of climate (http://cci.esa.int/ (ac-

cessed on 1 March 2021)). Consequently, the validation of satellite derived LSTs against 

independent references is crucial for assessing their accuracy and precision. For LST re-

trieval from satellite data, the GCOS set the recommended thresholds on accuracy (bias, 

defined as the systematic uncertainty by the Joint Committee for Guides in Metrology 

[14], JCGM) and precision (standard deviation, SD, defined as the random uncertainty by 

the JCGM [14]) to 1 K [12]. 

The Sea and Land Surface Temperature Radiometer (SLSTR) on board the Sentinel-

3A and 3B spacecrafts is a follow-on instrument of the Advanced Along-Track Scanning 

Radiometer (AATSR). The two sensors have similar characteristics, including their ther-

mal channels at 11 and 12 µm, with double view capability, and allow us to apply split-

window algorithms (SWAs) and dual-angle algorithms (DAAs). In this paper, the SWA 

proposed by Niclòs et al. in [15] and the DAA proposed by Coll et al. in [16] were adapted 

to SLSTR’s thermal bands. The SWA proposed by Niclòs et al. in [15] was developed for 

the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second 

Generation (MSG) and depends explicitly on emissivity and view zenith angle. SLSTR has 

view zenith angles up to 60° [17] and, thus, angular anisotropy may have an important 

impact on LST retrieval, which was noticed when analyzing the angular dependence of 

the SWA’s regression coefficients. For the SEVIRI sensor, over the rice paddy site, the 

SWA proposed by Niclòs et al. in [15] provided an accuracy (bias) and precision (SD) of 

0.5 and 0.8 K, respectively. The capability of the AATSR sensor to apply the DAA was 

previously analyzed in [16] over full vegetation cover. These authors proposed and vali-

dated a SWA and a DAA, obtaining a higher standard deviation for the DAA, with accu-

racy (precision) of 0.0 K (1.0 K). They concluded that the DAA performed worse than the 

SWA, mainly due to differences between the nadir and oblique footprints [16]. 

The operational LST level 2 (L2) product for the SLSTR sensor is generated with a 

SWA whose coefficients depend on surface biome, water vapor content (WVC) in the at-

mosphere, and vegetation fraction cover [18,19]. Previous studies validated the Sentinel-

3A SLSTR operational LST product over a variety of surfaces, but not over a rice paddy. 

In the ESA validation report, 11 sites were used to validate the SLSTR LST product over 

different land covers [20]: seven were stations of the SURFace RADiance (SURFRAD) net-

work, which uses pyrgeometers (3–50 µm), three were stations of the Karlsruhe Institute 

Technology (KIT) equipped with narrow band radiometers (9.6–11.5 µm), and one was 

the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) station 

equipped with narrow band radiometers. 

In this paper, phenological changes of a rice paddy during the growing period were 

used to validate the SLSTR LST product over three different surfaces: bare soil (wet and 

dry), water (flooded surfaces), and full vegetation cover. A permanent station with a wide 

band Thermal Infrared (TIR) radiometer continuously recorded ground measurements, 

which were then compared with concurrent satellite LST values. 

The main objective of this paper is to validate the results of the proposed SWAs and 

the operational SLSTR LST product. Additionally, three explicitly emissivity-dependent 

SWAs proposed by Sobrino et al. [21], Zhang et al. [22], and Zheng et al. [23] (hereafter 

called Sobrino16, Zhang19, and Zheng 19 SWAs, respectively) were evaluated under the 

same conditions. The main goal of proposing an explicitly angular and emissivity-de-

pendent SWA for SLSTR is to provide a better-performing alternative to the biome-de-

pendent (i.e., implicitly emissivity-dependent) SWA used for generating the operational 

product, but also to Sobrino16, Zhang19 and Zheng 19. Building on these works, this pa-

per presents the adaptation of an SWA with explicit angular dependence, which was pre-

viously successfully applied to SEVIRI data, to SLSTR; the validation of the adapted SWA 
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and its comparison with other SWAs with an explicit emissivity dependence; the adapta-

tion of a DAA to SLSTR and its validation. The validation results presented here are based 

on in-situ LST obtained from wide band radiometers (8–14 µm; more similar to satellite 

TIR observations and more accurate than pyrgeometers), which are installed at a perma-

nent station located in a rice paddy (i.e., the Valencia LST Validation site). Despite being 

limited to a single site, the phenological changes over the year allowed us to validate the 

LST retrieved from Sentinel-3A and Sentinel-3B over three, previously unrepresented, ho-

mogeneous land cover types. 

Section 2 describes the validation site and the in-situ LST and emissivity data. The 

SLSTR LST operational product algorithm and the different emissivity-dependent algo-

rithms evaluated in this study are described in Section 3. Section 4 presents the validation 

results for each algorithm, and a discussion is provided in Section 5. Conclusions are 

drawn in Section 6. 

2. Study Site and Ground Data 

2.1. Site 

The study site is a 100-km2 rice paddy area located near Valencia, Spain (39.274° N, –

0.317° E; WGS-84). This extensive area is bordered by the city of Valencia in the north, the 

Mediterranean Sea in the east, and tree crops and small urban areas in the south and west. 

Due to rice phenology, over the year, three different homogeneous land covers alternate 

(Figure 1). Full vegetation covers July to mid-September; flooded surface (i.e., water) in 

December, January, and June; and bare soil from February to May, which is wet during 

February, and dry from March to May. These seasonal changes allow us to validate over 

three different homogeneous land covers at a single site (i.e., as if we were observing three 

different sites). The SLSTR L2 fraction of vegetation cover data in Figure 2 show the typical 

seasonal changes. The composition of the bare soil found at the rice paddy site is: 14% 

sand, 50% silt, and 37% clay, with 4.5 % of organic matter (further soil details are provided 

in [24]). Based on SLSTR Level 1 (L1) auxiliary data (See Section 2.3), over the year the 

atmospheric WVC at the study site varies between 0.5 and 4 cm. 
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Figure 1. RGB true color compositions (R-G-B 4-3-2; top) and false color compositions (R-G-B 8-4-3; bottom) for three 

Sentinel-2 Multispectral Instrument (MSI) scenes. The three land covers at the site are: bare soil (April, left), flooded soil, 

i.e., water (May, center), full vegetation (August, right). The location of the validation site is shown in the composition. 

This site has been extensively used for LST validation purposes [15,25–28]. Previous 

studies demonstrated a high thermal homogeneity for this site at different spatial resolu-

tions [27,29–31] and concluded that it is suitable for validating satellite LST with in-situ 

measurements. For full vegetation cover, these studies found a standard deviation (SD) 

lower than 0.5 K for 33 x33 ASTER pixels (~9 km2) centered on the study area and for a 

Landsat TM5 scene (~16 km2). In [30], the authors analyzed the variability of 11 x 11 AS-

TER pixels (1 km2) centered on the study area, and obtained a SD < 0.3 K. In [27], the 

thermal variability of the area was studied for the three land covers present at the site with 

hand-held radiometer measurements along transects (~300 m long) through the station 

parcel on different dates: the SD values obtained were 0.5 K, 0.4 K, and 0.9 K for full veg-

etation, flooded soil, and bare soil, respectively. 
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Figure 2. Fraction of vegetation cover given by the SLSTR L2 product as a function of day of year. 

A representative photo for each land cover is also shown. 

2.2. Ground Data 

2.2.1. SI-121 Radiometer 

The Apogee SI-121 radiometer of the LST validation station took measurements dur-

ing five periods: 5 days in 2016; July 2017 (full month); from April to August 2018; August 

2019 (full month), and from November 2019 to April 2020. This instrument measures ra-

diance in the TIR spectral region (8–14 µm) and has a field of view of 36° and an uncer-

tainty of 0.2 K (manufacturer specification, www.apogeeinstruments.com). The SI-121 

was installed at three meter height and observed the ground at nadir view, which resulted 

in a footprint of ~3 m2. A second SI-121 radiometer was set up at 53° from zenith to provide 

measurements representative of the downwelling hemispheric radiance [32]. Measure-

ments were taken from both SI-121 radiometers every 4 s; the two radiometers were peri-

odically cleaned and calibrated against a Landcal blackbody source P80P for temperatures 

ranging between 273 K and 313 K. The uncertainty obtained for both SI-121 radiometers 

was less than ±0.1 K. The manufacturer specification uncertainty (±0.2 K) was used instead 

the calibration uncertainty. During the Fiducial Reference Measurements for validation of 

surface temperature from satellites (FRM4STS) experiment in June 2016, the blackbody 

source was calibrated against the National Physics Laboratory (NPL) reference radiome-

ter (AMBER), characterized with an uncertainty of 0.053 K [25]. The blackbody showed 

good agreement in the temperature range from 273 to 323 K with a root mean square dif-

ference (RMSD) of 0.05 K [33,34]. 

Only measurements of the SI-121 radiometers acquired 3 min before and after a sat-

ellite overpass were retained to have enough measurements (i.e., 90) for statistical anal-

yses, but avoiding significant changes due to the daily trends in the LSTs within the tem-

poral acquisition window [32]. The SD of the measurements within the 3 min was used in 

the estimation of the in-situ LST uncertainty. Then, the brightness temperatures (Ti) were 

corrected for emissivity and reflected sky radiance (atmospheric transmittance and path 
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radiance were negligible). The sky radiance was measured with the radiometer pointing 

to sky, which approximates downwelling atmospheric irradiance divided by π. The emis-

sivity values were known from previous characterizations of the site (see Section 2.2.3). 

The above corrections are described by Equation (1): 

B�(�) =
L� − (1 − ��)��,�

↓

��

 (1)

where T is land surface temperature, B� is Planck function integrated with the channel � 

filter function of the radiometer, L� is the radiance measured by the sensor and estimated 

from Ti as Li=Bi(Ti), �� is surface emissivity in channel �, and ��,�
↓  is the sky radiance in 

this channel. After retrieving T via inverting the Planck function, the in-situ LST used for 

validation was estimated as the average of the T values acquired concurrently to the 

SLSTR overpasses. The final dataset selected for validation was obtained by removing 

cloudy data with the cloud mask of the SLSTR LST product. 

2.2.2. CIMEL Electronique CE-312 Radiometers 

Two multiband CIMEL Electronique CE-312 radiometers [35] were used to acquire 

daytime LST concurrently to Sentinel-3A satellite overpasses and SI-121 radiometer meas-

urements. The CE-312 radiometer has a field of view of 10° and six channels in the 8–13 

µm TIR spectral range, i.e., one wide channel and five narrow bands (channel 1: 8–13.3 

µm; channel 2: 10.9–11.7 µm; channel 3: 10.2–11.0 µm; channel 4: 9.0–9.3 µm; channel 5: 

8.5–8.9 µm; channel 6: 8.3–8.6 µm). During the FRM4STS calibration campaign [33], both 

CE-312 radiometers were calibrated against the NPL ammonia heat-pipe reference black-

body. For a range of temperatures between 273 and 318 K, a RMSD between 0.06 and 0.1 

K was obtained for channels 1 to 3 and between 0.13 and 0.23 K for channels 4 to 6 [34]. 

The two handheld instruments were carried along ~300 m transects (150 m in oppo-

site directions starting from the SI-121 station radiometer position) over the site on twelve 

cloudless days: four days corresponded to flooded soil and eight to full vegetation. Sky 

radiance was measured just at the beginning and end of the transects. For flooded soil, the 

sky radiance was directly measured at zenith due to the specular reflectance feature of the 

water. Vegetated and bare soil covers were considered as near-Lambertian surfaces and 

sky radiance for these land covers was measured using an Infragold Reflectance Target 

(IRT-94-100) made by Labsphere [32], which is a highly diffuse gold panel with a reflec-

tivity close to 0.92 in the 8–14 µm region [36]. 

Ground LSTs were estimated from the CE-312 radiometer measurements using equa-

tion (1). Finally, average LSTs for the transect measurements, three minutes before and 

after the satellite overpasses, were calculated. 

2.2.3. In-Situ Land Surface Emissivity 

Surface emissivity is a key parameter for accurate LST retrievals [37–39]. For the stud-

ied land covers, in-situ emissivity values were obtained with different techniques (i.e., 

temperature-emissivity separation (TES) method, box method, and relative emissivity 

measurements) for the CE-312 radiometers. 

The TES method [40] was used to obtain water and bare soil emissivity. The TES 

method requires at-surface radiances of the five CE-312 radiometer narrow bands (see [34] 

for details). These at-surface radiances were then used to obtain the relative spectral con-

trast. Minimum emissivity is retrieved via an empirical relationship between maximum-

minimum difference (MMD) of relative emissivity and absolute minimum emissivity. 

Minimum absolute emissivity was used to obtain absolute emissivity of the other four 

channels using the temperature-independent index. LST can then be retrieved using any 

of the channel-specific emissivity values. The retrieved LST was used to obtain the emis-

sivity of the CE-312′s broadband channel. Bare soil TES measurements from [41] were 

used to obtain wet and dry bare soil emissivity values. For obtaining the wet bare soil 

emissivity, the emissivities of a soil sample collected at the site, with different moisture 
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contents, with an average value of 0.41 m3 m−3, were used. For dry bare soil, emissivity 

values of the soil sample with soil moisture of 0.03 m3 m−3 were used. 

In the case of vegetation, emissivity was estimated with the box method [42,43]. The 

box consisted of four inner aluminum walls and three different lids: two aluminum cold 

lids (one of them with a little hole for the radiometer measurements to be used as a top lid 

and the other one to be used as bottom lid), and a third non-reflecting hot lid with a tem-

perature of around 60 °C (also used as a top lid). Moreover, the outside of the box walls 

and the lids were covered by a thermally insulating material. Emissivity could then be 

obtained by combining four radiance measurements: 1) cold top lid—sample at bottom; 

2) hot top lid—sample at bottom; 3) hot top lid—cold bottom lid; 4) cold top lid—cold 

bottom lid [43]. 

The emissivities used for each land cover at the site are provided in Table 1 along 

with the associated uncertainty for each spectral channel of the CE-312 radiometers. The 

emissivities used for the SI-121 radiometer were the same as those for the broadband chan-

nel 1 (8–13.3 µm) of the CE-312. 

Since SLSTR’s view zenith angle can reach up to 60°, the angular variation of emis-

sivity was taken into account: for flooded soil, i.e., water, the emissivity relationship in 

[37] was used, which directly estimates the emissivity in MODIS spectral channels 31 and 

32 (11 µm and 12 µm). Due to the similarity between MODIS and SLSTR spectral channels, 

the same relationship could be used here. For wet and dry bare soil, the emissivity values 

were measured with two CE-312 radiometers under view angles from 0° to 70° in steps of 

10° in order to obtain relative to nadir measurements [41]. These values were interpolated 

to SLSTR sensor view zenith angles. The emissivity values for flooded soil and bare soil 

at different view angles are shown in Figure 3. 

Table 1. Emissivity values for the three CE-312 channels used. 

Land Cover 8–13.3 µm 10.9–11.7 µm 10.2–11.0 µm 

Flooded soil 0.986 ± 0.005 0.991 ± 0.004 0.990 ± 0.004 

Wet bare soil 0.973 ± 0.012 0.977 ± 0.008 0.972 ± 0.011 

Dry bare soil 0.967 ± 0.016 0.972 ± 0.004 0.970 ± 0.005 

Full vegetation soil 0.983 ± 0.004 0.980 ± 0.005 0.985 ± 0.004 

 

Figure 3. Angular emissivity variation of the bare soil (left) and flooded soil (right) for the CE-312 channels centered on 

11 and 12 µm. 
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2.3. SLSTR level 1 Data 

The SLSTR onboard Sentinel-3A (launched in February 2016) and Sentinel-3B 

(launched in April 2018) have nine spectral channels between 0.5 and 12 µm (three visible 

and near infrared channels, VNIR; three short wave infrared channels, SWIR; three TIR 

channels). The SLSTR L1 product (baseline 003) was used in this study for the period from 

August 2016 to January 2020. LST was retrieved from SLSTR’s TIR channels located at 11 

and 12 µm (SLSTR channels 8 and 9, respectively). Brightness temperatures for these chan-

nels were provided by the SLSTR L1 product in K; auxiliary data were also provided, e.g., 

cloud information or pixels filled with cosmetic values (i.e., copies of the closest adjacent 

valid pixels). All SLSTR level 1 pixels were analyzed with different cloud tests (i.e., VNIR 

and SWIR thresholds tests, and TIR histogram tests). Cloudy and cosmetic pixels were 

filtered out from the SLSTR dataset used in this study. 

WVC is an input parameter of SWAs and is included in SLSTR L1 auxiliary data (ob-

tained from the European Centre for Medium-Range Weather Forecasts (ECWMF) analy-

sis data). Different authors compared the WVC from ECWMF analyses with WVC ob-

tained from Global Positioning System (GPS) data, radiosonde data, and flight measure-

ments [44–46]. The studies showed a good performance of ECWMF WVC, although it was 

reported to overestimate WVC over dry areas [45] and underestimate it over humid areas 

[44,46]. In this paper, the ECMWF WVC provided in the SLSTR L1 data was used as input 

for the SWAs. In order to check its consistency over our study site, the WVC obtained 

from 12 SLSTR scenes concurrent with the two radiometer transects (CE312) and perma-

nent station acquisitions (Apogee SI-121) were compared with those obtained from Na-

tional Center for Environmental Prediction (NCEP) atmospheric profiles. Since NCEP at-

mospheric profiles are provided every 6 h on a grid of 1° x 1°, the four closest profiles 

before and after a Sentinel-3 overpass were interpolated temporally and spatially to the 

time of the SLSTR data acquisition and site coordinates. The comparison showed that the 

bias between NCEP and ECWMF WVC was 0.26 cm and the SD was 0.22 cm. The corre-

sponding RMSD was 0.34 cm, which was lower than the uncertainty associated with the 

WVC (±0.5 cm; [15,21]). The mean WVC of the ECWMF WVC for the twelve days coinci-

dent with the transects measurements was 2.4 cm and had an SD of 0.7 cm. 

3. LST Retrieval Algorithms 

3.1. Operational SLSTR LST Product 

The operational SLSTR LST L2 product is retrieved with the SWA described by Equa-

tion (2) [11]: 

� = ��,�,��� + ��,�(��� − ���)��� (�/�) + ���,� + ��,����� (2)

where � is the LST, ��� and ��� are the brightness temperatures at 11 and 12 µm, re-

spectively, θ is the satellite viewing angle, m is a parameter related to the view angle, and 

��,�,��� , ��,�, ��,� are algorithm coefficients, which depend on vegetation fraction (�), sur-

face biome (�), WVC and day/night time. Algorithm coefficients are given for the 27 land 

cover classes of the Globcover classification scheme, which provides global classification 

maps with a resolution of 300 m [47]. Each coefficient is subdivided into a vegetation and 

a soil coefficient, which are weighted by vegetation cover fraction. However, for some 

biomes, these vegetation and bare soil coefficients have the same values, e.g., for irrigated 

cropland (biome 1), which is the biome assigned to the study area, but also for rainfed 

cropland (biome 2), needle leaved evergreen forest (biome 8), grassland (biome 14), sparse 

vegetation (biome 15), vegetation on regularly flooded or waterlogged soil (biome 18), 

urban areas (biome 19), bare areas (biomes from 20 to 25), water bodies (biome 26), and 

permanent snow and ice (biome 27). Moreover, day and night coefficients are equal for 

most of the biomes, except for those of water or flooded surfaces, as it is the case of forests 

regularly flooded (biomes 16 and 17) and biomes 1, 18, and 26. The study area consists 

exclusively of biome 1, which corresponds to a post-flooding or irrigated croplands land 
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classification. While this (constant) classification of the station pixel is correct for the full 

vegetation period, it does not account for changes of surface type; therefore, the flooded 

and bare soil land covers encountered during other parts of the year are misclassified. 

The SLSTR LST L2 product (baseline collection 003) was used for the period from 

August 2016 to 13 January, 2020. From the latter date onwards, the SLSTR LST product 

baseline collection changed to version 004 (changes in product data format and re-grid-

ding). Version 004 was to complete the Sentinel-3B database with bare soil covers. 

The SLSTR operational product was validated in previous studies. The ESA valida-

tion report [20] showed that over most sites the accuracy threshold was achieved at day-

time and nighttime. However, fewer sites met the precision threshold, especially in the 

case of the SURFRAD stations, likely mainly due to the heterogeneity of the surroundings 

[20]. In contrast to the SURFRAD stations, KIT’s stations are located in specifically se-

lected, homogenous areas, and use narrow band Heitronics KT15.85 IIP (9.6–11.5 µm) ra-

diometers. For KIT’s Evora site (Portugal, temperate evergreen vegetation) an SLSTR LST 

accuracy of −0.8 K and precision of 0.7 K was obtained for daytime, and an accuracy of –

0.4 K and a precision of 0.3 K was found for nighttime. For KIT’s Kalahari site (Namibia, 

Kalahari bush), an accuracy of 0.7 K (1.1 K) and a precision of 0.7 K (0.3 K) for daytime 

(nighttime) were obtained. For KIT’s Gobabeb site (Namibia, gravel plains), an accuracy 

of 1.8 K (−0.9) and a precision of 0.8 K (1.1 K) for daytime (nighttime) were obtained. For 

the ARM station (cattle pasture), a high accuracy for both daytime (0.17 K) and nighttime 

(−0.02 K) was obtained. However, precision was low, with values of 1.9 K and 2.1 K for 

daytime and nighttime, respectively. In [48], a pyrgeometer and a thermal infrared (TIR) 

wide band radiometer for validating the SLSTR LST product over a forest site in the Am-

azon basin were used. An accuracy of –0.1 K and a precision of 0.6 K were estimated from 

the comparison with the wide band radiometer, while an accuracy and precision of 1.0 K 

were estimated from the comparison with the pyrgeometer, thereby reaching the GCOS 

thresholds. In [22], the SLSTR LST product over two desert sites (Dalad Banner and 

Wuhai, China) was validated using wide band radiometers. The accuracies obtained at 

these sites were 1.0 and 1.1 K, with precisions of 1.7 and 0.9 K for Dalad Banner and 

Wuhai, respectively. In [49], the SLSTR product was validated against in-situ LST from 

two KIT sites (Namib gravel plains near Gobabeb and Lake Constance): the product 

achieved an accuracy (RMSD) of 1.6 K (2.4 K) and 0.4 K (0.7 K) over the Namib gravel 

plains and Lake Constance, respectively. 

3.2. Proposal of Two Algorithms Adapted to SLSTR 

We propose two alternative SLSTR algorithms that are based on the split-window 

and the dual angle technique, respectively. The three main differences between the SWA 

proposed here and the Sobrino16, Zhang19, and Zheng19 SWAs are: (1) the use of the 

Cloudless Land Atmosphere Radiosounding (CLAR) database to calculate the coefficients 

of the proposed algorithms [50]; (2) the dependence of the LST retrieval algorithm on view 

angle; and 3) the independence of its coefficients from emissivity. 

3.2.1. CLAR Database and Simulation Dataset 

The CLAR database is composed of 382 clear-sky atmospheric profiles selected from 

radiosoundings compiled by the University of Wyoming [50]. These atmospheric profiles 

are relatively evenly distributed over the latitudes and, therefore, well suited to generate 

global algorithms: 40% of the radiosoundings belong to latitudes between 0°and 30°, 40% 

belong to latitudes between 30° and 60°, and 20% to latitudes higher than 60°. The WVC 

values of these profiles are distributed between nearly 0 and 7 cm. The temperatures of 

the lowest layer of the atmosphere range from 253 to 313 K. 

Gaussian angles from 0° to 65° (0°, 11.6°, 26.1°, 40.3°, 53.7°, and 65°) were chosen to 

generate the dataset for training the SWA. Input T values were set to: T0–6 K, T0–2 K, T0+1 

K, T0+3 K, T0+5 K, T0+8 K, and T0+12 K following the global analysis performed in [50]. The 
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dataset contained a total of 16,044 different cases and was used to obtain the algorithm 

coefficients. 

For a SLSTR dual-angle algorithm (DAA), we used the same range of input temper-

atures T and two pairs of viewing angles: 0°–53.7° and 11.6°–53.7°. In this case, the total 

number of simulations in the dataset was 5348. 

3.2.2. Split-Window Algorithm 

The SWA presented in this work is based on the algorithm of Niclòs et al. in [15] for 

the Spinning Enhanced Visible and Infrared (SEVIRI) sensor on board METEOSAT Sec-

ond Generation 2 (MSG-2), which is given by Equation (3): 

� = ��� + �� + ��(sec(�) − 1) + ��� + ��(sec(�) − 1)�(��� − ���) + ��� + ��(sec(�) − 1)�(��� − ���)� + �(1 − �) − �∆� (3)

where �  is LST and ���  and ���  are at-sensor brightness temperatures in K for the 

SLSTR channels at 11 µm and 12 µm, respectively; � = 0.5(��� + ���) is the mean emis-

sivity for the SLSTR channels at 11 µm and 12 µm and ∆� = ���–��� is the difference be-

tween them; θ is the sensor viewing angle; and � =  (�� + ��� + ����)  and � =

 (�� + ����) determine the emissivity correction term, with W defined as the WVC di-

vided by the cosine of the viewing angle. The values of the algorithm coefficients a0 to a10 

are given in Table 2. Emissivities obtained for each land cover (Table 1) and WVC from 

SLSTR L1 auxiliary data were used for the application of the algorithm. 

The atmospheric coefficients (from a0 to a5) in equation (3) were obtained from re-

gression analyses between LST–T11 and T11–T12 in Figure 4, using the blackbody approach 

(ε=1 and Δε=0 [51]) and, therefore, the obtained coefficients are independent from emis-

sivity. The emissivity correction term is controlled by α and β [52], which depend on at-

mospheric parameters (i.e., atmospheric transmissivity, at-surface brightness tempera-

ture, and effective atmospheric temperature). 

 

Figure 4. LST–T11 against T11–T12 simulated from the CLAR database at the different view angles for the SLSTR SWA 

atmospheric coefficients retrieval. The regression functions corresponding to each angular dataset are plotted as lines in 

the same color as their corresponding data. 
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The uncertainties of the LST retrieved with the algorithm were obtained as the square 

root of the quadratic sum of model fitting uncertainty, �(�)�, and propagated input pa-

rameter uncertainties, �(�)� [15]: 

�(�) = ��(�)�
� + �(�)�

��
�/�

 (4)

where both error sources are considered independent and were defined as follows: 

�(�)� =  ����
� + [(1 − �)��]� + �∆� ���

�
�

�/�

 (5)

�(�)� =  �� �
��

���

����
�

�

�

�/�

 (6)

where σAC is the fitting error associated with the atmospheric coefficients (from a0 to a5) 

and σα and σβ are the fitting errors associated with α and β, respectively. The fitting error 

was defined as the standard error obtained from the regression analyses for each set of 

coefficients. The regression standard error was estimated by minimizing the sum of 

squared deviations from the predictions over the simulation dataset. The propagation un-

certainty of the input parameters is expressed by Equation (6), where the partial derivative 

of � with respect to each input parameter �� (i.e., emissivity, WVC, brightness tempera-

tures) is estimated and multiplied by uncertainty ���. The experimental emissivity uncer-

tainties in Table 1 were assigned and WVC uncertainty was assumed to be ±0.5 cm, which 

is considered to be a representative value [15,21]. Brightness temperature uncertainty is 

the noise equivalent error of the instrument, which is about ±0.05 K for the SLSTR thermal 

bands at 11 and 12 µm for a temperature of 270 K [53]. As the latter is a random uncertainty 

element, it must be divided by the square root of the number of pixels used to average the 

LST [54]. The mean and SD of the LST uncertainty contributions from each parameter are 

given in Table 3. Full vegetation and flooded soil were grouped together due to their sim-

ilar emissivity values and were assigned the same emissivity uncertainties. For all cases, 

the main uncertainty sources were modeling and emissivity. 

3.2.3. Dual-Angle Algorithm 

SLSTR’s dual view also allows retrieving LSTs with DAAs. However, over land sur-

faces DAAs perform worse than SWAs, which is mainly due to differences in footprints 

and observation geometries between the two views [16]. Here, we analyzed the specific 

dual-view capability of the SLSTR TIR channels to retrieve LST. The DAA used here was 

adapted from [9] and is given by Equation (7): 

� = �� + ��(�� − ��) + ��(�� − ��)� + �� + �(1 − �) − �∆� (7)

where � is the LST, c0 to c2 are the atmospheric coefficients, �� and ��  are the brightness 

temperatures corresponding to nadir view (n) and backward view (b). �  is the mean 

emissivity for SLSTR nadir and backward views (� = 0.5(�� + ��)) and ∆ε is the emissiv-

ity difference between nadir and backward views (∆� = �� − ��); � =  (�� + ��� + ����) 

) and � =  (�� + ���) are functions modifying the impact of emissivity on LST retrieval, 

where W is the water vapor content. The coefficients determined for the two DAAs (one 

for each channel) are given in Table 2. 

LST uncertainty for the DAA was estimated in analogy to the SWA with Equations 

(4)–(6) for the simulation dataset. The same input parameters uncertainties were used to 

estimate the dual-angle LST uncertainty. The mean uncertainty contribution of each input 

parameter, the algorithm fitting errors, and the mean LST uncertainty for the two DAAs 

are shown in Table 3. For the DAA at 12 µm (DAA12), the main uncertainty sources are 

the fitting error and the emissivity, as for the SWA. However, for the dual-angle algorithm 

at 11 µm (DAA11), the fitting error is lower than for the SWA, as it was found for AATSR 

[38]. 
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Table 2. Coefficients of the proposed split-window algorithm (Equation (3)) and the dual-angle algorithms (Equation (7)). 

Coefficient Split−Window Coefficient Dual−Angle 11 µm Dual−Angle 12 µm 

a0 (K) 0.052 ± 0.013  c0 (K) −0.18 ± 0.02  −0.27 ± 0.04 

a1 (K) 0.15 ± 0.02  c1 2.03 ± 0.02  2.28 ± 0.04 

a2 0.95 ± 0.02 c2 (K−1) 0.114 ± 0.005  0.198 ± 0.007 

a3 −0.30 ± 0.03  c3 (K) 57.56 ± 0.15  66.02 ± 0.19 

a4 (K−1) 0.305 ± 0.004 c4 (K cm−1) 1.85 ± 0.11  −4.35 ± 0.14 

a5 (K−1) 0.202 ± 0.007  c5 (K cm−2) −1.278 ± 0.018  −0.81 ± 0.02 

a6 (K) 52.51 ± 0.18  c6 (K) 132.2 ± 0.3  139.4 ± 0.4 

a7 (K cm−1) −0.11 ± 0.12  c7 (K cm−1) −21.80 ± 0.07  −26.05 ± 0.11 

a8 (K cm−2) −1.004 ± 0.018  − − − 

a9 (K) 75.7 ± 0.2  − − − 

a10 (K cm−1) −11.21 ± 0.06  − − − 

Table 3. Mean and SD of the uncertainty contributions obtained for the simulation dataset. The different uncertainty 

sources (modeling uncertainty and input parameters: emissivity, δ(T)ε; WVC, δ(T)W; brightness temperature, δ(T)BT), and 

total SLSTR LST retrieval uncertainty are shown. 

Surface � 
Split-Window Dual-Angle 11 µm Dual-Angle 12 µm 

Mean (K) SD (K) Mean (K) SD (K) Mean (K) SD (K) 

Dry/Wet Bare 

Soil 

�(�)� 0.50 0.14 0.74 0.10 0.76 0.12 

�(�)� 0.09 0.04 0.03 0.02 0.04 0.02 

�(�)�� 0.08 0.02 0.101 0.010 0.114 0.013 

�(�)� 0.52 0.13 0.75 0.10 0.77 0.11 

�(�)� 1.4441 0.0009 0.9203 0.0002 1.4996 0.0002 

�(�) 1.54 0.05 1.19 0.06 1.69 0.05 

Water / Full 

vegetation 

�(�)� 0.32 0.09 0.53 0.10 0.48 0.12 

�(�)� 0.04 0.03 0.05 0.02 0.10 0.02 

�(�)�� 0.09 0.02 0.109 0.006 0.131 0.010 

�(�)� 0.36 0.08 0.54 0.10 0.51 0.11 

�(�)� 1.4362 0.0012 0.909 0.003 1.492 0.009 

�(�) 1.49 0.02 1.06 0.05 1.58 0.04 

3.3. Alternative Split-Window Algorithms 

Various SWAs with explicit emissivity dependence were proposed as alternatives to 

the operational AATSR/SLSTR LST product algorithm. These alternative SWAs used the 

same input parameters (i.e., emissivity, WVC, and brightness temperatures) as the 

adapted SWA (Section 3.2.2). 

3.3.1. Sobrino16 Split-Window Algorithm 

The Sobrino16 SWA [21] employed the algorithm given by Equation (8) for the re-

trieval of LST from AATSR: 

� = ��� + ��(��� − ���) + ��(��� − ���)� + �� + (�� + ���)(1 − �) + (�� + ���)∆� (8)

where �  is LST and ���  and ���  are at-sensor brightness temperatures in K for the 

SLSTR channels at 11 and 12 µm, respectively; W is the WVC divided by the cosine of the 

viewing angle, � = 0.5(��� + ���) is the mean emissivity for the SLSTR channels at 11 and 

12 µm, and ∆� = ��� − ��� is the corresponding difference between them; ��, for � from 

0 to 6, are the coefficients of the Sobrino16 SWA. 

In order to obtain coefficients ��, a broad range of ��� and ��� were simulated with 

the MODTRANv4 radiative transfer code [55] for 61 atmospheric profiles selected from 
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the Thermodynamic Initial Guess Retrieval version 1 (TIGR-1) database and 108 emissiv-

ity spectra obtained from the ASTER Spectral Library [56]. For each atmospheric profile, 

five � values were simulated: T0–5 K, T0, T0+5 K, T0+10 K, T0+20 K, where T0 is the air 

temperature of the lowest level of the atmospheric profile. Additionally, five viewing an-

gles (0°, 10°, 20°, 30°, and 40°) were simulated. Based on the uncertainties of the input 

parameters (emissivity, WVC and brightness temperatures) and model regression uncer-

tainty, a final algorithm uncertainty of ±1.6 K was estimated [21]. 

3.3.2. Zhang19 Split-Window Algorithm 

The Zhang19 SWA [22] was developed to improve LST retrieval over barren surfaces. 

This algorithm is given by Equation (9): 

� = ����� + ��(��� − ���) + ��(��� − ���)� + �� + (�� − ���)(1 − �) + (�� − ���)∆� (9)

where the variables represent the same quantities as in Equation (8). For the simulation 

dataset, 60 clear-sky atmospheric profiles were selected from the TIGR2000 database. 

These atmospheric profiles were used as input to the MODTRANv5.2 code to obtain sim-

ulated values of ��� and ���. For each atmospheric profile, the input T varied with T0 as 

T0–5 K, T0, T0+5 K, T0+10 K, T0+20 K when T0 > 280 K, and T0–5 K, T0, T0+5 K when T0 ≤ 280 

K. Average emissivity (ε) was varied from 0.9 to 1.0 in steps of 0.02, and the difference in 

emissivity (∆ε) varied from 0.02 to –0.02 in steps of 0.005. Simulations were performed for 

two viewing angles and yielded a total dataset of 30,456 simulated cases. According to 

[22], the SWA uncertainty ranges between ±0.5 K and ±1 K, depending on WVC. These 

values represent the uncertainty of the algorithm and do not consider input parameters 

uncertainties. 

3.3.3. Zheng19 Split-Window Algorithm 

Based on the refined form of the generalized split-window algorithm [57] proposed 

in [58], Zheng et al. in [15] adjusted the algorithm to match the spectral channels of SLSTR. 

The Zheng19 algorithm is described by Equation (10): 

� = �� + ��� + ��

1 − �

�
+ ��

Δ�

��
�

��� + ���

2
+ ��� + ��

1 − �

�
+ ��

Δ�

��
�

��� − ���

2
+ ��(��� − ���)� (10)

where the variables are the same as in Equation (8). MODTRANv5.2 [55] was used to ob-

tain a simulated dataset of ��� and ��� from 946 clear-sky atmospheric profiles selected 

from the TIGR-3 database. The input T values varied from T0, ranging from T0–10 K to 

T0+30 K in steps of 5 K. Sixty emissivity spectra from the ASTER spectral library and the 

University of California–Santa Barbara Emissivity Library were used to simulate a dataset 

under five viewing angles (0°, 15°, 25°, 35°, and 45°), which resulted in a total of 2,550,200 

different cases. 

The simulation dataset was divided into 160 groups to obtain coefficients stratified 

by WVC, brightness temperature T11 and five viewing angles. However, only the coeffi-

cients for nadir view and four brightness temperature and WVC subranges were pub-

lished in [23]. For these subranges, an algorithm uncertainty ranging from ±0.6 K to ±2.1 

K was estimated by propagating model regression uncertainty and emissivity uncertainty. 

4. Validation of Satellite LST Products 

4.1. Analysis of In-Situ Measurements 

The number of transect measurements (12) was too limited for a statistical analysis 

while we had a sufficient number of permanent station matchups for validating SLSTR 

LST retrieved with the proposed adapted algorithms (201), the operational LST product 

(194), and LST retrieved with the other emissivity-dependent algorithms (201) from 

SLSTR L1 data. Based on the above, it was decided to use the transect measurements to 

analyze the spatial representativeness of the station measurements. Figure 5 compares the 
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simultaneous measurements obtained with the (mobile) CE-312 and the (fixed) SI-121 ra-

diometers. 

 

Figure 5. LST obtained with the fixed SI-121 radiometer compared to LST obtained along the transects with mobile CE-

312 radiometers. 

The comparison between fixed station measurements and transect measurements 

shown in Figure 5 yielded a RMSD less than 0.4 K. These results indicate that the perma-

nent station LST values are representative of the site, since they are in good agreement 

with the LST along the transects. The homogeneity of the area allows us to use the perma-

nent station measurements for validating satellite LST, which is in agreement with previ-

ous studies (e.g., [27,29]). 

The uncertainties shown in Figure 5 were estimated from the average of the propa-

gated uncertainty for each measured variable and its standard deviation (i.e., within 3 min 

before and after the satellite overpasses). Mean uncertainty values of ±0.7 K and ±0.3 K 

were obtained from the CE-312 measurements and the SI-121 measurements, respectively; 

the values for the CE-312 are larger due to the spatial variability along the transects. 

4.2. Operational SLSTR LST Product 

The operational SLSTR LST product was evaluated against in-situ LSTs. Average LST 

weighted by the inverse of the squared distance to the site coordinates was obtained for 

the 2 × 2 closest satellite pixels. The statistical parameters are the median of the differences 

(TSLSTR–Tground), robust standard deviation (RSD, given by Equation (11)), and robust root 

mean squared difference (R-RMSD), which is obtained as the square root of the quadratic 

sum of the median and the RSD. 

RSD = median|(T����� − T������)� − median(T����� − T������)�| · 1.483 (11)

Figure 6 shows the comparison of the operational Sentinel-3A SLSTR LST product on 

cloudless days against the corresponding in-situ LST obtained from SI-121 measurements 
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(daytime and nighttime data; land cover types in different colors). Robust statistics were 

used in this analysis to avoid outlier effects [59]. 

 

Figure 6. Operational Sentinel-3A SLSTR LST product against ground LST obtained from the SI-121 radiometer over the 

three seasonal land cover types at the Valencia rice paddy site. The dark grey and light grey shadows show 1-RSD and 3-

RSD around the regression (dashed line). 

The validation statistics for the operational SLSTR LST product averaged over the 

three surfaces yield a median of 1.3 K, an RSD of 1.3 K, and an R-RMSD of 1.8 K. Table 4 

details the statistics for all data together as well as separated by daytime, nighttime, and 

land cover. 

Table 4. Validation statistics for the operational Sentinel-3A SLSTR LST product against in-situ LST for the three land 

covers at the Valencia rice paddy site. All values are in Kelvin (K) and N is the number of data points. 

 All Data Daytime Nighttime 

MEDIAN RSD R-RMSD N MEDIAN RSD R-RMSD N MEDIAN RSD R-RMSD N 

All Surfaces 1.3 1.3 1.8 194 1.8 1.2 2.2 98 1.0 1.0 1.4 96 

Flooded soil 1.8 1.1 2.2 44 2.2 0.7 2.3 19 1.8 1.3 2.2 25 

Bare soil 1.1 0.7 1.3 37 1.3 0.9 1.6 16 0.8 0.6 1.0 21 

Vegetation 1.3 1.4 1.9 113 1.7 1.5 2.2 63 1.0 0.9 1.3 50 

A similar number of data were obtained at daytime and nighttime (98 points and 96 

points, respectively). As the full vegetation data represent 65% (48%) of daytime 

(nighttime) data, the statistics for all surfaces combined were similar to those obtained for 

fully vegetated surfaces. 

As the Sentinel-3B satellite was launched two years after the Sentinel-3A satellite, 

fewer data (107) were available. The operational Sentinel-3B SLSTR LST product was eval-

uated with ground data concurrently acquired with satellite overpasses during the fol-

lowing periods: July–August 2019 (full vegetation cover), November 2019–January 2020 
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(flooded soil), and February–April 2020 (bare soil). All data were selected and cloud fil-

tered as for Sentinel-3A. The statistical analysis yielded a median of 1.5 K and an RSD of 

1.2 K for all surfaces combined. The validation statistics are summarized in Table 5 for all 

data as well as separately for daytime and nighttime. 

Table 5. Validation statistics for the operational Sentinel-3B SLSTR LST product against in-situ LST for the three land 

covers at the Valencia rice paddy site. All the statistics are in Kelvin (K) and N is the number of data points. 

 All Data Daytime Nighttime 

MEDIAN RSD R-RMSD N MEDIAN RSD R-RMSD N MEDIAN RSD R-RMSD N 

All Surfaces 1.5 1.2 1.9 107 1.6 1.3 2.0 41 1.3 1.0 1.7 66 

Flooded soil 2.1 0.6 2.2 48 2.5 1.1 2.7 15 1.9 0.7 2.0 33 

Bare soil 0.8 1.1 1.3 31 0.8 1.7 1.8 13 0.8 1.0 1.3 18 

Vegetation 1.0 1.3 1.6 28 1.4 0.9 1.7 13 0.5 1.2 1.3 15 

4.3. LST Retrieved with Explicit Emissivity-Dependent Algorithms 

The proposed SWA with angular dependence and explicit dependence on surface 

emissivity (adapted from [15]; see Section 3.2) was analyzed using the larger dataset of 

Sentinel-3A SLSTR measurements. Additionally, the alternative SWAs discussed in Sec-

tion 3.3 were evaluated. 

Figure 7 shows the LSTs obtained with the SWAs against the in-situ LSTs obtained 

from the SI-121 measurements at the permanent validation station. 

 

Figure 7. LST retrieved from Sentinel-3A with emissivity-dependent algorithms against in-situ LST obtained from the SI-

121 radiometer. Top left: Sobrino16. Top right: Zhang19. Bottom left: Zheng19. Bottom right: the proposed algorithm. 

In Figure 7, LSTs range from 277 to 315 K, covering a wide range of values. Data for 

bare soil and flooded soil cover larger LST ranges, while full vegetation covers a smaller 

range (i.e., between 290 and 306 K). A median (RSD) of −0.4 K (1.1 K) was obtained for the 
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proposed SWA. Similar statistical results were obtained for the other emissivity-depend-

ent SWA: median (RSD) of −0.8 K (0.9 K) for Sobrino16, −0.7 K (1.1 K) for Zhang19, and 

0.4 K (1.1 K) for Zheng19. In total 198 points were used (32 flooded soil, 38 bare soil and 

128 full vegetation). The statistics for all validation results are summarized in Table 6. 

Table 6. Validation statistics for the four emissivity-dependent split-window algorithms for the 

three land covers at the Valencia rice paddy site. All values are in Kelvin (K) and N is the number 

of data points. 

  MEDIAN RSD R−RMSD N 

All Surfaces 

Sobrino16 −0.8 0.9 1.2 198 

Zhang19 −0.7 1.1 1.3 198 

Zheng19 0.4 1.1 1.2 198 

Proposed SWA −0.4 1.1 1.1 198 

Flooded Soil 

Sobrino16 −0.4 0.6 0.7 32 

Zhang19 −0.5 1.0 1.1 32 

Zheng19 1.0 0.7 1.2 32 

Proposed SWA 0.0 0.6 0.6 32 

Bare Soil 

Sobrino16 −0.4 0.9 0.9 38 

Zhang19 −0.5 0.6 0.8 38 

Zheng19 0.9 0.7 1.2 38 

Proposed SWA −0.2 0.9 0.9 38 

Full Vegetation 

Sobrino16 −1.0 1.0 1.4 128 

Zhang19 −0.9 1.2 1.5 128 

Zheng19 −0.1 1.3 1.3 128 

Proposed SWA −0.7 1.2 1.4 128 

Medians are lower than the RSDs, except for a few cases. The results obtained over 

flooded and bare soils are slightly better than those over full vegetation, in terms of both 

bias and RSD, for all algorithms. Considering all surfaces, the SWA proposed here obtains 

the lowest R-RMSD. 

The same statistical analysis was repeated for the full dataset for daytime and 

nighttime cases separately. Table 7 shows the corresponding median, RSD, and R-RMSD. 

The total data used for each surface at daytime (nighttime) are 99 (99) points for all sur-

faces, 16 (16) points for flooded soil, 14 (24) for bare soil, and 69 (59) points for full vege-

tation. Better results are obtained in general for nighttime cases than for daytime, espe-

cially over bare soil and full vegetation surfaces. 

Table 7. Validation statistics for the different emissivity-dependent split-window algorithms. Results are shown for all 

data and separately for flooded soil, bare soil, and full vegetation cover. All values are in Kelvin (K). 

 
Daytime Nighttime 

MEDIAN RSD R−RMSD MEDIAN RSD R−RMSD 

All Surfaces 

Sobrino16 −0.8 1.2 1.5 −0.9 0.8 1.2 

Zhang19 −0.5 1.3 1.4 −0.9 0.8 1.2 

Zheng19 0.5 1.4 1.5 0.2 1.1 1.1 

Proposed SWA −0.3 1.5 1.5 −0.5 0.8 0.9 

Flooded Soil 

Sobrino16 −0.3 0.7 0.7 −0.5 0.6 0.8 

Zhang19 −0.4 0.8 0.9 −0.9 0.9 1.2 

Zheng19 1.1 0.6 1.3 0.9 0.9 1.3 

Proposed SWA 0.2 0.7 0.8 −0.1 0.7 0.7 

Bare Soil 
Sobrino16 −0.4 1.5 1.5 −0.4 0.8 0.9 

Zhang19 0.6 1.5 1.6 −0.6 0.7 1.0 
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Zheng19 0.8 1.4 1.6 1.0 0.5 1.1 

Proposed SWA 0.2 1.5 1.5 −0.2 0.6 0.6 

Full Vegetation 

Sobrino16 −1.3 1.5 1.9 −1.0 0.7 1.2 

Zhang19 −0.7 1.5 1.7 −0.9 0.8 1.2 

Zheng19 0.0 1.4 1.4 −0.1 0.9 0.9 

Proposed SWA −0.8 1.6 1.8 −0.7 0.8 1.0 

4.4. Proposed Dual-Angle Algorithms 

Two DAAs with coefficients generated using the CLAR database were proposed for 

the SLSTR TIR channels at 11 µm and 12 µm. Figure 8 shows the LST retrieved by DAA11 

and DAA12 (for the station pixel) against the in-situ LST obtained from the SI-121 meas-

urements at the station. 

 

Figure 8. SLSTR LST retrieved with the dual-angle algorithms for the 11 µm channel (left; DAA11) and 12 µm channel 

(right; DAA12) against in-situ LST for the three seasonal land covers at the Valencia rice paddy site. 

Both DAAs overestimated in-situ LST: DAA11 yielded better statistics for all surfaces 

combined with median (RSD) of 1.7 K (1.6 K) than DAA12, for which a median (RSD) of 

2.2 K (1.7 K) was obtained. The validation statistics for both DAAs are summarized in 

Table 8. 

Table 8. Validation statistics of the dual-angle algorithms for SLSTR 11 and 12 µm channels at the Valencia rice paddy 

site. All statistics are in Kelvin (K) and N is the number of data points. 

 Dual-Angle 11 µm Dual-Angle 12 µm 

MEDIAN RSD R-RMSD N MEDIAN RSD R-RMSD N 

All Surfaces 1.7 1.6 2.3 102 2.2 1.7 2.7 102 

Flooded Soil 0.6 1.0 1.1 15 1.0 2.3 2.5 15 

Bare soil 1.0 1.3 1.7 18 1.4 1.2 1.8 18 

Vegetation 2.1 1.2 2.5 69 2.6 1.5 3.0 69 

5. Discussion 

An explicit emissivity and angle dependent SWA and two DAAs for Sentinel-3 

SLSTR (using the channels centered at 11 µm and 12 µm) were proposed and validated. 

The SWA was adapted from the SWA proposed in [15] for SEVIRI sensor, while the DAAs 

were adapted from an algorithm developed for AATSR in [16]. Although [16] determined 

a better performance for the AATSR SWA, the double view capability of SLSTR (i.e., its 

nadir and backward views) for LST retrieval should be analyzed in order to identify pos-

sible differences to AATSR. Furthermore, the operational Sentinel-3A and Sentinel-3B 
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SLSTR L2 LST products and three explicit emissivity-dependent SWAs (i.e., Sobrino16 

[21], Zhang19 [22], and Zheng19 [23] SWAs) were validated. 

The validation used in-situ LSTs from a rice paddy site close to Valencia, Spain, 

which represents three seasonal homogeneous land cover types with different spectral 

features. These in-situ data were collected by two Apogee SI-121 wideband (8–14 µm) 

radiometers installed on a permanent station at the site. The narrower viewing geometry 

and spectral range makes TIR radiometers (e.g., Apogee SI-121, Heitronics KT15.85) more 

suitable for LST validation purposes than broadband hemispherical pyrgeometers (3–50 

µm), which are commonly used [32]. Additionally, the uncertainty of typically used radi-

ometers (e.g., ±0.2 K for Apogee SI-121) is lower than for pyrgeometers, which is around 

1 K [60]. When considering the uncertainties in upwelling and downwelling radiance 

measurements and emissivity, the uncertainty of in-situ LST obtained with pyrgeometers 

results in a typical uncertainty of ±1 to ±2 K [61]. In [62], compared simultaneous meas-

urements with wideband radiometers and a pyrgeometer over asphalt and four grassland 

sites. From this comparison, they observed a standard deviation of up to 2 K at the grass-

land sites and a general underestimation for the pyrgeometer data. This is in agreement 

with LST validations performed for various satellite sensors, e.g., MODIS [63], VIIRS [60], 

and Landsat-8 [64], which used pyrgeometer measurements as reference: especially at 

daytime, these studies obtained similar standard deviations of around 2 K at grassland 

sites. 

The GlobCover classification map, which is based on a static global classification, is 

used for generating the SLSTR LST product. In order to consider surface changes due to 

vegetation, seasonal changes or cropland harvest, each coefficient of the operational 

SLSTR LST algorithm is obtained as a combination of a vegetation coefficient and a bare 

soil coefficient, weighted by their cover fractions. However, for flooded soil at the study 

site, the vegetation fraction is higher than 0.3 (Figure 2): while this may be plausible for 

the last few days considered as flooded soil, when the rice starts growing, it is implausible 

at the beginning of the flooding, when there is only water. According to agricultural la-

borers, changes on the surface should be more marked, since the site is flooded in a few 

days and is then covered entirely by water. However, for 15 out of 27 land cover types, 

the vegetation and bare soil coefficients provided in the SLSTR auxiliary data are the same, 

as is the case for the biome assigned to the study site (i.e., weighting by cover fraction has 

no effect). 

Different coefficients for daytime and nighttime are provided only for water and 

flooded surface biomes (i.e., post-flooding or irrigated cropland). However, for most land 

cover types, e.g., bare soils, non-flooded forests, scrubland or grassland areas, the coeffi-

cients are the same for daytime and nighttime. 

In the SLSTR LST algorithm, coefficients for irrigated cropland areas were obtained 

as an average of the coefficients for water, winter wheat, and broadleaf-deciduous trees 

according to the land cover classification given in [65]. Since the land cover of the study 

site changes over the year, only the period of full vegetation matches with the assigned 

biome. However, the best validation results were obtained for the bare soil cover at day-

time (R-RMSD = 1.6 K) and nighttime (R-RMSD = 1.0 K). Similar results were obtained for 

the SLSTR LST product over arid areas by other authors. In [20], a RMSD of 1.9 K at the 

Gobabeb (Namibia) station was obtained, with a bias of 1.8 K and a SD of 0.8 K. In [23], a 

bias of 1.1 K and a SD of 0.9 K were obtained, leading to a RMSD of 1.4 K. In these two 

cases, as well as in this study, SLSTR LST had a good precision, i.e., lower than or equal 

to 1.0 K, but an accuracy larger than the GCOS threshold (>1 K). Yang et al. in [49] obtained 

a systematic uncertainty of 1.6 K and a RMSD of 2.4 K for Sentinel-3 SLSTR LST at the 

Gobabeb (Namibia) site. It should be noted that the biomes assigned to each validation 

site differ, so discrepancies due to different coefficients are possible. 

For the Valencia rice paddy site, the validation over full vegetation cover shows con-

siderably better results at nighttime, with median and RSD around 1K. However, for the 

daytime data, the median and RSD increase to 1.7 and 1.5 K, respectively. Due to the 
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higher thermal heterogeneity at daytime, a slight increase in RSD is expected, but not the 

large increase observed for the median difference, which causes the daytime accuracy to 

miss the GCOS threshold. It is suspected that the increased median difference is mainly 

caused by different day and night retrieval coefficients. These results cannot be directly 

compared with results obtained over other vegetated areas, e.g., the Amazon site [48] and 

Evora [20]. The Amazon site [48] was classified as closed to open broadleaved evergreen 

and/or semi-deciduous forest (biome 5) and yielded a SLSTR LST bias of −0.1 and a SD of 

0.6 K for daytime and nighttime data. For Evora [20], the assigned biome was rainfed 

croplands (biome 2) and the SLSTR LST bias was −0.8 (−0.4) K and SD 0.7 (0.3) K for day-

time (nighttime). The biases obtained for these validation sites were relatively small and 

showed a slight LST underestimation, while an overestimation was found at the Valencia 

site, which was misclassified as biome 1 (irrigated cropland) with very different charac-

teristics to a rice paddy. 

For the evaluation of the operational Sentinel-3B SLSTR product, a total of 107 scenes 

(43 over flooded soil, 31 over bare soil, and 28 over full vegetation) were used. Compared 

to the validation results for Sentinel-3A, the obtained accuracy for full vegetation and bare 

soil was slightly better, while the precision was similar for full vegetation and worse for 

bare soil. For flooded soil, the validation results for Sentinel-3B were less accurate and 

more precise than for Sentinel-3A. As for Sentinel-3A, better results were observed for 

Sentinel-3B nighttime data, mainly because of the higher thermal homogeneity. For both 

sensors, large systematic uncertainty was observed over flooded soil (around 2 K for both 

daytime and nighttime). In contrast, over the deep and large water body of Lake Con-

stance (classified as water body, biome 26), Yang et al. in [49] reported a considerably 

smaller systematic uncertainty of 0.4 K and a RMSD of 0.7 K for the operational Sentinel-

3 SLSTR LST product. 

The proposed SWA with explicit emissivity and angular dependence and the three 

published emissivity-dependent SWAs were validated under identical conditions. Gener-

ally, all investigated algorithms performed well, with median and RSD lower than 1.5 K 

over all surfaces. For all surfaces combined, the proposed algorithm yielded median (RSD) 

values of −0.4 K (1.1 (K): together with the Zheng19 SWA, it showed the lowest median 

(best accuracy). However, all SWAs obtained similar RSD values between 0.9 and 1.1 K. 

The better accuracy of the Zheng19 algorithm is mainly linked to its exceptionally low 

median over full vegetation cover, which also represented most data; the other SWA pro-

posed here showed more consistently low median values for all three land covers. 

The coefficients of the proposed SWA were based on a simulated dataset produced 

for LST ranging between −6 K and +12 K around the lowest level of air temperature (T0). 

These values were determined in [50] from statistical analysis of MODIS products MOD08 

and MOD11 for air temperature and LST values, respectively. This statistical analysis 

showed that the range of temperatures used for the simulation dataset covers most of the 

cases found over natural surfaces [50]. A maximum increment of up to +20 K was used to 

produce Sobrino16 and Zhang19, although these increments were only for T0 < 280 K on 

the latter. The Zheng19 SWA was produced with even larger increments of up to +30 K: 

this can be interesting for some applications (e.g., urban heat island, analyses of extreme 

temperatures), but can also cause an overfitting of retrieval coefficients, which in turn can 

increase retrieval uncertainty, particularly over the most common natural surfaces [64]. 

The similarity of the results could be linked to the moderate WVCs at the site (rang-

ing from 0.5 to 4.4 cm, with a mean value of 2.4 ± 0.9 cm and only 3% of data >4 cm), which 

implies small atmospheric effects and a small dependence on viewing angle. The effect of 

the differential absorption in the atmosphere in the regression of the proposed SWA per 

viewing angle was shown in Figure 4. For low to moderate brightness temperature differ-

ences, there is a minor angular dependence of the regression coefficients. However, for 

high brightness temperature differences, there is considerable angular dependence of the 

coefficients, corresponding to high WVCs (up to 7 cm) in the CLAR atmospheric database 
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used for the regressions (brightness temperature differences were up to 6.4 K). For com-

parison, the largest values in the database for the brightness temperature difference in 

SLSTR channels 8 and 9 were around 4.0 K (with a mean of 1.5 ± 0.8 K). Thus, further 

validation experiments in tropical atmospheres and over regions with WVCs exceeding 4 

cm should be performed to evaluate the algorithms in such extreme cases. Although there 

is a slight WVC seasonality (i.e., higher in the summer, lower in the winter), no significant 

differences observed in the results were unrelated to WVC, since no extreme WVC values 

were found at the site. Moreover, the uncertainty introduced by WVC (~0.1 K) on the SWA 

is negligible compared to the uncertainty introduced by emissivity (~0.5 K) or the retrieval 

algorithm (~1.4 K), as shown in Table 3. The difference in the accuracy obtained with the 

proposed SWA for viewing angles lower and higher than 40° was 0.3 K, with an associated 

difference in precision of 0.6 K. Based on the simulations shown in Figure 4, a decrease of 

precision with viewing angle was expected, since the atmospheric absorption increases 

considerably with viewing angle and, thus, also, the regression error. However, the rela-

tively small change in accuracy indicates a good performance of the algorithm also at 

larger viewing angles. 

At nighttime, for the three land covers at the rice paddy site, the algorithms showed 

good performance with accuracies and precisions better than the GCOS threshold (<1 K). 

In contrast, at daytime, the larger thermal heterogeneity caused an increase of RSDs for 

bare soil and full vegetation covers, with values of about 1.5 K. However, generally, sim-

ilar accuracies were obtained at daytime and nighttime over bare soil and full vegetation 

cover and most values met the GCOS accuracy threshold. 

For all algorithms the results were in agreement with previous validations performed 

by other authors at different sites: in [21] obtained a bias of −1.4 K and a SD of 1.2 K for a 

cropland area in Oklahoma, which is comparable to our site with full vegetation cover. 

Although they had few data points, their results showed a similar precision to that ob-

tained for the rice paddy site. Similar results were also obtained for SLSTR LST at an Am-

azon site in [48], who obtained a bias of −1.3 K and a SD of 0.9 K. Zhang et al. in [22] 

obtained a bias of −0.4 K and a SD of 0.9 K for a desert area in Wuhai, which are similar 

results to those obtained here with the same algorithm for bare soil. Yang et al. in [49] 

trained nine SWAs to retrieved SLSTR LST. These SWAs were evaluated over the gravel 

plains at Gobabeb (Namibia) and Lake Constance (Germany, Switzerland and Austria); a 

bias from −0.2 K to −0.3 K (from −0.2 K to 0.3 K) and an RMSD of 1.6 K (0.5 K) were ob-

tained at Gobabeb (Lake Constance). Finally, Zheng et al. in [23] validated their proposed 

SWA using pyrgeometers and radiometers over cropland and grassland sites. Their over-

all results showed a bias of 0.6 K and SD of 2.2 K, which is higher than the corresponding 

values obtained at our study site for all surfaces combined and for full vegetation cover. 

The underestimation reported for a station at Henan Hebi, China, with daytime data from 

a radiometer over cropland, was similar to that for vegetation cover at our site, under 

similar conditions. The bias obtained in [23] was the same as the median obtained here, 

while SD deviation was 2.4 K at the Henan Hebi site. The RSD found here was 1.3 K and, 

therefore, the Zheng19 algorithm performed much better at our study site. The proposed 

DAAs, which use SLSTR’s nadir and backward views, showed better results for the ver-

sion applied to the 11 µm channel (DAA11), which over flooded soil yielded an accuracy 

and precision better than the GCOS threshold. For bare soil, the accuracy and precision 

were also close to the GCOS threshold. However, the accuracy was worse for full vegeta-

tion cover. DAA12 yielded R-RMSD values between 1.8 and 3 K for all land covers. These 

findings are in agreement with results for previous sensors (i.e., AATSR, [16,50]), where, 

regardless of land cover, DAAs also performed worse than SWAs, probably due to differ-

ences in sensor footprint between the views and directional effects on radiometric tem-

peratures [16]. 
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6. Conclusions 

The operational SLSTR LST algorithm depends on biome, day/nighttime, vegetation 

fraction, and viewing zenith angle. From the validation results it is concluded that the 

operational Sentinel-3A SLSTR LST product is accurate for nighttime data, with an accu-

racy (systematic uncertainty, i.e., median) of 1.0 K and a precision (random uncertainty, 

i.e., RSD) of 1.0 K for the three investigated surfaces combined. In contrast, for daytime 

data an accuracy of 1.8 K and precision 1.2 K was determined. The increase in daytime 

RSD is attributed to the typically larger thermal heterogeneity of the land surface. In con-

trast, the increase in bias is thought to be caused by wrongly assigned biomes, i.e., the 

same coefficients were used for the three investigated land cover types. Additionally, the 

validation for the Sentinel-3B SLSTR LST product is of relevance since no robust valida-

tions were published for this platform. An accuracy of 1.5 K and a precision of 1.2 K were 

obtained, yielding to similar results to those obtained for the Sentinel-3A SLSTR LST prod-

uct for all data combined. 

The angular and emissivity-dependent algorithm proposed by Niclòs et al. in [15] for 

MSG SEVIRI was adapted to Sentinel-3 SLSTR. The adapted SLSTR SWA was evaluated 

together with three emissivity-dependent algorithms proposed by Sobrino et al. in [21], 

Zhang et al. in [22] and Zheng et al. in [23] using Sentinel-3A SLSTR L1 data. For all data 

combined (i.e., the three land cover types), the differences between LST obtained with the 

proposed algorithm and in-situ LST had a median (RSD) of −0.4 K (1.1 K); the respective 

values were −0.8 K (0.9 K) for Sobrino16, −0.7 K (1.1 K) for Zhang19, and 0.4 K (1.1 K) for 

Zheng19. While Zheng19 and the SWA proposed here achieved the overall best accura-

cies, the latter showed a more consistent performance for the three investigated land co-

vers. These cover a wide range of natural surface emissivities, i.e., from low values for dry 

bare soil, to medium values for wet bare soil, and high emissivity values for vegetation 

and water surfaces. Additionally, the explicit angular dependence of the proposed SWA 

will have higher benefits over areas with higher WVC, which is also illustrated by simu-

lation data). 

The overall accuracy improvements of the proposed SWA compared to the opera-

tional product is of 0.9 K, while it is 0.4 and 0.3 K compared to Sobrino16 and Zhang19 

SWAs, respectively. The achieved improvements are highly significant, e.g., for climato-

logical studies: when performing LST trend analyses, a global LST increase of 0.27 K/dec-

ade was observed from satellite data [66], i.e., the observed trends per decade are still 

smaller than the accuracy improvement achieved by the proposed algorithm. 

Furthermore, a DAA was proposed to investigate the usefulness of SLSTR’s dual-

view capability for LST retrieval and separate sets of coefficients were determined for the 

11 and 12 µm channels. While DAA11 performed better than DAA12, the dual-view algo-

rithms still performed worse than the SWAs. However, an acceptable accuracy and preci-

sion of DAA11 was found over flooded soil and bare soil at the Valencia rice paddy site. 

Over the rice paddy site, the explicitly emissivity-dependent SWAs were found to 

perform better than the operational Sentinel-3 SLSTR algorithm with biome-dependent 

coefficients. Among the emissivity-dependent SWAs, the proposed algorithm with ex-

plicit angular dependence showed a slightly better performance at the three land covers. 

The results of this algorithm are expected to improve for more humid atmospheres (i.e., 

WCV > 4 cm), where the impact of the angular effect is higher due to the increased atmos-

pheric absorption. 
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