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Abstract: Soil organic carbon (SOC) stocks are a remarkable property for soil and environmental
monitoring. The understanding of their dynamics in crop soils must go forward. The objective of this
study was to determine the impact of temporal environmental controlling factors obtained by satellite
images over the SOC stocks along soil depth, using machine learning algorithms. The work was
carried out in São Paulo state (Brazil) in an area of 2577 km2. We obtained a dataset of boreholes with
soil analyses from topsoil to subsoil (0–100 cm). Additionally, remote sensing covariates (30 years
of land use history, vegetation indexes), soil properties (i.e., clay, sand, mineralogy), soil types
(classification), geology, climate and relief information were used. All covariates were confronted
with SOC stocks contents, to identify their impact. Afterwards, the abilities of the predictive models
were tested by splitting soil samples into two random groups (70 for training and 30% for model
testing). We observed that the mean values of SOC stocks decreased by increasing the depth in all
land use and land cover (LULC) historical classes. The results indicated that the random forest with
recursive features elimination (RFE) was an accurate technique for predicting SOC stocks and finding
controlling factors. We also found that the soil properties (especially clay and CEC), terrain attributes,
geology, bioclimatic parameters and land use history were the most critical factors in controlling the
SOC stocks in all LULC history and soil depths. We concluded that random forest coupled with RFE
could be a functional approach to detect, map and monitor SOC stocks using environmental and
remote sensing data.

Keywords: environmental monitoring; land use and cover history; random forest; remote sensing;
soil depth; soil organic carbon stocks

1. Introduction

Soil organic carbon (SOC) plays an important role in soil physical, chemical and bio-
logical processes, as well as to mitigate global climate change [1,2]. The SOC increases soil
aggregate stability, water retention capacity and infiltration, plant available water, cation ex-
change capacity, and soil microbial and macrofauna biomass [3]. Moreover, the SOC is vital
for soil productivity and can improve soil health [4,5]. Soil stores about 750 Pg of SOC in the
top 30 cm and nearly 1500 Pg SOC in the first 1-meter depth [6]. Therefore, evaluating SOC
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levels and stock’s changes and their controlling factors, especially in depth, is important
for studying soil quality and degradation, carbon sequestration and land use changes [7–9].
Evaluating SOC stocks and understanding their spatial variation using traditional meth-
ods such as soil sampling and laboratory analyses are time-consuming and costly [10,11].
Modern methods such as Remote Sensing (RS) and Geographic Information Systems (GIS)
provide valuable information for monitoring and mapping SOC stocks [12,13].

The SOC stocks spatial distribution is controlled by complex interactions between land
use [14–17] vegetation [18,19], climate [20,21], topography [22,23], soil properties [24], [25],
parent material [26,27], soil type [15] and geographical position. However, these control-
ling factors may vary at different spatial scales or ranges (global and regional) and soil
depth [16,21,27,28]. Changes in land use over time can alter soil quality and microbial
activity and consequently affect the SOC stocks [29–33], as well as atmospheric CO2 con-
centrations [34,35]. In fact, the amount of changes in SOC stocks is very complex and is
dependent on the rate of the physical, chemical and biological processes that take place in
the soil due to different land use [36,37]. Land use conversions from cropland to pasture or
forest could increase SOC stocks by adding plant residue [38]. However, the SOC stocks
would decrease after land use changes from pasture or forest to cropland [31,38]. This
should happen due to alteration in the amount of carbon inputs, mineralization rates and
soil structure after tillage operation [39–43].

In addition, vegetation properties such as leaf area, thickness and density, biomass
production, plant height, rooting depth and its density, mycorrhiza and diversity of species
could influence the SOC stocks [44–46]. Climate factors such as precipitation, temperature,
solar radiation and others, can influence SOC by affecting organic residue inputs and the
rates of organic matter mineralization and litter decomposition [47–49]. Indeed, climate
factors and their interactions with vegetation have been introduced as important factors
for controlling the spatial distribution of SOC stocks [46]. According to Gomes et al. [21],
the sum of monthly mean temperature and precipitation were the most important factors
influencing the SOC stocks in Brazil. Gray et al. [50] stated that climate parameters such as
rainfall and temperature have a significant role on SOC stocks. Conversely, Vos et al. [28]
found that climate had a lower influence because long-term management seems to be more
effective in determining the SOC stocks. Thus, regional situations must be analyzed.

Topography is another factor that can influence plant communities and soil properties
by altering microclimate and thus impact on SOC [51–54]. Topography is one of the most
important variables in the variation of SOC stocks, especially in mountainous regions [22].
In addition to this parameter, soil properties such as texture, cation exchange capacity
(CEC), salinity, mineralogy and soil type also have affected the SOC stocks [16,55–58].
Parent material influences both directly or indirectly on clay fraction and rhizosphere traits
as reported by [27,28,50]. Several studies have associated the mentioned factors with SOC
stocks. However, in general, they consider the topsoil (0–30 cm) as the most dynamic
layer and the source of SOC [59–64]. Deeper soil layers are less exposed to weathering
agents providing higher stability and protection for the SOC, as indicated by Fontaine
et al. [65], Soucémarianadin et al. [66] and Simo et al. [67]. About 55 % of the SOC stocks
are accumulated up to 1 m, 62% to 1.5 m, 67% to 2 m and 77% to 3 m soil depth [9]. Thus,
the deeper soil layers store important amounts of SOC [7,68] which contributes to total soil
CO2 efflux [69].

Developments in RS techniques have expanded the capability of scientists to monitor
and map spatial distribution of SOC stocks [70,71]. RS data sets provide useful information
about temporal variables such as vegetation indexes, land use changes and climate data.
For example, the Landsat data set has proven to be useful in the detection and monitoring of
land use/cover [72–74] and vegetation indexes. Additionally, RS data can assist researchers
in quantifying subsurface controlling factors such as soil physical and chemical properties,
as well as mineralogy. Mendes et al. [75] estimated soil subsurface properties using satellite
spectral reflectance and geographically weighted regression (GWR) techniques. Poppiel
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et al. [76] and Mendes et al. [77] predicted soil mineralogy at the surface and subsurface
using RS data and soil spectra which can assist on SOC stocks dynamic studies.

To better understand the controlling factors of SOC stocks, Random Forest (RF) has
been applied as an attractive machine-learning technique [21,78,79]. RF can deal with a
high number of input variables both categorical and numerical simultaneously [16,28]. Be-
sides, it has the ability to predict spatial distribution of the SOC stocks with environmental
covariates such as digital elevation model (DEM), climate data, RS and soil information [80].
Mayer et al. [16] applied RF to find the controlling factors of SOC stocks in agricultural
topsoils and subsoils of Bavaria, Germany. Mahmoudzadeh et al. [79] and Gomes et al. [21]
implemented machine learning techniques to predict the spatial distribution of SOC in
western Iran and Brazil. Their results showed that RF had the best performance in predict-
ing the spatial distribution of SOC. Nabiollahi et al. [78] used RF models to evaluate soil
SOC stocks under different land use change scenarios.

Identifying the most important factors affecting the SOC stocks at various land uses
and soil depths is required for an effective management decision to increase soil C levels,
especially in the Brazilian tropical soils where agriculture has been intensive. In fact, high
temperatures, precipitation, photosynthetic activity and deforestation in tropical region
caused intensive decomposition of soil organic matter (SOM) and reduced the SOC content
and CEC [81–85]. Despite this, Brazil is one of the most important biofuel producers
(sugarcane ethanol) [86] with 29.8 million tons of sugar and 35.6 billion liters of ethanol
from 642.8 million tons of sugarcane) in the 2019/2020 harvest [87]. Therefore, there is a
gap on SOC stocks evaluation in depth for this important culture, as determined by sensing
techniques.

The objectives of this work were to find the controlling factors of SOC stocks along
depth and space derived from a 30-year satellite time series to recover soil properties
and land use. Therefore, we considered the following steps: (1) assess the land use and
land cover (LULC) changes during the 1985–2015 period; (2) evaluate the distribution
of SOC stocks both across the LULC classes and soil profile (0–100 cm); (3) identify the
main controlling factors of SOC stocks up to 1 m depth in different LULC history classes
using remote sensing data and machine learning algorithms; and (4) predict the spatial
distribution of SOC stocks and its uncertainty in an area at São Paulo State, Brazil. The
results of this can assist decision-makers to understand the effects of anthropic practices on
the SOC stocks in tropical areas as well as to create strategies to increase soil C levels to
face climate change.

2. Materials and Methods
2.1. Study Area

This work was conducted in Piracicaba region, which covers around 2577 km2 at
Northwest of the São Paulo State, Brazil (Figure 1). This region has a subtropical climate
with dry winters and rainy summers, which is classified as Cwa by the Köppen system [88].
The annual precipitation average is 1440 mm, while the maximum and minimum tempera-
tures are 25 and 13 ◦C, respectively. The topography varies between 450 and 943 m above
the sea level. The soils of the region, classified according to the Word Reference Base for Soil
Resources (WRB) [89] and the Brazilian Soil Classification System (SiBCS) [90], encompass
Luvisols (Luvissolos), Chernozems (Chernossolos), Acrisols/Lixisols (Argissolos), Cam-
bisols (Cambissolos), Cryosols (Gleissolos), Latosols (Latossolos), Arenosols (Neossolos)
and Planosols (Planossolos), developed mainly from crystalline and sedimentary rocks [91].
The main land uses are sugarcane, pasture, urban area, remaining forestland, water bodies
and riparian forests [92].
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Figure 1. Flowchart showing the location and the methodology applied for this study.

2.2. Methods

In this study, the following steps were conducted (Figure 1): (1) Determine bulk density
and SOC content, followed by the calculation of SOC stocks for each geographical sample
position; (2) Determination of environmental covariates; (3) Generate LULC (land use and
land cover) history map along 1985–2015; (4) Overlaying and extracting the variables for
each sample; (5) Reducing covariates by applying the Recursive Feature Elimination (RFE)
for each layer and LULC history class; (6) Performing Random Forest (RF) using 10-fold
cross-validation to identify important variables; (7) Select the best model and compute
variable importance; (8) Provide spatial prediction of SOC stocks for each depth and
uncertainty map.

2.2.1. Soil Survey Data

The soil dataset was obtained from the study of Mendes et al. [93]. This dataset has soil
samples at 0–20 (2229 samples), 40–60 (1796 samples) and 80–100 (1664 samples) cm depth
including chemical (carbon) and granulometric analysis. These samples were collected
following the toposequence method which considers the geological and relief variation
along the landscape, taking into account soil variation and LULC changes from the highest
to the lowest parts of the relief [94].

To provide continuous information across the soil profile, we applied an equal-area
quadratic spline function from 0 to 100 cm depth at 10 cm increments [95], as follows (in
cm): 0–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70, 70–80, 80–90 and 90–100. Therefore,
depth functions were adjusted to make predictions across the profile of sand, silt and clay
content, CEC and SOC.

We used pedotransfer equations developed for tropical areas [96] to estimate soil bulk
density from our soil dataset. As our soil dataset did not report the percent of stoniness,
we did not consider it for the calculation of the SOC stocks through the profile, according
to Equation (1) [21]:

SOC stocksi = (SOCi × BDi × Di) ×10 (1)
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where SOC stocksi represented the soil organic carbon stocks (gm−2) for layer i, SOCi is the
content of soil organic carbon (gkg−1) for layer i, BDi is bulk density (gcm−3) for layer i
and Di is soil thickness of layer i (cm).

2.2.2. Land Use Time Series and Land Cover (LULC History)

Time series of LULC information is important for assessing the SOC stocks [14,37].
Each LULC map represents just a LULC at a special time and usually does not show the
temporal variation of LULC. Therefore, evaluating the history of LULC can help scientists
to study SOC stocks precisely.

The map of temporal frequency of the LULC classes from 1985 to 2015 defined as
LULC history map was generated using LULC maps obtained from the published database
of Sayão et al. [97] with the average kappa coefficient value of 0.74. The authors used a
time series of Landsat between 1985 and 2015 (every 5 years) restricted to two climatic
periods, the dry (June–August) and moist (September–January) seasons. They excluded
urban areas from the images, due to similar spectrum characteristics with bare soil to avoid
confusion. The authors applied maximum-likelihood supervised classification using four
classes: agriculture, forest, water and pasture. Landsat 8 OLI images were selected as a
base and all the maps were co-registered with it. Afterward, the frequency of land use
alteration along time was calculated for each LULC class and in each pixel along 1985 to
2015 according to Equation (2) in ArcGIS10.3:

PLCi = (ai/n) × 100 (2)

where PLCi is the temporal frequency of a specific LULC class between 1985–2015; ai is the
count of a specific LULC class that occurred across the period of time and n is the total
number of LULC maps for the same period.

If the PLCi is closer to 100 (highest frequency), it means that the class i did not change
during the period of study and if PLCi is equal to zero (lowest frequency), it means that the
class i did not exist during the period of study.

PLCi of all LULC classes were calculated and overlaid in one map. Finally, the history
map was generated based on the frequency of all LULC classes in the period of 1985–2015 in
each pixel and classified into 14 classes. This map represents the degree of LULC alteration
across time. The LULC history classes are shown in Table 1. For example, Ag = 100 class
represents the area permanently used as cropland during 1985–2015; Ag > 50–Pas < 50
class represents the area that was used more than 50 percent of the time with croplands
and less than 50 percent with pasture during 30 years (1985–2015).

Table 1. LULC history classes during 1985 to 2015.

Class Number LULC History Class Class

1 Agriculture (100%), Ag = 100
2 Pasture (100%), Pas = 100
3 Forest (100%), Fo = 100
4 Agriculture (>50%)–pasture (<50%), Ag > 50–Pas < 50
5 Agriculture (>50%)–forest (<50%), Ag > 50–Fo < 50
6 Agriculture (<50%)–pasture (<50%) Ag < 50–Pas < 50
7 Agriculture (<50%)–pasture (<50%), Ag < 50–Fo < 50
8 Mixed of agriculture and pasture and forest Mix-Ag–Pas–Fo
9 Forest (>50%)–agriculture (<50%), Fo > 50–Ag < 50
10 Forest (>50%)–pasture (<50%), Fo > 50–Pas < 50
11 pasture (<50%)–Forest (<50%), Pas < 50–Fo < 50
12 pasture (>50%)–Agriculture (<50%), Pas >50–Ag < 50
13 Urban and road Ur–Ro
14 Water Wa
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2.2.3. Covariates Preparation

In order to identify the controlling factors of SOC stocks at each depth increment,
different variables to act as proxies were selected based on the SCORPAN (Soil, Climate,
Organisms, Relief, Parent material, Age and Space) model [98]. Thus, we included soil
parameters, soil mineralogy, soil types, geology, topographical factors, climatic factors,
vegetation indexes and land use information (Table 2).

Table 2. List of covariates prepared according to the SCORPAN model.

Factor Variables Reference

Soil Physical and Chemical Properties Sand, Silt, Clay, CEC Mendes et al. [93]
Minerals kaolinite, hematite, gibbsite, goethite Mendes et al. [77]

Soil, Parent material and age (SySI) Blue, Green, Red, NIR, SWIR1, SWIR2, SF SYSI were generated using the method
suggested by Dematte et al. [100] in GEE

Geology -
Geology map was obtained from Bonfatti

et al. [101] 30 m resolution (about
1:100.000 scale).

Soil Type - Soil type was extracted from the
published database of Rossi [91]

LULC history Agriculture (%), Forest (%), Pasture (%),
LULC history Class

LULC history map was generated based
on the percent of LULC changes during

1985–2015.

Mean annual Vegetation Index
(1985–2015) NDVI, EVI, NDWI

vegetation indexes were derived from
Landsat 5, 7 and 8 Collection 1 Tier 1

8-day NDVI, EVI, NDWI composites over
a period of 1985 to 2015 in GEE at 30 m

resolution.

Climate (1985–2015)

Mean Annual Precipitation (MAP),
Maximum Temperature (MaxTemp),

Minimum Temperature (MinTemp), Wind
Speed (MAW), Downward Solar, LST

Time series of climatic factors (1985–2015)
were obtained from TerraClimate dataset
[102] and CHIRPS Daily dataset [103] in

GEE and LST were obtained from the
published database of Sayão et al. [97]

Bioclimatic (1960–2000)

Annual Mean Temperature (BIO1),
Temperature Seasonality (C) (BIO4), Max

Temperature of Warmest Month(BIO5), Min
Temperature of Coldest Month (BIO6),

Annual Precipitation(BIO12), Precipitation of
Wettest Month(BIO13), Precipitation of Driest
Month(BIO14), Precipitation Seasonality (CV)

(BIO15)

bioclimatic variables were obtained from
the WorldClim2 dataset (1970–2000) [104]

Relief

Elevation, slope, aspect, Hillshade, Eastness,
Northness, Horizontal Curvature, Vertical
Curvature, Gaussian Curvature, Maximal

Curvature, Minimal Curvature, Mean
Curvature, Topographic Position Index,

Shape Index, Terrain features density within
a radius of 300 m (TFD300) and Terrain

features density within a radius of 500 m
(TFD500)

Terrain attributes were generated from
the 5 m DEM using GEE [99]

Convergence Index, Multiresolution Index of
Valley Bottom Flatness (MRVBF),

Multiresolution Index of Ridge Top Flatness
(MRRTF), Terrain Surface Texture (TST),
Valley Depth, Slope Height, Normalized

Height, Standardized height, topographic
wetness index (TWI), Slope Length, Gradient,

Analytical Hill shading, Catchment area

ArcGIS10.3 and SAGA GIS (2.3.2)
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The maps of soil properties including sand, silt, clay and CEC were obtained from
the study of Mendes et al. [93] and soil minerals including kaolinite, goethite, gibbsite and
hematite from Poppiel et al. [76] and Mendes et al [77].

Terrain attributes were generated from a 30 m Digital Elevation Model (DEM) using
the Terrain Analysis in Google Earth Engine (TAGEE) package [99]. Additional terrain
attributes were derived from a 5 m DEM [93] using ArcGIS 10.3 and SAGA GIS and
resampled to 30 m pixel size.

Bare soil fragments were mapped between 1985 and 2015 from surface reflectance
Landsat images using classification rules and were aggregated by calculating the median
values into the denominated Synthetic Soil Image (SYSI) described in detail by the Demattê
et al. [100]. The SYSI has six spectral bands (Blue, Green, Red, NIR, SWIR1 and SWIR2)
and a Bare Soil Frequency (SF) band. The SF was calculated by dividing the number of
pixels detected as bare soil by the total number of pixels [100].

We also used the geologic map performed by Bonfatti et al. [101] 30 m resolution
(about 1:100,000 scale). In the Piracicaba region, six lithology units including Ct (sandstones,
siltstones, varvites, tillites and conglomerates of Tubarão Group), H (unconsolidated sand,
gravel and clay of the Holocene), Jbp (sandstones, siltstones and shales of the Botucatu and
Piramboia Formation), Ksg (Basalts, sandstones and diabases of Serra Geral Formation),
Pc (siltstones, shales, limestones and quartzites of the Corumbatai Formation) and Pi (Oil
shales, dolomites, siltstones and quartzites of the Irati Formation) exist. Soil type was ex-
tracted from the published database of Rossi [91] and concluded 9 classes (see Section 2.1).
Time series of climatic factors (1985–2015) were obtained from TerraClimate [102] dataset
at 4 km resolution. Meanwhile, a mean annual precipitation was determined from CHIRPS
Daily (Climate Hazards Group InfraRed Precipitation with Station Data, version 2.0 final)
dataset at 4.8 km resolution [103]. All of these climatic factors were determined in GEE,
while the bioclimatic ones were obtained from the 1 km resolution WorldClim2 dataset
(1970–2000) [104]. These climatic and bioclimatic maps were upscaled to 30 m pixel size by
Spline interpolation in ArcGIS10.3 to have the same resolution of the other covariates. Be-
sides, the land surface temperature (LST) images were obtained between 1985 to 2015 from
Sayão et al. [97] and were aggregated into a single image by calculating the mean values of
LST. The LST was estimated using the inversion of Planck’s function in the thermal band.
Landsat 5, 7 and 8 Collection 1 Tier 1 8-day NDVI, EVI and NDWI composites were used
to calculate the following spectral indexes over a period of 1985 to 2015 in GEE at 30 m
resolution: normalized difference vegetation index (NDVI = (NIR-Red)/(NIR + Red)), En-
hanced Vegetation Index (EVI = 2.5((NIR-Red)/(NIR + 6Red-7.5Blue + 1))) and normalized
difference water index (NDWI = (NIR-SWIR)/(NIR + SWIR)).

2.2.4. Covariates Selection

Using a large number (67) of covariates as inputs machine learning approaches is
time and resources intensive [21,105]. The Feature selection can help to deal with these
computational limitations by reducing the number of input variables for the machine
learning algorithm [106] and also have a significant impact on the model performance. In
this study, spearman correlation analysis was used to avoid multicollinearity effects. For
this topic, among high correlated (>0.8) parameters in each category, the variables with the
weakest correlation were omitted. Thus, some variables including sand (from soil physical
and chemical properties), Green, Red, NIR and SWIR1 (from SYSI), EVI (from Mean Annual
Vegetation Index), MAP, MaxTemp, MinTemp, BIO1, BIO12, BIO13, BIO15 (from Climate
and Bioclimatic) were not included into the Recursive feature elimination (RFE). Then RFE
algorithms from the Caret package [107] were applied in R using all covariates with eight
subsets: 1, 5, 10, 15, 20, 25, 30, 40 s based on the 5-fold cross-validation. Co-variates were
chosen based on the lowest RMSE.
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2.2.5. Random Forest Models

RF is one of the machine learning approaches that generate multiple trees without
pruning to boost the prediction accuracy [108]. This method has the capability of reducing
noise, resisting overfitting, increasing the performance of prediction by aggregating various
predictions, and handling both quantitative and qualitative predictors [21,80,109,110]. In
addition, RF has the ability to measure the importance of variables based on mean decrease
in accuracy and in Gini index [111]. RF has been widely used to predict the spatial
distribution of the SOC stocks because it is fast and simple to use, has high accuracy and
also provides the importance of variables [79,109]. The selected covariates in the previous
section were used to map the SOC stocks and to evaluate their influence at each depth
increment and LULC history classes using RF regression from the Caret package in R
software [112]. The controlling factors of SOC stocks were evaluated in four LULC history
classes of Ag = 100, Pas = 100, Ag > 50–Pas < 50 and Ag > 50–Fo < 50, as well as total
samples in each depth. These LULC history classes were chosen because the number of
soil samples were not enough for modeling in all classes.

For these purposes, the soil dataset of each LULC history and depth was randomly
split into 70% and 30% for training and testing, respectively. Moreover, ten-folds cross-
validation was predefined to optimize the models with the training dataset. The number
of randomly selected predictor variables (mtry) was tested by considering 5, 10, 15, 20, 25
and the number of total variables that selected with the best model of feature selection
methods as mtry. Additionally, ntree was fixed on 500 iterations for stable predictions.
Afterwards, the ability of the models to correctly predict SOC stocks were evaluated by
applying the fitted models to the testing dataset (30%) and calculating the coefficient of
determination (R2), root mean square error (RMSE) and residual prediction deviation
(RPD). The R2 represents variation in the dependent variable, while RMSE is the square
root of the variance of the residuals and indicates the model’s absolute fit to the data. The
RPD is the ratio of standard deviation to RMSE that classifies the predicted model to good
(RPD > 2), fair (1.4 < RPD < 2) or unreliable (RPD < 1.4). The importance of variables also
was also determined based on mean decrease in accuracy.

2.2.6. Spatial Predictions and Uncertainty Maps

The soil data was randomly split into training (70%) and validation (30%) sets to
obtain optimal models. This can provide spatially robust predictions of SOC stocks and
their associated uncertainties at each depth increment by a bootstrapping method [113]
with 100 interactions using the Caret package in R. The mean values upper (Q95) and
lower (Q5) percentiles for each pixel were calculated. The mean value considered as the
final map of the SOC stocks and the coefficient of variation (CV) were computed as spatial
uncertainty [114]. The higher amount of CV represents more uncertainty and the lower CV
shows more accurate estimates.

3. Results
3.1. LULC History

The frequency of alteration in agriculture and forest class from 1985 to 2015 is shown
in Figure 2a and b. These maps show that the study area has been used with high frequency
for agriculture (Figure 2a) and less for forest (Figure 2b). The high temporal use frequency
of agriculture demonstrates that there have been few changes in LULC classes in the
indicated period.



Remote Sens. 2021, 13, 2223 9 of 32

Figure 2. The frequency of alteration for agricultural use during 1985–2015 (higher percentage shows less changes in LULC
during 1985–2015) (a); the frequency of alteration for forest use during 1985–2015 (b); LULC history map during 1985–2015
(c); the location of soil samples in each LULC history (the number of samples represent the whole sample along depth) for
Piracicaba region (d).

Generally, the LULC history map presented differences along temporal analysis
(Figure 2c). Pure agriculture use covered about 29% of study area while mixed use reached
more than 50% agriculture and less than 50% pasture (Ag > 50–Pas < 50) with 34% of
the region. The other dominant LULC history classes comprised only 37% of the area.
Figure 2d shows the location of soil samples in each LULC history.
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3.2. Distribution of SOC Stocks across the LULC and Soil Profile

Table 3 shows the summary statistics of soil attributes from our dataset measured over
different LULC history classes and in depth. SOC contents varied from 0 to 17.47 gkg−1 at
0–10 cm depth, and between 0.06 and 7.77 gkg−1 at 90–100 cm. Soil bulk density varied
from 0.05 to 1.57 gcm−3. As expected, the mean values of SOC stocks decreased with depth
from 198.82 gm−2 to 125.18 gm−2 from 0–10 to 90–100 cm, respectively. Results showed
that the mean values of SOC content and SOC stocks decreased with depth in all LULC
history classes.

Table 3. Descriptive statistics of SOC, soil bulk density (BD) and SOC stocks in each layer based on LULC history.

Land Use
History

Layer N
SOC (gkg−1) BD (gcm−3) SOC Stocks (gm−2)

Min Max Mean Std. CV Min Max Mean Std. CV Min Max Mean Std. CV

A
g

=
10

0

1 1279 0.00 15.16 1.13 1.51 133.14 0.11 1.57 1.28 0.17 12.93 0.20 1971.94 137.30 190.14 138.49
2 1293 0.03 10.67 1.00 1.12 111.55 0.81 1.55 1.28 0.15 11.37 4.93 1259.40 122.12 135.04 110.58

9 881 0.06 8.84 0.67 0.88 131.88 0.08 1.53 1.28 0.17 13.32 8.46 1183.08 78.04 99.39 127.35
10 883 0.06 7.60 0.59 0.57 96.25 0.94 1.52 1.29 0.15 11.29 8.46 839.04 72.05 67.03 93.03

Pa
s

=
10

0 1 291 4.99 11.66 6.19 1.45 23.42 1.19 1.43 1.40 0.05 3.71 713.34 1434.05 857.52 157.07 18.32
2 291 4.64 11.08 5.82 1.35 23.18 1.19 1.44 1.40 0.06 3.95 668.21 1333.53 807.22 142.64 17.67

9 291 2.96 8.58 3.72 1.05 28.34 1.15 1.45 1.41 0.06 4.21 420.07 1047.33 519.82 111.99 21.54
10 291 2.78 7.77 3.64 0.94 25.84 1.16 1.44 1.41 0.06 4.10 398.14 840.49 508.23 100.44 19.76

A
g

>5
0–

Pa
st

<
50 1 1398 0.04 10.90 0.95 1.29 135.96 0.28 0.11 1.56 1.36 0.11 8.41 1398.00 89.19 172.12 137.08

2 1404 0.04 8.87 0.88 1.15 130.89 0.52 0.88 1.56 1.37 0.11 7.81 1404.00 84.82 154.92
132.38

9 842 0.00 8.27 0.50 0.69 138.02 0.15 0.94 1.54 1.38 0.11 7.69 842.00 50.86 91.51
136.63

10 842 0.06 6.15 0.47 0.58 124.84 0.95 0.95 1.54 1.38 0.10 7.49 842.00 49.61 77.45 123.64

A
g

>5
0–

Fo
<

50 1 148 0.08 17.47 1.54 2.48 161.53 0.88 1.50 1.29 0.13 9.84 10.91 1358.90 189.42 309.29 163.28
2 148 0.08 10.44 1.26 1.83 145.13 0.72 1.50 1.29 0.13 10.29 10.91 1221.58 152.94 215.25 140.74

9 95 0.17 6.67 0.74 1.22 165.72 0.05 1.48 1.30 0.17 13.04 25.34 840.49 85.29 132.45 155.28

10 95 0.09 6.15 0.55 0.73 132.50 0.95 1.49 1.31 0.11 8.67 13.44 780.86 70.53 93.05
131.93

To
ta

ld
at

a 1 3307 0.00 17.47 1.52 2.08 137.04 0.11 1.57 1.33 0.14 10.61 0.20 2358.90 198.82 279.18 140.42
2 3327 0.03 11.08 1.39 1.84 132.68 0.72 1.56 1.33 0.13 9.70 4.93 1333.53 182.45 247.21 135.49

9 2215 0.00 8.84 1.00 1.36 136.04 0.05 1.54 1.34 0.14 10.75 0.51 1183.08 131.56 180.94 137.53
10 2217 0.06 7.77 0.94 1.23 131.88 0.94 1.54 1.35 0.13 9.45 8.45 842.49 125.18 168.21 134.37

The SOC stocks at the 0–30 cm of soil surface counted for 38.19, 37.51, 39.32 and 39.27%
in Ag = 100 class, Pas = 100, Ag > 50–Fo < 50 and Ag > 50–Fo < 50, respectively. In general,
36.25% of SOC stocks in all samples are stored in the first 30 cm of the soil (Figure 3).

Figure 3. The percentage of SOC stocks at the entire soil profile of each LULC history class.
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Figure 4a shows the distribution of SOC stocks from 0 to 100 cm depth for the main
LULC history classes. The average SOC stocks values have decreased in depth for all
historical LULC information. Besides, it can be inferred that Pas = 100 class had the highest
and the Ag > 50–Pas < 50 class had the lowest value of SOC stocks, compared to others.

Figure 4. Mean values of SOC stocks (gm−2) at 0–100 cm soil depth over different LULC history classes from the study (a); rel-
ative frequency of LULC (in percent) during 1985–2015 (b); pie chart of the percent of area for each LULC history classes (c).

Figure 4b informs about the changes in percent of each LULC class during the
1985–2015 period. The percentage of agriculture has been consistently higher than the other
LULC classes. It was 66.32% at the start of this period and increased to 81.64% in 2000.
Since then, the percentage of agricultural land has declined. In contrast, the percentage of
forest and pasture areas has decreased steadily until the 2000 and then increased. Overall,
in about 37% of the study site, land use has not changed during 1985–2015. 28.6% of the
area is used only for agriculture, 2% for forest and 0.02% for pasture (Figure 4c). Meanwhile,
about 0.7% and 6% of the study area are composed of water and urban–road, respectively.
In the rest of the study area (63%), land use has changed during 1985–2015. The highest
and the lowest percentages of the area belong to the Ag > 50–Pas <50 class (34%) and
Pas < 50–Fo < 50 class (0.0008%) (Figure 4c).
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3.3. Covariate Selection

Figure 5a–e provides the RMSE values from the five-fold cross-validation in the
process of selecting important variables in each LULC and depth with the RFE algorithm.
The number of important variables was selected by the lowest RMSE repeated from the
five-fold cross-validation using the RFE algorithm. The bar chart (Figure 5f) compares the
number of variables selected as important in each depth and LULC history class. It can be
observed that the numbers of important variables varied in different depths and decreased
on the contrary (increasing depth) in each LULC history class and from layer 4 to 10 it
stabilized (Figure 5a–e). However, some soil depths presented different trends. Overall,
more variables were selected in total samples than in other LULC throughout the depth.
In this case, the number of important variables from layer 1 to 5 were 15, 10, 10, 15, 10,
respectively, and from layer 6 to 10 were 15 variables.

Figure 5. RMSE values in five-fold cross-validation in the process of selecting the number of important variables in each
LULC history class and depth with RFE algorithm (a) Ag = 100, (b) Pas = 100, (c) Ag > 50–Pas < 50, (d) Ag > 50–Fo < 50,
(e) total samples, (f) the number of important variables selected with RFE for each depth and each LULC history class.
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3.4. Performance of the Random Forest Models

The result of the RF prediction models for the SOC stocks for each LULC history
and depth is presented in Table 4. It is noticeable that the models are strongest in to-
tal data, with R2 test of 0.78 to 0.92, RPD of 2.13 to 3.42. Despite this, they performed
weakest in Ag > 50-Fo < 50 class with R2 tests of 0.12 to 0.43 and RPD of 0.73 to 1.48. In-
deed, the performance of prediction models in all depth based on R2, RMSE and RDP
decreased on the sequence, total samples, Pas = 100, Ag > 50–Fo < 50 class, Ag = 100
class, Ag > 50–Fo < 50 class, respectively. Results demonstrated the best performance of
the RF for Ag = 100 class, Ag > 50–Pas < 50 class and total samples with the mtry of
5. The values of mtry varied from 5 to 20 for different depths of Pas = 100 classes and
Ag > 50–Fo < 50 classes.

Table 4. The performance of random forest with variables selected with Recursive Feature Elimination.

Land Use History Layers

Recursive Feature Elimination

Mtry
Train Test

R2 RMSE RPD R2 RMSE RPD

A
g

=
10

0

1 5 0.40 43.35 1.28 0.39 41.31 1.28
2 10 0.39 38.06 1.27 0.48 36.46 1.37
3 5 0.25 96.92 1.21 0.34 125.31 1.49
4 5 0.47 28.75 1.35 0.43 30.00 1.33
5 5 0.46 28.85 1.35 0.29 33.24 1.20
6 5 0.47 26.64 1.35 0.49 25.02 1.42
7 5 0.56 21.91 1.51 0.54 23.67 1.44
8 5 0.54 23.16 1.46 0.56 23.88 1.51
9 5 0.58 22.03 1.53 0.53 23.33 1.46
10 5 0.60 22.23 1.56 0.55 22.72 1.49

Pa
s

=
10

0

1 5 0.75 49.48 2.88 0.72 92.29 1.78
2 5 0.87 48.42 2.85 0.80 70.46 2.30
3 5 0.87 30.90 3.32 0.84 52.41 2.29
4 5 0.91 24.06 4.54 0.93 31.64 3.81
5 10 0.87 31.35 2.74 0.83 42.01 2.39
6 5 0.80 32.64 2.39 0.87 37.18 2.71
7 5 0.63 41.67 1.53 0.76 52.19 1.99
8 5 0.91 25.04 3.27 0.93 34.57 3.25
9 5 0.89 30.03 3.19 0.84 50.09 2.51
10 5 0.85 29.50 3.34 0.94 15.97 5.44

A
g

>
50

–
Pa

st
<

50

1 10 0.62 87.41 1.70 0.69 104.96 1.79
2 10 0.70 79.53 1.83 0.77 79.92 2.11
3 5 0.76 76.67 1.94 0.82 66.96 2.38
4 5 0.76 67.68 1.90 0.86 48.34 2.97
5 5 0.67 67.43 1.77 0.60 83.03 1.67
6 5 0.66 58.15 1.68 0.68 70.37 1.96
7 5 0.71 56.56 1.70 0.87 29.38 2.91
8 5 0.71 45.83 1.59 0.64 74.49 2.57
9 5 0.62 59.02 1.43 0.59 51.65 1.53
10 5 0.79 38.54 2.08 0.48 51.85 1.41

A
g

>5
0

–F
o

<
50

1 5 0.33 44.92 1.11 0.31 45.90 1.21
2 5 0.20 45.37 1.03 0.20 50.42 1.14
3 5 0.29 79.61 1.11 0.19 33.00 1.14
4 5 0.60 84.09 1.02 0.51 179.42 1.17
5 5 0.45 90.96 1.08 0.11 174.18 1.02
6 5 0.27 85.70 1.49 0.18 208.75 1.10
7 5 0.45 53.59 1.12 0.16 234.53 1.48
8 5 0.64 13.45 1.34 0.38 16.52 1.29
9 5 0.38 127.81 1.00 0.18 69.87 0.73
10 5 0.37 46.32 0.93 0.12 33.35 0.99

To
ta

ld
at

a

1 5 0.82 117.00 2.10 0.82 118.68 2.09
2 5 0.87 79.37 2.89 0.91 67.53 2.84
3 15 0.88 78.06 2.89 0.86 85.31 2.75
4 15 0.91 68.07 3.30 0.92 65.12 3.42
5 5 0.79 89.02 2.11 0.79 91.52 2.18
6 10 0.88 58.53 2.77 0.84 66.57 2.46
7 5 0.89 57.93 2.95 0.87 60.57 2.77
8 5 0.90 54.26 3.00 0.88 58.95 2.87
9 10 0.83 67.73 2.21 0.78 72.40 2.13
10 5 0.90 46.67 3.07 0.90 46.17 3.09



Remote Sens. 2021, 13, 2223 14 of 32

3.5. Controlling Factors in Different LULC History Classes and Soil Depths
3.5.1. Ag = 100

The percentage of importance for each variable used in the RF model is provided in
Figure 6 to 10. The results illustrate the influence of each variable on SOC stocks values over
each depth and LULC history class. Figure 6 gives information about the most important
variables for predicting SOC stocks in all layers, in Ag = 100 class. As observed (Figure 6),
soil properties including clay, silt and CEC were important in all depths. Clay presented
the greatest importance among the soil properties and its relative importance increased
with depth. Among Vegetation indexes, the NDVI was the best at top layers (1 and 2).
Although, NDWI had influence in all layers except for layer 6.

Figure 6. Variable importance for SOC stocks prediction in different depth at Ag = 100 class by
RF method.

Bioclimatic parameters were important in all depths (Figure 6). Moreover, the impor-
tance of parameters related to precipitation (BIO14) increased in all depth. Among terrain
attributes, elevation was important at all depths and others only at top layers. Minerals
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were important along allprofiles, but hematite showed greater relevance in layers 1–3 and
9–10. Gibbsite was important in layers 4 to 7 and goethite in layer 8. In addition, SYSI
bands were important in all depths so that SF was important at surface layers and SWIR2
was important at all layers. Soil type was important in layers 1, 2 and 6.

3.5.2. Pas = 100

In Pas = 100 class (Figure 7), soil parameters including clay, silt and CEC were impor-
tant in all depths and their cumulative influence increased with depth. Vegetation indexes
(NDVI, NDWI) were important at layers 1 to 7. Precipitation parameter was important at
surface layers and temperature in deeper ones. Meanwhile, LST was more important in
upper layers. From terrain attributes, Eastness, AnalyticalHillshading, SlopeHeight, were
important at first layer and other attributes such as MRVBF, Vally Depth and Hillshade im-
pacted more in deeper layers. Minerals including kaolinite, gibbsite, goethite and hematite
were important in most of the depths. In addition, SWIR2 was important in upper layers,
while Geology was important in layer 10.

Figure 7. Variable importance for SOC stocks prediction in different depth at Pas = 100 class by
random forest.
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3.5.3. Ag > 50–Pas < 50

Moreover, in Ag > 50–Pas < 50 class (Figure 8), clay was important in layers 2 to
10, while CEC was for 1, 2, 5 and 7 to 10, although their relative importance increased
with depth. From Vegetation indexes, NDWI was noticed only in layer 2, while Climate
parameters in all depths. In this case, the importance of BiO5 and BIO6, parameters
related to temperature decreased with depth and BIO14 and LST increased with depth.
From Terrain parameters, elevation was important in all depths, TFD500 was important in
layers 1 to 7, Northness in layer 1 to 4 and 6 and Analytical Hillshading in layer 2. From
SYSI bands, SF was important only in layer 2. Geology and soil type were important in
all depths.

Figure 8. Variable importance for SOC stocks prediction in different depth at Ag > 50–Pas < 50 class
by RF.

3.5.4. Ag > 50–Fo < 50

In Ag > 50–Fo < 50 class (Figure 9), clay and CEC wererelevant in most depths and the
relative importance of these factors tended to increase with depth. NDVI was more related
at top layers. Among the Climate parameters, just BIO14 and LST were relevant in some
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layers. Terrain parameters had higher influence on SOC stocks, mainly elevation, aspect,
valley depth, hill shade, MRRTF, TST, TFD500, minimal curvature, maximal curvature,
Gaussian curvature, Analytical Hillshading. Gibbsite and hematite impacted in layers 6
and 1, respectively, and goethite greatly influenced layers 5 and 8. In addition, from SYSI
bands, SF influenced layers 3 and 8, whileSWIR2 was important for layer 10. Additionally,
geology was mostly related with layer 1, while soil type was not important in any depth.

Figure 9. Variable importance for SOC stocks prediction in different depth at Ag > 50–Fo < 50 class
by RF.

3.5.5. Total Samples

As observed in Figure 10, soil properties including clay, CEC and silt influenced in
most depths. Clay and silt were more important than the other soil properties between all
parameters. LULC history, percent of agriculture and pasture were important in all layers.
On the other hand, vegetation indexes (NDVI, EVI, NDWI) did not show the influence
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of SOC stocks layers. Climate parameters were relevant in all depths. Besides, BIO6 and
BIO14 were the best Climate parameters. From Terrain data, elevation was relevant in all
layers. TFD500 was important in layer 1 and 4 to 9. Goethite was important for layers 4, 6
and 10, hematite was important for layers 7, 8 and 9. Meanwhile, kaolinite was important
for layers 4, 8 and 9. From SYSI, SF was important in layers 1 and 6 to 10.

Figure 10. Variable importance for SOC stocks prediction in different depth for total samples by RF.

To determine the importance of each factor, the importance of the related variables was
calculated. Figure 11 displays the importance of each factor and layer for different LULC
history. For Ag = 100, about 26–50, 16–26, 4–10, 7–34 and 4–14% of the variables importance
in all depths were assigned to soil properties, climate factors, soil mineralogy, terrain
attributes and SYSI, respectively. However, vegetation indexes assigned about 5–14% at
all layers except for layer 6 and soil types assigned about 2 to 4% at layer 1 to 3 and 6.
Additionally, LST reached about 3 % in layer 3. In Pas = 100 class, the importance of soil
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properties and climate factors, vegetation indexes, SYSI, terrain attributes, minerals and LST
were diverse from 26 to 75, 0 to 6, 0 to 20, 0 to 5, 0 to 20, 0–68 % and 0 to 8%, respectively.

Figure 11. Comparing the importance (%) of all factors in (a) Ag = 100, (b) Pas = 100, (c) Ag > 50–Pas < 50 (d) Ag > 50–Fo < 50,
(e) total samples for SOC stocks prediction in different depth.

The important factors for predicting SOC stocks in Ag > 50-Fo < 50 class were climate
factors (27–35%), terrain attributes (20–29%), Geology (11–21%), soil properties (6–19%),
soil type (9–14%), LST (4–10%), and SYSI (0–3%). While in Ag > 50-Fo < 50 class climate
factors (0–23%), soil factors (3–80), SYSI (0–7%), terrain attributes (21–89%), Vegetation
indexes (0–7%), mineral (5–6%), LST (0–22%) and Geology (0–3%) were the important
factors for estimating SOC stocks. Overall samples, about 14–35, 17–23, 7–22, 7–17, 7–16%,
and 5–7% of variables importance in all depth were related to the climate, land use factors,
soil factors, terrain attributes, Geology and soil type, respectively. The importance of SYSI,
soil mineralogy, and LST varied (Figure 11).

3.6. Predicting SOC Stocks

Total data in each depth were used to predict SOC stocks in the Piracicaba region.
Different variables including soil properties, climate factors, SYSI bands, terrain attributes,
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soil mineralogy, geology and soil type were used to produce SOC stocks maps. The
predicted maps of SOC stocks in layers 1 and 10 are shown in Figure 12. The south, center
and eastern parts of the study area had shown the highest values of SOC stocks in both
layers. Comparing the spatial distribution of lower, upper and mean values of SOC stocks,
each layer shows a similar trend. The uncertainties varied from 0.41 to 31.97% and 0.41 to
52.35% in layer 1 and 10, respectively.

Figure 12. SOC stocks maps for (a) layer 1(0–10cm) and (b) layer 10 (90–100cm) from bootstrapped (100 runs) Lower, Mean
and Upper predicted values and CV (percent of coefficient of variation).

4. Discussion
4.1. LULC History and Distribution of SOC Stocks

Most areas (about 63%) in Piracicaba region were mainly affected by anthropogenic
activities during 1985 to 2015 (Figure 4 c). The highest SOC stocks were found in Pas = 100%
class and the lowest value in Ag > 50–Pas < 50. Thus, the land use is an important factor that
controls the SOC stocks. This is in agreement with Boddey et al. [115], Rezende et al. [116]
and Cerri et al. [117] for whom pasture grasses have the potential to introduce large
amounts of organic matter into the soil. This happens because carbon flows from plants to
the soil through the inlets above and into it. The amount of SOC on the surface is significant
(13.17%), and will impact the environment. This will impact in observations of Pausch
and Kuzyakov [118] and Freschet et al. [119], for whom two-thirds of the photoassimilates
produced by the plants remain above the ground and are used for the production of
biomass and respiration, as the rest goes direct to the roots.

Higher SOC stocks in pasture (Figure 4a, Table 3), is explained by the type of roots.
Plants have root systems with different characteristics and functions (e.g., architecture,
morphology, mutualistic associations), which determine its influence on SOC. Pasture
remains more time in the field, since their management on soil disturbance occurs from
a minimum of about 10 years and going until 30 years or more. This situation associated
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with the fasciculate type of roots brings light to the results. As a consequence, the roots
go deeper to reach water and nutrients. Carbon derived from roots has a residence time
in the soil 2.4 times greater than the one derived from the aerial part [120]. Despite this,
the fasciculate roots of pasture have a better distribution along all profiles, and will impact
in depth SOC. Indeed, Tognon et al. [121] observed this same behavior when comparing
fasciculated roots from Cerrado bioma with pivoting (in general) from the Amazon region.
The authors observed that in Amazonia clay was the main driver of OM in the surface
layer. In cerrado, OM are lower in surface but greater than amazon in deeper layers which
was related with the type of vegetation. Mayer et al. [16] found similar results to us that
the constant grassland has the highest SOC stocks in the upper-most 30 cm of the soils in
comparison to periodical grassland.

Lower SOC stocks in other LULC history classes can be explained by human activities
and different soil management. In Ag = 100, Ag > 50–Fo < 50 and Ag > 50–Pas < 50 class,
the lands have been cultivated for more than 15 or even 30 years. Therefore, cultivating
may cause loss in SOC stocks by tilling and ploughing (break down the aggregates),
harvesting (crop and residual removal) and erosion [16,122–124]. In fact, this region has
reported great erosion risks with soil loss of amount around 58 Mg ha−1 year−1 in areas
with agriculture [125].

The higher amount of SOC stocks in Ag > 50-Fo < 50 in all depth than Ag = 100 and
Ag > 50–Pas < 50 classes can be attributed to the role of forest in inputting more C to the soil.
In fact, forest soil can be richer in SOC than other land uses because of deep root distribution
and higher input of SOC [126] (Figure 4a). Sheikh et al. [127] and Martín et al. [128] stated
that forests maintain higher value of carbon in soils than agriculture due to deep root
systems. When we compare pasture with forestry, still, the second maintains more carbon
along time [125], and thus explains why agriculture with forestry presented higher SOC
than agriculture-pasture (Figure 4a). Their results show an intense soil degradation in areas
with agriculture (soil loss rate- 58 Mg ha−1 year−1) while the ones with forest, riparian
vegetation, afforestation and pasture had rates 30 times lower.

There were important differences in the amount of SOC stocks content for Ag > 50-Fo < 50
and Ag > 50-Pas < 50 (Figure 4a). These anthropic alterations can impact on gas emission
as stated by Don et al. [42], Sharma et al. [129] and Wijesekara et al. [130]. For these authors
LULC alteration and management practices are significant sources of human induced
greenhouse gas emission and changes in SOC stocks. Other researchers have also found
similar results, reporting that the SOC stocks were mainly controlled by the LULC and
LULC history [16,35,42,131], and thus may occur in our studied region.

Comparing the results in soil depth SOC stocks decreased in all LULC history classes
(Figures 3 and 4a). This is in agreement with other studies [4,132]. However, the amount of
carbon alteration on the surface is greater than along deeper layers. At the deeper layers
(>80 cm), the amount of SOC stocks is similar in all cultivated areas. These results could be
due to more exposing SOC stocks to anthropogenic disturbances at topsoils. On the other
hand, the changes of SOC need hundreds or thousands of years at deeper layers [132,133]
due to stabilization processes. Actually, more water accumulation and low oxygen in
deeper layers can lead to reduced microbial decomposition of SOC [134]. Although the
processes and mechanisms involved in stabilizing and consequently accumulating SOC are
widely investigated and described by the scientific community [135–138], these studies lack
description of the mechanistic dynamics on how biotic and abiotic factors affect C in the
tropics. On the other hand, there is plenty of knowledge that addresses quantitative changes
in SOC stocks, especially in areas of land use change and soil management [42,117,139].

In the emerging knowledge of the mechanisms responsible for protecting SOC against
microbial decomposition, it is assumed that the persistence of organic material, that is,
its stabilization, is a property of the surrounding ecosystem [140]. Thus, it cannot be
explained solely by the molecular composition of organic compounds that in theory would
guarantee selective preservation [141,142]. The spatial inaccessibility conferred by the
formation of soil aggregates [135], or more intimate associations such as the formation
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of chemical bonds between OM and the surface of soil minerals [136,143] are considered
key SOC protection mechanisms [137]. However, what makes organic material associated
with minerals unavailable to microbial communities, or the factors that promote spatial
compartmentalization between microorganisms and enzymes, and the organic substrate,
are still partially answered questions.

It is a fact that the soils are extremely heterogeneous in materials and environments,
with a range of organic and mineral constituents, a wide variety of living organisms,
presenting a complex spatial arrangement of these constituents at different scales. The
soil microbiome directly influences the decomposition and stabilization of SOC in the
soil for a long time, in addition to governing the biogeochemical cycling of various nutri-
ents [144]. The regulatory power of microorganisms in C dynamics cannot be overlooked.
Therefore, an integrated understanding of the factors that govern the dynamics of SOC
in its microenvironment is essential to better elucidate the mechanisms involved in the
stabilization/destabilization of SOC [145].

4.2. Variable Selection and Model Performance

The number of influential variables on SOC stocks varied in different depths from
5 to 15 variables (Figures 6–10). The RFE method not only determined the best subset of
influential variables for each soil depth but also was effective in reducing the processing
time by decreasing the total variables in agreement with [21].

The performance of prediction models in all depths were achieved with different
results in various LULC history and depth (Table 3). Overall, R2 varied from 0.11 to 0.93
and 0.12 to 0.94 in top layers (1 to 5) and sub layers (6 to 10), respectively. The performance
of prediction models for LULC history classes based on R2 from the test data decreased in
Pas = 100, Total samples, agr > 50–pas < 50, agr = 100, and ag > 50–for < 50, respectively. In
other studies, the performance of RF in predicting SOC stocks varied as well. Hounkpatin
et al. [146], Dharumarajan et al. [80] and Nabiollahi et al. [78] computed R2 of about 0.14,
0.23 and 0.7 using RF, respectively. Taghizadeh-Mehrjardi et al. [8] computed R2 of about
0.37, 0.45, 0.54 and 0.62 at four depths 0–15, 15–30, 30–60 and 60–100 cm, respectively and
Gomes et al. [21] also computed R2 of about 0.33 in depth of 30–60 cm and R2 of about 0.17
in depth of 60–100 cm, respectively.

4.3. Controlling Factors

A survey of 67 predictors in RF showed that in all land use history classes about 5
to 20 variables had an impact on the prediction of SOC stocks (Figure 5). The parameters
of soil and terrain were common in all land use history classes and depths although with
different importance. In all LULC history classes, soil parameters including clay, silt and
CEC were achieved as important variables in almost all depths.

Clay was revealed as the most prominent variable as its relative importance in-
creased with soil depth. Many studies reported that soil texture and especially fine
particles (clay and fine silt) have influence on stabilization of SOC via formation of
organo-minerals [24,27,147–149]. Moreover, specific surface areas (SSA), surface charges
and cation exchange capacity of clay are effective in stabilization of SOC [27,147,150–152].
The importance of CEC increased with depth because this parameter is directly related to
soil mineralogy.

Terrain attribute was also the key factor in variation of SOC stocks in Piracicaba region,
in agreement with studies of Davy and Koen [25], Kozłowski and Komisarek et al. [153],
Taghizadeh-Mehrjardi et al. [8], Fissore et al. [23], Zhu et al. [22], Li et al. [4]. They stated
that terrain attributes are important in variation of SOC stocks in local scales where the
climate is more uniform.

The mean annual temperature and precipitation were the most important climatic
variables in most studies but they were omitted because of high correlation with the
Bioclimatic variables which reflect seasonal variability. Indeed, spearman correlation
coefficients were used to avoid multicollinearity effects similar to the study of Mayer
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et al. [16]. Luo et al. [154] also described that Bioclimatic variables and the changes in
the patterns of temperature and precipitation under climate change were more important
because this parameter has significant effect on the transport and availability of water and
ecosystem functional processes [155].

Bioclimatic parameters were important just in all depths of Total samples, Ag > 50-Pas < 50
and Ag = 100 classes which have more samples and more distribution in the region. How-
ever, Bioclimatic parameters were also important in some depths of other classes.

Geology was another prominent factor that impacted SOC stocks in all depths of Total
samples, Ag > 50–Pas < 50 classes due to influence on basic soil parameters [156]. In our
region Jbp, a magmatic rock had the highest mean value of SOC stocks. Indeed, geology
and parent material has an indirect role in protecting SOC from mineralization by affecting
soil texture and clay content [157–159].

Soil type was important in all depths of Total samples and Ag > 50–Pas < 50. The
most important soil types in the Piracicaba region are Latossolos (Oxisols), and Argissolos
(Ultisols) which comprise about 50% and 25%, respectively. These soil types are the most
important classes found in tropical region. Maximum value of SOC stocks were found
in these soils in agreement with Marques et al. [160]. In tropical clayey soils including
Oxisols and Ultisols, Fe and Al oxides play a significant role in stabilization and accu-
mulation of soil organic matter [161,162]. Therefore, soil type should be considered as a
factor in predictions of SOC stocks similar to study of Paz et al. [82], Grimm et al. [109],
Matteodo et al. [163], Ottoy et al. [46] and Mayer et al. [16].

Minerals react differently in LULC history and are quite important for SOC dynamics
because they provide surfaces that can adsorb organic molecules. They are represented
by the fine mineral particles smaller than 2 µm that form the clay-sized fraction [164].
However, in general, minerals that exhibit particle size < 53 µm are mainly responsi-
ble for the formation and persistence of organo-mineral associations in soils [165]. The
finest fraction of the soil contains three main types of minerals: phyllosilicates (known
as clay fraction minerals), metal oxides and hydroxides, and primary minerals (quartz,
feldspar). All of these types of minerals have been shown to effectively protect SOM
from decomposition. SOC is associated with soil minerals through various mechanisms,
such as ligand exchange, polyvalent cation bridge, hydrogen bonds and van der Waals
forces [137]. Kopittke et al. [166] described two key processes by which SOC is chemically
stabilized: (i) part of SOC is associated with existing links between organic material and
minerals, and (ii) compounds rich in N can bind directly to mineral surfaces and form
new associations. Evidence suggests that chemically stabilized SOC has its mineralization
rate reduced [167], since microorganisms and enzymes are not able to break the chem-
ical bonds existing between organic materials and soil minerals, making the substrate
organic unavailable [164].

Oxisols and Ultisols with high clay content and Fe and Al oxides have a greater
capacity to SOC which was similar to the studies of Six et al. [135] and Carter et al. [168].
This trend was recently verified by Poirier et al. [169], who observed that soils and horizons
with a high content of clay and reactive minerals, with a low initial concentration of
SOC, quickly stabilize the C and N from vegetable residues recently added through the
formation of organo-organic associations. Some studies do not consider clay content to
be a good predictor of soil capacity to form organo-mineral associations [170]. Although,
literature also shows positive correlations between clay and SOC [171]. In this sense, several
authors define the mineralogy and the initial content of MOS as the two key factors that
determine whether the vegetal residue added to the soil will be protected inside aggregates
or transformed into mineral associated organic matter [135,136,172,173].

Mineralogy has been poorly addressed to its impact in SOC. Gibbsite, goethite and
hematite presented more effect than kaolinite on SOC stocks (Figures 6–10). Clay minerals
with large SSA and Fe/Al oxides with flocculating and reducing the surface area available
for SOM adsorption have an effect on SOC stabilization [85,135]. Moreover, Al/Fe-(hydr)
oxides can protect organic matter from microbial decomposition by limiting the activity
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of soil microorganisms [174]. Therefore, minerals have an important role in stabilization
of SOC [175].

In total samples the percent of agriculture, pasture and LULC history classes effect on
SOC in all depths. It shows that land use conversions and soil management can have effect
on SOC stocks in all depth which is in agreement with study of Guo and Gifford [38], Deng
et al. [31] and Mayer et al. [16]. In the study region the main practice is soil conventional
tillage and not no-till. This takes us to underline that the management practices may have
significant impact, although it was not possible to quantify. Additionally, many studies
show that long term LULC has an effect on distribution of SOC stocks [14,16,176,177].

In addition, Vegetation indexes just affected SOC stocks in top soils of all land use
history classes, which can explain their importance as drivers of SOC [21,178]. Histori-
cally, it was assumed that the quantity and quality of structural plant residues deposited
aboveground were responsible for maintaining and/or increasing SOC contents. However,
scientific advances have shown that the contribution of inputs that occur inside the soil
exceeds those above the ground for the formation of stable SOC [120,179]. Most of the
organic material provided above ground in the form of leaves, trunks and branches. These
remains are retained in the top layer of the soil in the form of particulate organic matter,
which is quickly lost in a short time, moves little to deeper layers of the profile and has a
limited contribution to the accumulation of SOC [180].

Moreover, SYSI bands were also selected as one of the significant covariates for digital
mapping of SOC stocks. This is because SYSI detects bare soil and has advanced images
related to lithological and pedological variability, such as mineralogy, texture, color and
OC [100]. Other researcher also identified that SYSI was important for DSM of soil attributes
in top soils and subsoils [75,181–183]. Overall, the variation of SOC stocks in soil depths
depended on the interaction of different environmental variables which is in agreement
with the study of Gray et al. [50], Mayer et al. [16], Gomes et al. [21] and Ramesh et al. [184].

The results produced by this research showed that not only environmental factors can
affect SOC stocks levels along depth but also human interventions with land use change
over time. Indeed, changes in SOC stocks in different Land use history indicate that land
use change can have devastating effects on SOC stocks levels and global climate. Thus, soil
management can be one of the significant factors in changes of SOC stocks and climate
change. Moreover, the combination of remote sensed variables with RF model can be an
accurate approach to monitor SOC stocks in soil depth at tropical regions. Therefore, this
research has significant implications in identifying the controlling factors of SOC stocks
and mapping SOC stocks soils in different LULC history and depth with remote sensed
data. However, more studies should be carried out in humid and sub-humid areas to find
the controlling factors of SOC stocks and appropriate management strategies. Moreover, in
the present study the border pixels of each LULC class were not corrected which might
have an effect on the area of each LULC class. Therefore, it is recommended to consider
this process prior to making a time series of LULC history maps.

5. Conclusions

Remote sensing technology was essential to deliver the object information (soil prop-
erties and land use history). With the results it was possible to map and evaluate the
impacts of co-variables on SOC stocks. The RF model with RFF proved to be a reliable
tool for identifying the driving factors of SOC stocks over depth and land use class based
on a 30-year time series. Meanwhile, the model performed well in predicting the spatial
distribution of SOC stocks.

The SOC stocks varied in different LULC history classes and soil depth. The highest
and the lowest mean values of SOC stocks were observed in areas with Pas = 100 and
Ag > 50–Pas < 50, respectively. Moreover, the mean values of SOC stocks decreased by
increasing the depth in all LULC history classes. The root type and land use indicated
differences of SOC stocks in depth, being greater for pasture (fasciculated roots) than for
the others.
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The RF model with RFE algorithm revealed to be a suitable approach to finding the
factors controlling SOC stocks and for monitoring SOC stocks with environmental and
remote sensing covariates.

Soil properties, terrain attributes, geology, bioclimatic and land use history parameters
were identified as the most important factors in controlling the SOC stocks in all depths.
Natural and anthropogenic factors affected SOC stocks in all depths.

Geology > BIO14 > clay > BIO6 > BIO5 > soil type > land use history > percent of
agriculture > TFD500 > Elevation> silt > CEC > LST > Pasture > SF, in this order, are
presented from the most to the least important variables that impacted SOC stocks in layer
1. Additionally, goethite > elevation > Clay > land use history > BIO6 > Geology > percent
of agriculture > BIO14 > CEC > percent of Pasture > Soil type > BIO5 > silt > SF >LST were
the most important to the least important variables that impacted SOC stocks in layer 10.

In summary, from soil attributes, clay and mineralogy were the most important factors
which impacted SOC stocks. The results can bring light to SOC management and its
environmental monitoring by public policies, farmers and agriculture industries.
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