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Abstract: In most practical applications of remote sensing images, high-resolution multispectral im-
ages are needed. Pansharpening aims to generate high-resolution multispectral (MS) images from 
the input of high spatial resolution single-band panchromatic (PAN) images and low spatial reso-
lution multispectral images. Inspired by the remarkable results of other researchers in pansharpen-
ing based on deep learning, we propose a multilevel dense connection network with a feedback 
connection. Our network consists of four parts. The first part consists of two identical subnetworks 
to extract features from PAN and MS images. The second part is a multilevel feature fusion and 
recovery network, which is used to fuse images in the feature domain and to encode and decode 
features at different levels so that the network can fully capture different levels of information. The 
third part is a continuous feedback operation, which refines shallow features by feedback. The 
fourth part is an image reconstruction network. High-quality images are recovered by making full 
use of multistage decoding features through dense connections. Experiments on different satellite 
datasets show that our proposed method is superior to existing methods, through subjective visual 
evaluation and objective evaluation indicators. Compared with the results of other models, our re-
sults achieve significant gains on the multiple objective index values used to measure the spectral 
quality and spatial details of the generated image, namely spectral angle mapper (SAM), relative 
global dimensional synthesis error (ERGAS), and structural similarity (SSIM). 

Keywords: convolutional neural network; feedback; pansharpening; multilevel; double stream 
structure 
 

1. Introduction 
Remote sensing satellite images are a type of image that has been widely concerned 

and applied at present. They provide an important reference for applications in digital 
maps, disaster emergency, and geological observation [1,2]. In practical remote sensing 
image applications, the images must simultaneously have the highest spatial resolution 
and spectral resolution. The two most important metrics, the incident radiation energy of 
the sensor and the amount of data collected by the sensor, are limited by the physical 
structure of the satellite sensor, making it impossible to obtain remote sensing images 
with a high spatial resolution and spectral resolution at the same time. 

To address this problem, current Earth observation satellites generally use two dif-
ferent types of sensors simultaneously. They are used to obtain single-band panchromatic 
(PAN) images with a high spatial resolution, but low spectral resolution, and multi-band 
spectral (MS) images with complementary characteristics. As far as possible, the infor-
mation from the two images is used simultaneously, and a pansharpening algorithm is 
typically used to fuse the two images so as to obtain images with both a high spatial res-
olution and high spectral resolution. 
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Because of the demand for high-quality remote sensing images, much pansharpen-
ing-based work has been carried out, and various algorithms for remote sensing image 
fusion have been proposed, namely: (1) component substitution (CS) [3–6], (2) multi-res-
olution analysis (MRA) [7–11], (3) hybrid methods [12,13], and (4) model-based algo-
rithms [14–16]. The core idea of the CS method is to first rely on conversion to project MS 
images into another space to separate the spatial structure and the spectral information. 
The PAN image and spatial structure component are then matched and replaced by the 
histogram so that the PAN image has the same mean value and equation as the replaced 
component, and finally, the pansharpening task is completed by an inverse transfor-
mation operation. Methods such as intensity-hue-saturation (IHS) [3], principal compo-
nent analysis (PCA) [4], Gram–Schmidt (GS) [5], and partial substitution (PRACS) [6] all 
adopt this concept. These methods achieve good results when the PAN image and MS 
image are highly correlated, but because of the local differences caused by a spectral mis-
match between the PAN image and MS image, there is obvious spectral distortion in the 
fusion results. 

In the MRA method, three main steps are used to fuse the image. The first step is to 
use the pyramid transform or wavelet transform to process the source image and divide 
it into multiple scales. Then, the fusion of each scale of the source image is carried out, 
and the inverter operation generates the fusion result. This method provides both spatial 
and frequency domain localisation. Decimated wavelet transform [7], à trous wavelet 
transform [8], Laplacian Pyramid [9], Contourlet [10], and Curvelet [11] are examples of 
this approach. 

The hybrid method combines the advantages of CS and MRA methods in a combina-
tion of ways to achieve higher-performance fusion results. Model-based algorithms oper-
ate mainly by establishing the MS image, PAN image, and high-resolution multispectral 
(HRMS) image relationship model. They rely on prior knowledge for image fusion. A hi-
erarchical Bayesian model to fuse many multi-band images with various spectral and spa-
tial resolutions is proposed in [14]. An online coupled dictionary learning (OCDL) [15], 
and, in [16], two fusion algorithms by incorporating the contextual constraints via MRF 
models into the fusion model, have been proposed. 

In recent years, deep learning and convolutional neural networks have achieved out-
standing results in all fields of image processing [17–32]. Inspired by image super-resolu-
tion using deep convolutional neural networks (SRCNN) [17,18], Masi et al. [19] proposed 
a network called pansharpening by convolutional neural networks (PNN), which adopts 
the same three-layer structure as the other and combines specific knowledge in the field 
of remote sensing to introduce nonlinear radiation indicators so as to increase the input. 
This was the first application of a CNN in the pansharpening field. With the remarkable 
effect of the residual structure, Wei et al. [20] designed a deep residual network (DRPNN) 
for pansharpening. He et al. [21] proposed two detail-based networks to clarify the role of 
CNN in pansharpening tasks from a theoretical perspective, and clearly explained the ef-
fectiveness of the residual structures for pansharpening. 

Yang et al. [22] proposed a deep network architecture for pansharpening (PanNet), 
which is different from the other methods. A hopping connection called spectral mapping 
was used to compensate for spectral loss caused by training in the high-pass domain. This 
approach has achieved remarkable results, but it still has significant limitations. It is gen-
erally accepted that PAN and MS images contain different information. The PAN image 
is a carrier of geometric detail (spatial) information, while the MS image preserves spectral 
information. PanNet is trained by directly superimposing the PAN and MS image input 
network, resulting in the network’s inability to fully extract the different features con-
tained in the PAN and MS images, and results in an insufficient use of different spatial 
information and spectral information. It only uses a simple residual structure, which can-
not fully extract the image features of different scales, and lacks the ability to recover de-
tails. The network directly outputs the fusion results through one convolutional layer, and 
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fails to make full use of all of the features extracted by the network, affecting the final 
fusion effect. 

In this paper, we propose a multilevel dense connection network with feedback con-
nections (MDCwFB), including two branches, a detail branch, and an approximate branch, 
based on the idea of detail injection and super-resolution work. Different spatial and spec-
tral information are extracted from PAN images and MS images by the dual-stream struc-
ture. Multi-scale blocks with attention mechanisms are used on both lines to extract more 
abundant and effective multi-scale features from the image. The image fusion and recon-
struction work are carried out in the feature domain. The fused features are encoded and 
decoded based on the idea of a dense connection. The shallow network is limited by the 
size of the receptive field, and can only extract rough features; however, these features are 
repeatedly used in the subsequent network, which further limits the learning ability of the 
network. Therefore, we introduce the feedback connection mechanism to transfer the deep 
features back to the shallow network through a long jump connection, which is used to 
optimise the rough low-level features and enhance the early reconstruction ability of the 
network. Through the interaction between the PAN image and MS image features, the 
detail branch can fully extract the details of the low-resolution multispectral (LRMS) im-
age supplemented as an approximate branch, and the two can help each other obtain an 
excellent HRMS image. 

In summary, the main contributions of this study are as follows: 
1. We propose a multi-scale feature extraction block with an attention mechanism 

(MEBwAM) to solve the problems of insufficient feature extraction and the lack of 
multi-scale feature extraction ability of PAN images and MS images using multiple 
depth cascaded networks. The spatial information and channel information are com-
pressed separately to obtain an importance index. 

2. We use multilevel coding and decoding combined with densely connected structures 
to fuse and reconstruct the extracted spatial and spectral information in the feature 
domain. Deep networks encode the language and abstract information of the images, 
making it difficult to recover the texture, boundary, and color information from the 
advanced features; however, shallow structures are very good at identifying these 
details. We inject low-level features into high-level features through long jump con-
nections, which can more easily recover fine realistic images, and dense connections 
to make the feature graph semantic level in the encoder closer to the feature graph in 
the decoder. 

3. We propose using multiple subnetworks. We iterate the deep structure in the sub-
network to inject the deep features from the previous subnetwork, that is, the HRMS 
that completes rough reconstruction, into the shallow structure of the latter subnet-
work. This is done by way of a feedback connection to optimize the shallow features 
of the latter, enabling the network to obtain a better reconstruction ability earlier. 

4. We use the L1 loss function to optimise the network and attach the loss function to 
each subnet to monitor its output in order to ensure that useful information can be 
transmitted backwards in each iteration. 
The remainder of this paper is arranged as follows. We present the CNN background 

knowledge and work that has achieved remarkable results in other areas and other related 
work based on CNN pansharpening in Section 2. Section 3 introduces the motivation of 
our proposed multilevel dense connected network with a feedback connection, and ex-
plains the structure of each part of the network in detail. In Section 4, we show the exper-
imental results and compare them with the other methods. We discuss the effectiveness 
of the network structure in Section 5, and we summarise the paper in Section 6. 
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2. Background and Related Work 
2.1. Convolutional Neural Networks 

VGG-Net [25] and GoogLe-Net [26] show the possibility of obtaining better results 
by increasing the depth and width of the network. Using multiple continuous small-size 
instead of large-size convolution kernels to reduce the network parameters and using dif-
ferent-size convolution kernels to obtain multi-scale features will inspire the design of 
CNN frames in the future. 

Previous work has shown that increasing the depth of the network improves the per-
formance of the network significantly, but because of the gradient explosion and gradient 
disappearance, deeper networks are difficult to train. He et al. [27] proposed a residual 
learning framework to reduce the difficulty of network optimisation and to reduce deg-
radation problems so that deeper network structures could be used. ResNet, a method of 
fast identity mapping, is used to design residual blocks; adding shortcut connections be-
tween the input and output neither introduces additional parameters nor increases com-
putational complexity. Simply learning the difference between input and output makes 
network optimisation simple, allowing for the design of deeper and more complex net-
work structures to improve the results. However, even when dealing with a minimal da-
taset, it is easy to result in network overfitting. To overcome this difficulty, Huang et al. 
[28] proposed the dense connection network (DenseNet), designed for all of the previous 
layers and the rear layers, which has excellent protection against overfitting. DenseNet 
makes comprehensive use of simple features from shallow networks through feature re-
use, and achieves a better performance than ResNet, with fewer parameters and lower 
computational costs. 

Olaf et al. [29] proposed the U-Net network, which has a fully symmetric encoder-
decoder structure. The compression path in the first half is used for feature extraction, and 
the symmetric extended path is used for image recovery. The encoder acquires the multi-
scale features by reducing the spatial dimension, and the decoder gradually recovers the 
details and spatial dimensions of the image. The loss of information during the downsam-
pling process is compensated by adding a shortcut connection between the encoder and 
the decoder, which helps the decoder to better repair the details of the target. This concept 
is widely used by other computer vision and image processing tasks. Inspired by the idea 
that humans choose the next picture according to pictures they have already seen, Li et al. 
[32] proposed a picture super-resolution feedback network to refine the low-level infor-
mation through high-level information. The design concept of these image processing net-
work frameworks has inspired other researchers who carried out the pansharpening task 
and promoted the development of the convolutional neural network and specific 
knowledge for pansharpening work in the remote sensing field. 

2.2. CNN-Based Pansharpening 
Inspired by the remarkable results of image super-resolution work based on CNNs, 

Masi et al. [19] first proposed using a CNN to complete the pansharpening task. The MS 
image and PAN image channels are superimposed into the network to obtain a form sim-
ilar to the SRCNN single input and single output. In a follow-up work, a nonlinear radia-
tion index was introduced to increase the input and further improve performance. Wei et 
al. [20] introduced a residual network into the pansharpening work and designed a deep 
residual network with an 11-layer network. Traditional pansharpening methods generally 
use the high-pass information contained in PAN images to enhance the structural con-
sistency. Inspired by this concept, Yang et al. [22] proposed a network called PanNet, 
which combines knowledge and deep learning technology in the remote sensing field. It 
uses high-pass components as the network input. Before entering the network, the origi-
nal image is used to subtract the low-pass content obtained using the mean filter so as to 
obtain the high-frequency information of the MS and PAN images used for training. To 
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compensate for the loss of spectral information caused by obtaining high-frequency infor-
mation in the early stage, PanNet uses a jump connection called spectral mapping to inject 
the up-sampled MS image into the fusion image. Enhancing the spatial information cap-
ture ability and forcing the network to fuse spectral information through the high-fre-
quency information training network delivers excellent results. To further improve the 
network performance, Fu et al. [33] introduced cavity convolution based on PanNet. By 
using multi-scale expansion blocks with convolution layers with different expansion rates, 
the ability of the network to fully capture the multi-scale features of the PAN images and 
MS images is enhanced, and high-precision fusion images are obtained. The above net-
works use the L2 loss function to optimise the network. Because early work using the L2 
loss function to optimise the network produces image blur, follow-up work uses the L1 
loss function to train the new network. 

Liu et al. [34] proposed a two-stream fusion network for pansharpening tasks. Be-
cause PAN and MS images have different spatial and spectral information features, TFNet 
uses a two-stream structure to extract features from the PAN and MS images, respectively. 
The image fusion reconstruction task is completed in the feature domain through the en-
coder–decoder structure. Fu et al. [35] proposed an improvement to TFNet called ResT-
FNet, in which a basic residual structure to improve the network performance replaces 
the common CNN unit used by the former. Fu et al. [36] proposed a generation counter-
measure network for remote sensing image pansharpening (PSGAN) using a two-stream 
structure to extract complementary information from the MS and PAN images. A gener-
ator is then built to produce high-quality HRMS images using encoders and decoders. In 
PSGAN and RED-cGAN [37], which are GAN-based models, the generator tries to gener-
ate images similar to the ground truth and the discriminator tries to distinguish between 
the generated images and the HRMS images. In RED-cGAN, the results are further im-
proved by introducing the residual encoder–decoder network and conditional GAN. So, 
both the generator and the discriminator network in these two methods need the HRMS 
images for supervised learning. The two models are different from other methods, and 
during training, they use multiple loss functions to constrain network learning. 

3. Proposed Network 
In this section, we will introduce in detail the specific structure of the MDCwFB 

model proposed in this study, which not only has a clear interpretability, but also has an 
excellent ability to prevent overfitting and to reconstruct images early. We will introduce 
the algorithm solution for the proposed model and give a detailed description of each part 
of the network framework. The schematic framework of our proposed network is shown 
in Figures 1 and 2. It can be seen that our model includes two branches: one, the merely 
approximate branch of the LRMS graph, enhances the retention of spectral information, 
and the other is the detail branch for extracting spatial details. Such a structure has a clear 
physical interpretability and reduces uncertainty in the network training. The detail 
branch, which has a structure similar to the encoder–decoder system, consists of four 
parts: feature extraction, feature fusion and recovery, feedback connection, and image re-
construction. 

3.1. Feature Extraction Networks 
A PAN image is considered the carrier of spatial detail in the pansharpening task, 

and the MS image is the carrier of spectral information. Spatial and spectral information 
are combined to generate high-resolution images through the PAN and MS image inter-
action. Based on the ideas described previously, we rely on a CNN to fully extract the 
different spatial and spectral information and to complete the feature fusion reconstruc-
tion and image restoration in the feature domain. 

We use two networks with the same structure to extract features from the PAN and 
MS images, respectively. One network takes a single-band PAN image (size H × W) as the 
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input, and the other takes a multi-band MS image (size H×W×N) as the input. Before en-
tering the network, we upsampled the MS image to the same size as the PAN image via 
transposing convolution. Each feature extraction subnet consists of two separate convolu-
tion layers, followed by a parameter rectified linear unit (PReLU). 

Many studies on the CNN framework indicate that the depth and width of the net-
work significantly affect the quality of the results. A deeper and wider network structure 
can help the network learn richer feature information and can capture the mapping be-
tween the semantic information and context information in features. He et al. [26] pro-
posed a residual network structure, and Szegedy et al. [27] proposed an inception network 
structure that significantly increased the depth and width of the network. The jump con-
nection proposed by the former reduces the training difficulty after the network deepens. 
The latter points out the direction for the network to extract multi-scale features. 
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Figure 1. Detailed structure of the proposed multistage densely connected network with feedback connection. Red lines 
are defined as feedback connections. 
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Figure 2. Specific structure of each subnet. 

Inspired by the multi-scale expansion blocks proposed by the above work and Yang 
et al. [33] in PanNet, and the spatial and channel extrusion and excitation blocks proposed 
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by Roy et al. [38] to extract more fully the different-scale features in the image and enhance 
the more important parts of the features for pansharpening tasks, we propose an 
MEBwAM to use different receptive fields on a monolayer network and to add to the 
middle of two convolution layers. The first 3 × 3 convolution layer preliminarily extracts 
the image features. The second 3 × 3 convolution layer preliminarily fuses the enhanced 
features of the two branches. 

This MEBwAM structure is shown in Figure 3. We did not use cavity convolution to 
extract multi-scale features, even if it can arbitrarily expand the receptive field without 
introducing additional parameters. Because of the grid effect, cavity convolution is a 
sparse sampling method. The superposition of the cavity convolution with multiple dif-
ferent scales causes some features to be unused. Thus, the extracted features will also lose 
their correlation and continuity of information, which will affect the feature fusion recon-
struction. We use convolution kernels of size 3 × 3, 5 × 5, 7 × 7, and 9 × 9 in four branches, 
respectively. To reduce the high computational cost, we used multiple cascading size 3 × 
3 convolution layers to replace the large-size convolution kernels in the other three 
branches. Each convolution layer is followed by a PReLU. Finally, the results after the four 
path cascades are fused through one 1 × 1 convolution layer. We then extract the spatial 
attention and channel attention through two branches and recalibrate the extracted multi-
scale features using the obtained indexes to measure the importance. The information that 
is more important to the fusion results is enhanced, and the relatively invalid parts are 
suppressed. The channel attention branch uses the global average pooling layer to com-
press the spatial characteristics, and it combines the 1 × 1 convolution layer and PReLU 
function to obtain more nonlinearity and better fit the complex correlation between chan-
nels. The spatial attention branches use 1 × 1 convolutional layers to compress the channel 
features. At the end, the two branches use the sigmoid function to obtain an index to 
measure the spatial information and the importance of the channel, and the jump connec-
tion of the whole module effectively reduces the training difficulty and the possible deg-
radation problem, as follows: 

1,64 1,32( ) ( ( ( ( ( )))))CSEF x Conv Conv x= σ δ μ  (1) 

1,1( ) ( ( ))SSEF x Conv x= σ  (2) 

( ) ( )MFRB CSE SSEF F x x F x x x= ∗ + ∗ +  (3) 

3,64 3,64( ( ( ( ( )))))MS MFRB LRMSf Conv F Conv I= δ δ  (4) 

3,64 3,64( ( ( ( ( )))))Pan MFRB Panf Conv F Conv I= δ δ  (5) 

2,64 2,64( ) ( )P M MS Panf Conv f Conv f+ = ⊗  (6) 

We use , ( )f nConv ⋅ to represent convolution layers with size f × f convolution kernels 

and n channels, and ( )σ ⋅ , ( )δ ⋅ , and ( )μ ⋅ represent the sigmoid activation functions, PReLU 
activation function, and global average pooling layer, respectively. LRMS and PAN rep-
resent the images as the input, MFRBF represents the multi-scale feature extraction layer, 
and x refers to the feature fused together by four branches. fMS and fPan represent the ex-
tracted MS and PAN image features, respectively, and ⊗ represents the concatenation op-
eration. 
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Figure 3. Multi-scale feature extraction block with attention mechanism structure. The left shows the complete structure 
of the entire module, and the right shows the specific structure of the four different sensory branches. 

3.2. Multistage Feature Fusion and Recovery Network 
For the encoder–decoder architecture in our proposed network, we propose a multi-

level feature fusion recovery block (MFRB) to implement the encoding and decoding op-
erations and subsequent feedback connections. The concrete structures of the MFRB and 
residual block are shown in Figure 4. We use three residual blocks and two downsampling 
operations to form the encoder structure. Unlike the symmetric structure of traditional 
encoder and decoder networks, our decoder structure includes three residual blocks and 
three upsampling operations. The downsampling operation increases the robustness to 
some interference of the input image, while obtaining the features of translation invari-
ance, rotation invariance, and scale invariance and reducing the risk of overfitting. Con-
tinuous downsampling can increase the size of the receptive field and help the network 
fully capture multi-scale features. In this study, we choose to use a convolution layer with 
a step size of two to complete the downsampling operation. The two feature extraction 
subnets are downsampled after two convolution layers and multi-scale feature extraction 
blocks. 

The structure shown in Figure 4 is inspired by Zhou et al. [39], who proposed the U-
Net++ structure for a multilevel feature fusion recovery module. Many studies have 
shown that because of the different size of the receptive field, the shallow structure focuses 
on some simple features of the captured image, such as boundary, colour, and texture 
information. After many convolution operations, the deep structure captures the contex-
tual language information and abstract features of the image. Downsampling operations 
help the encoder fuse and encode features at different levels, and the features are recov-
ered through upsampling operations and decoders. However, edge information and small 
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parts of large objects are easily lost during multiple downsampling and upsampling op-
erations. It is very difficult to recover detailed texture information from encoded image 
semantics and abstract information, which seriously affects the quality of the pansharp-
ening. Adding jump connections between encoders and decoders with the same feature 
map size and using shallow features to help the decoder complete the feature recovery 
solves this problem to some extent. 

Different levels of characteristics focus on different informations, but the importance 
of the pansharpening tasks is consistent. To obtain higher-precision images, we need to 
make full use of different levels of features, and simultaneously, we need to solve the 
problem of using jump connections between the encoder and decoder because of the dif-
ferent feature levels. As shown in Figure 4, we decode the features after each encoding 
level, which means that our MFRB produces multiple outputs, each corresponding to a 
feature level. We decode each level of features and then connect the same level of encoder 
and decoder using a dense connection, which not only makes the feature graph in the 
encoder and decoder want a closer semantic, level but also increases the ability of the 
network to resist overfitting. In the network, we double the number of feature graph chan-
nels at each downsampling layer and halve the number of feature graph channels at each 
upsampling layer. The residual blocks in the network include one 1 × 1 convolutional layer 
and two 3 × 3 convolutional layers. Each convolutional layer is followed by a PReLU. Be-
cause we double the number of channels after each downsampling, and the input and 
output of the residual units need to have the same size, we change the number of channels 
by 1 × 1 convolutional layers to create hopping connections. The input of each decoder 
consists of features recovered from the upper decoder and features in the same level of 
encoder and decoder. 

Input

Conv 1×1

Conv 3×3

PReLU

Conv 3×3

PReLU

Conv 3×3

Add

Output

Input Conv 1×1 Resblock Resblock

Conv 2×2

Resblock

Conv 2×2

Resblock Deconv 2×2

Resblock

Deconv 2×2 Deconv 2×2

Concatenate ResblockConcatenate

Concatenate

Output Output Output

       Residual block                                                                              Multilevel feature fusion recovery block  
Figure 4. Structure of the proposed residual block and multilevel feature fusion recovery block. 

3.3. Feedback Connection Structure 
Feedback is the use of one set of conditions to regulate another set of conditions, 

which is done to increase or suppress changes in the system. The mechanism is called 
positive feedback when processes tend to increase system changes. Negative feedback re-
fers to processes that try to counter changes and maintain balance. Feedback mechanisms 



Remote Sens. 2021, 13, 2218 10 of 26 
 

 

usually exist in human visual systems. In cognitive theory, feedback connections connect-
ing cortical visual regions can transmit response signals from higher-order regions to 
lower-order regions. Inspired by the work carried out by Li et al. [32] on image super-
resolution, they carefully designed a feedback block to extract powerful high-level repre-
sentations for low-level computer vision tasks and transmit high-level representations to 
perfect low-level functions. Fu et al. [40] added this feedback connection mechanism for 
super-resolution tasks to the network of pansharpening tasks. Our proposed network is 
similar to their network structure with four time steps in the above study, but we use 
different feedback blocks. We use four identical subnetworks to add feedback connections 
between adjacent subnetworks. The specific structure of the subnetwork is shown in Fig-
ure 2. 

Because of the feedforward connection, each network layer can only accept infor-
mation from the previous layer. The dense connection structure in the subsequent net-
work reuses these features repeatedly, which further limits the network reconstruction 
ability. The feedback connection solves this problem very well. We complete the initial 
reconstructed features through the MFRB and input them into the next subnetwork as 
deep information. This way of bringing high-level information back to the previous layer 
can supplement the semantic and abstract information lacking in the low-level features, 
improve the error information carried in the low-level features, and correct some of the 
previous states so that the network has a solid ability to rebuild early: 

1 2 3, , ( )MFRB P Mf f f F f +=  (7) 

1 2 3 3, , ( )MFRB P Mf f f F f f+= ⊗  (8) 

where f1, f2, and f3 represent the three-level features extracted using MFRB, and the sub-
scripts represent the number of downsamplings. The first subnetwork uses only the PAN 
image and MS image features added after one downsampling as the input to the MFRB 
structure. The following three subnetworks fuse the recovered feature of the previous 
subnet and the features of f3 for the two feature extraction subnets fP+M, and carry out the 
subsequent feature fusion recovery work in the input MFRB after the cascade operation 
represented by the ⊗ . 

3.4. Image Reconstruction Network 
For image reconstruction, we use three residual blocks and a convolution layer to 

process the features after the fusion and recovery operations. Each residual block corre-
sponds to a feature recovered to the original size after upsampling. By adding dense con-
nections between different modules, we use the decoded features from different levels of 
encoders. Finally, the results of the detail branch are added to the LRMS image, as follows: 

1 3,64 3,64 1,64 2,128 1( ( ( ( ))))rb MS Panf Conv Conv Conv f f Deconv f= ⊗ ⊗  (9)

2 3,64 3,64 1,64 1 2,128 2( ( ( ( ))))rb MS Pan rbf Conv Conv Conv f f f Deconv f= ⊗ ⊗ ⊗  (10)

3 3,64 3,64 1,64 1 2 2,128 3( ( ( ( ))))rb MS Pan rb rbf Conv Conv Conv f f f f Deconv f= ⊗ ⊗ ⊗ ⊗  (11)

3,4 1 2 3( )rb MS Pan rb rb rbf Conv f f f f f= ⊗ ⊗ ⊗ ⊗  (12)

out LRMS rbI I f= +  (13)

We use ⊗ to represent cascading operations;and , ( )f nDeconv ⋅ represent convolu-
tional and deconvolutional layers, respectively; and f and n represent the size and number 
of channels of convolutional kernels, respectively. frb1, frb2, and frb3 restore the multilevel 
image by reconstructing the three-level features through three residual blocks. Finally, a 



Remote Sens. 2021, 13, 2218 11 of 26 
 

 

convolution layer is used to recover the details needed for the LRMS image from the fea-
tures extracted from the two-stream branches and the reconstructed multilevel image, 
combined with the LRMS images, and the two branches interact to generate high-preci-
sion HRMS images. 

3.5. Loss Function 
The effectiveness of the network junction is an important factor affecting the final 

HRMS image quality, while the loss function is another important factor. Early CNN-
based pansharpening methods use the L2 loss function to optimise the network parame-
ters, but the L2 loss function could give rise to the local minimum value problem and cause 
artefacts in the flat region. Subsequent studies have proven that the L1 loss function ob-
tains a better minimum value. Moreover, the L1 loss function better retains spectral infor-
mation such as colour and brightness than the L2 loss function. Hence, the L1 loss function 
is chosen to optimise the parameters of the proposed network. We attach the loss function 
to each subnetwork to monitor the training results while ensuring that the information 
delivered to the latter subnet in the feedback connection is valid: 

( )( ) ( ) ( )
1

1

1 , ;
N

i i i
p m

i
loss X X

N
θ

=

 = Φ  − Υ   (14) 

where ( )i
pX , ( )i

mX , and ( )iΥ represent a set of training samples; ( )i
pX and ( )i

mX mean the 

PAN image and low-resolution MS image, respectively; ( )iΥ represents high-resolution 
MS images; Φ  represents the entire network; and θ  is the parameter in the network. 

4. Experiments and Analysis 
In this section, we will demonstrate the effectiveness and superiority of our proposed 

method through experiments using the QuickBird, WorldView-2, WorldView-3, and Iko-
nos datasets. The best model was selected for the experiment by comparing and evaluat-
ing the training and test results of models with different network structures and parame-
ters. Finally, the visual and objective indicators of our best model were compared with 
several other existing traditional algorithms and CNN methods to demonstrate the supe-
rior performance of the proposed method. 

4.1. Datasets 
For QuickBird data, the MS image has four bands, including blue, green, red, and 

near-infrared (NIR) bands, and a spectral resolution of 450–900 nm. For WorldView-2 and 
WorldView-3 data, the MS image has eight bands, including coastal, blue, green, yellow, 
red, edge, NIR, and NIR 2 bands, and the spectral resolutions of the image are 400–1040 
nm. For Ikonos data, the MS image has four bands, including blue, green, red, and near 
NIR bands, and a spectral resolution of 450–900 nm. The spatial resolution information 
for the different datasets is shown in Table 1. 

Table 1. Spatial resolution and number of bands of datasets for different satellites. 

Sensors Bands PAN MS 
QuickBird 4 0.61 m 2.44 m 

WorldView-2 8 0.46 m 1.85 m 
WorldView-3 8 0.31 m 1.24 m 

Ikonos 4 1 m 4 m 

The network architecture in this study was implemented with the Pytorch deep 
learning framework and was trained on an NVIDIA RTX 2080Ti GPU. The training time 
for the whole program was about 8 h. We used the Adam optimisation algorithm to min-
imise the 𝑙ଵ loss function and optimise the model. We set the learning rate to 0.001, the 
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exponential decay factor to 0.9, and the weight decay to 10ି଺. The LRMS and PAN images 
were both downsampled by the Wald protocol in order to use the original LRMS images 
as the ground truth images. The image patch size was set to 64 × 64 and the batch size to 
64. To facilitate visual observation, the red, green, and blue bands of the multispectral 
images were used as imaging bands of RGB images to form colour images. The results are 
presented using ENVI. In the calculation of the image evaluation indexes, other bands of 
the images were used at the same time. The training set was used to train the network, 
and the validation set was used to evaluate the performance. The size of the training and 
test sets for the four datasets is shown in Table 2. 

Table 2. Size of training and test sets for different satellite datasets. 

Dataset Train Set Validation Set The Size of the Original PAN 
QuickBird 750 200 7472 × 6020 

WorldView-2 600 150 8080 × 7484 
WorldView-3 1000 300 13,632 × 11,244 

Ikonos 144 16 5192 × 4632 

4.2. Evaluation Indexes 
Below, we introduce some widely used indicators to quantitatively evaluate the per-

formance of the proposed and comparative methods. 
• SAM [41]: The spectral angle mapper (SAM) measures the spectral distortion of the 

pansharpened image compared with the reference image. It is defined as the angle 
between the spectral vectors of the pansharpened image and the reference image in 
the same pixel, where 1x  and 2x  refer to two spectrum vectors, as follows: 

1 2
1 2

1 2

( , ) arccos( )x xSAM x x
x x

⋅=
⋅

 (15) 

• CC [35]: The correlation coefficient (CC) is a widely used index for measuring the 
spectral quality of pansharpened images. It calculates the correlation coefficient be-
tween the generated image 𝑋 and the corresponding reference image Y, where w 
and h represent the width and height of the image, respectively, and is the average 
value of the image: 

, ,
1 1

2 2
, ,

1 1 1 1

( )( )

( ) ( )

w h

i j X i j Y
i j

w h w h

i j X i j Y
i j i j

X u Y u
CC

X u Y u

= =

= = = =

− −
=

− −



 
 (16) 

• Q4 [42]: The quality indicator (Q4) is defined as follows: where 1z and 2z are two qua-

ternions; 
1z

μ and
2z

μ formed by spectral vectors of MS images are the means of 1z
and 2z , respectively; 

1 2z zσ denotes the covariance between 1z and; and 
1

2
zσ  and 

2

2
zσ  are the variances of 1z and 2z , respectively. 

1 2 1 2

1 2 1 2

4 2 2 2 2

4
( ) ( )

z z z z

z z z z

Q
σ ⋅ μ ⋅ μ

=
σ + σ ⋅ μ + μ

 (17) 

• RASE [34]: The relative average spectral error (RASE) estimates the overall spectral 
quality of the pansharpened image, where 2( )iRMSE B is the root mean square error 
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between the i band of the pansharpened image and the third band of the reference 
image, and M is the mean of the N bands. 

2

1

100 1 ( )
N

i
i

RASE RMSE B
M N =

=   (18) 

• ERGAS [22]: The relative global dimensional synthesis error (ERGAS), also known as 
the relative overall two-dimensional comprehensive error, is generally used as the 
overall quality index, where p and m are the spatial resolution of the PAN and MS 
images, respectively; ( )iRMSE B is the root mean square error between the i bands 

of the fused image and the reference image; and ( )iMean B  is the mean of the 𝐵𝑖 
band of the MS image. 

2

1

( )100 ( )
( )

N
i

i i

P RMSE BERGAS
M Mean B=

=   (19) 

• SSIM [43]: Structural similarity (SSIM) is a measure of similarity between two images, 
where x and y are the pansharpened and reference images, respectively; *μ and 2

*σ
are the mean and variance of the corresponding images, respectively; xyσ is the co-

variance of the fused image and the reference image; and 1c and 2c are constants 
used to maintain stability. 

1 2
2 2 2 2

1 2

(2 )(2 )
( , )

( )( )
x y xy

x y x y

c c
SSIM x y

c c
μ μ + σ +

=
μ + μ + σ + σ +

 (20) 

4.3. Experiments and Analysis 
To demonstrate the superiority of the proposed model, we considered several state-

of-the-art pansharpening methods based on CNNs for comparison in our experiments, 
including PNN [19], DRPNN [20], PanNet [33], ResTFNet [35], and TPNwFB [40]. The first 
three methods were trained with the input network after stacking the PAN and MS im-
ages, and the latter two methods used the two-stream network structure. 

Moreover, we chose several representative traditional methods, including CS-based 
methods, MRA-based methods, and model-based methods, including GS [5], HPF [44], 
DWT [7], GLP [41], and PPXS [45]. Several widely used full-reference performance indi-
cators were selected to assess sharpening quality, namely: SAM [41], RASE [34], Qସ [42], 
ERGAS [22], CC [35], and SSIM [43]. 

4.3.1. Experiment with QuickBird Dataset 
The fusion results using the QuickBird dataset with four bands are shown in Figure 

5. Figure 5a shows the HRMS (with a resolution of 256 × 256 pixels), Figure 5b–f shows 
the fusion results of the traditional algorithms, and Figure 5g–l showx the fusion results 
of the deep learning methods. It can be intuitively observed that the fused images of the 
five non-deep learning methods have obvious colour differences. There is obvious spec-
tral distortion in these images, the edge details of the images are blurred, and obvious 
artefacts appear around the moving object. Among these methods, the DWT image exhib-
its the most severe spectral distortion. PPXS has the worst RASE index evaluation and the 
most severe spatial distortion, and the fusion image is fuzzy. The GLP and GS images 
show obvious edge blur in the spectral distortion region, while the HPF image shows 
slight blur and edge texture blur on the image. For the six deep neural network methods, 
there is good fidelity in the spectrum and spatial information, and there is no obvious 
difference in image texture, so it is difficult to further distinguish the difference through 
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naked-eye observation. Therefore, we used the following indicators for further compari-
son to objectively analyse the advantages and disadvantages of each fusion method. Table 
3 shows the results of analysing each method objectively according to the index values. 

As shown in Table 3, the objective evaluation index of the QuickBird experiments 
shows that the performance of the deep learning-based pansharpening methods using the 
four-band dataset is significantly better than that of traditional methods. Of the five tra-
ditional methods, the HPF method achieved the best performance. Although the HPF 
method and the GLP method only differed a little in the other indicators, the HPF method 
outperformed the GLP method in maintaining spectral information. However, the spatial 
details were better in the GLP. Since the beginning of PNN, the effects of image fusion 
based on deep learning have significantly improved, although the results obtained by 
PNN and DRPNN have obvious distortions in edge details compared with other network 
structures. 

Table 3. Evaluations using the QuickBird dataset (best result is in bold). 

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM 
DWT 13.3873 39.0162 0.6557 9.9660 0.8359 0.8190 0.6132 
GLP 7.1609 25.0432 0.8239 6.8099 0.9370 0.9175 0.8051 
GS 7.4490 27.8070 0.7868 7.5485 0.9391 0.8769 0.7705 

HPF 6.9484 25.3087 0.8153 6.8842 0.9381 0.9105 0.7948 
PPXS 7.2280 39.7749 0.5429 10.6433 0.8343 0.7297 0.4780 
PNN 5.4652 22.1989 0.8472 5.9944 0.9528 0.9334 0.8332 

DRPNN 4.4166 17.6795 0.8839 4.7854 0.9698 0.9573 0.8759 
PanNet 4.1151 14.8537 0.8988 4.0121 0.9782 0.9684 0.8914 

ResTFNet 3.1698 13.1028 0.9259 3.5548 0.9832 0.9766 0.9234 
TPNwFB 2.6576 10.6316 0.9470 2.9099 0.9895 0.9846 0.9462 

Ours 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569 

As the network widened and deepened, the more complex networks produced better 
fusion effects. For the QuickBird dataset, the network with a double-stream structure 
showed a strong ability, giving the fused image more detailed texture and spectral infor-
mation closer to the original image. Whether an index evaluated spatial or spectral infor-
mation, the performance of the neural network proposed in this study was superior to all 
comparison fusion methods, with no obvious artefacts or spectral distortion visible to the 
naked eye in the fusion results. These results prove the effectiveness of our proposed 
method. 

    
(a) (b) (c) (d) 
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(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Figure 5. Results using the QuickBird dataset with four bands (resolutions of 256 × 256 pixels): (a) reference image; (b) DWT; (c) 
GLP; (d) GS; (e) HPF; (f) PPXS; (g) PNN; (h) DRPNN; (i) PanNet; (j) ResTFNet; (k) TPNwFB; (l) ours. 

4.3.2. Experiment with WorldView-2 Dataset 
The fusion results using the WorldView-2 dataset with eight bands are shown in Fig-

ure 6. Figure 6a shows the HRMS (with a resolution of 256 × 256 pixels), Figure 6b–f shows 
the fusion results of the traditional algorithms, and Figure 6g–l shows the fusion results 
of the deep learning methods. It can be intuitively observed from the figure that the fused 
images of the five non-deep learning methods have obvious colour differences, and the 
results of the traditional methods are affected by some spatial blur. With this dataset, the 
GLP and HPF algorithms recovered spatial details and spectral information to some ex-
tent, and the overall fusion images obtained were comparable to the deep learning results. 
As shown in Table 4, the GLP and HPF algorithms obtained better results, as measured 
by the RASE and CC indicators. 

Although the quantitative indicators more clearly indicate the performance differ-
ences of different methods, we also focused on visual inspection to find distortion in the 
fusion results. In the lower half of the image, the fusion results obtained by the traditional 
methods have obvious artefacts and blur. The deep learning-based approaches performed 
better in some ways, especially in the SAM index, where there were impressive perfor-
mance improvements. It is worth noting that the network with a feedback connection 
mechanism obtained significantly better results than the other methods in this analysis, 
which resulted in the best quantitative evaluation results, which means that the fused im-
ages were more similar to the ground truth. In each objective evaluation index, our pro-
posed method showed excellent quality in spatial details and spectral fidelity. 

Table 4. Evaluations using the WorldView-2 dataset (best result is in bold). 

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM 
DWT 8.2285 27.0587 0.6555 6.7675 0.8618 0.7906 0.6101 
GLP 5.1016 18.6561 0.8215 4.5684 0.9413 0.9030 0.7947 
GS 5.2705 20.4123 0.7956 4.9990 0.9468 0.8730 0.7714 

HPF 5.0426 19.0910 0.8041 4.6748 0.9403 0.8946 0.7744 
PPXS 5.3303 29.4923 0.5077 7.3115 0.8470 0.7221 0.4323 
PNN 4.8141 19.2690 0.8138 4.7262 0.9380 0.8986 0.7866 
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DRPNN 4.7541 19.3807 0.8120 4.7610 0.9372 0.8971 0.7855 
PanNet 4.6892 20.1068 0.8143 4.9474 0.9344 0.9012 0.7853 

ResTFNet 4.4584 19.2466 0.8291 4.7270 0.9389 0.9083 0.8010 
TPNwFB 4.0041 17.0178 0.8540 4.1836 0.9517 0.9255 0.8280 

Ours 3.7239 16.1352 0.8705 3.9623 0.9572 0.9342 0.8468 
 

    
(a) (b) (c) (d) 

(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Figure 6. Results using the WorldView-2 dataset with eight bands (resolutions of 256 × 256 pixels): (a) reference image; (b) 
DWT; (c) GLP; (d) GS; (e) HPF; (f) PPXS; (g) PNN; (h) DRPNN; (i) PanNet; (j) ResTFNet; (k) TPNwFB; (l) ours. 
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4.3.3. Experiment with WorldView-3 Dataset 
The fusion results using the WorldView-3 dataset with eight bands are shown in Fig-

ure 7. Figure 7a shows the HRMS (with a resolution of 256 × 256 pixels), Figure 7b–f shows 
the fusion results of the traditional algorithms, and Figure 7g–l shows the fusion results 
of the deep learning methods. Figure 7 shows that the five non-deep learning methods 
had relatively obvious spectral deviations, especially in the roofs of dense buildings, ac-
companied by blurred details visible to the naked eye. The GLP, GS, and HPF methods 
performed well in the overall spatial structure, but their images were distorted and 
blurred in spectrum and detail, and some areas of spectral distortion led to local detail 
loss, as well as fuzzy artefacts in the edges of vehicles and buildings. For the fusion meth-
ods based on deep learning, it is difficult to distinguish the image texture information 
with the naked eye. There is no obvious difference in the local region spectrum. The quan-
titative indicators more clearly indicate the performance differences of different methods, 
so to further distinguish the image quality, and we used the following indicators to ana-
lyse the advantages and disadvantages of each fusion method objectively. Table 5 shows 
the results of analysing each method objectively according to the index values. 

(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Figure 7. Results using the WorldView-3 dataset with eight bands (resolutions of 256 × 256 pixels): (a) reference image; (b) DWT; (c) 
GLP; (d) GS; (e) HPF; (f) PPXS; (g) PNN; (h) DRPNN; (i) PanNet; (j) ResTFNet; (k) TPNwFB; (l) ours. 

The objective evaluation index using the WorldView-3 dataset shows that the 
pansharpening methods using deep learning are clearly superior to the non-deep learning 
fusion methods. The GLP algorithm achieved the best results out of the traditional algo-
rithms in the indexes, other than SAM, but there was still a big gap compared with the 
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deep learning-based methods. HPF and GS achieved good results in preserving spatial 
information, and the spectral information obtained in the fusion results was better than 
that obtained by other non-deep learning methods. However, the evaluation index related 
to the spatial details showed obvious disadvantages compared with the GLP method, 
which means that the fused images appear to have more detail blur and artefacts in some 
parts. The effectiveness of the network structure directly affected the fusion effects in the 
deep learning-based pansharpening methods. The PanNet network fully retained spectral 
and spatial information on this dataset, resulting in good fusion results. Based on all of 
the evaluation indexes, the performance of the proposed method was obviously superior 
to that of the existing fusion methods, which proves the effectiveness of the proposed 
method. 

Table 5. Evaluations using the WorldView-3 dataset (best result is in bold). 

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM 
DWT 9.1148 29.7271 0.6512 7.4942 0.8865 0.7862 0.6165 
GLP 3.6949 15.1595 0.8340 3.7954 0.9748 0.9354 0.8182 
GS 3.7643 17.5827 0.8182 4.4745 0.9709 0.9125 0.8087 

HPF 3.5543 16.0405 0.8236 4.0530 0.9697 0.9351 0.8016 
PPXS 3.5398 25.7945 0.6753 6.7897 0.9206 0.8584 0.6379 
PNN 3.1461 12.4780 0.8769 3.1131 0.9815 0.9540 0.8779 

DRPNN 2.9596 12.0899 0.8844 3.0088 0.9830 0.9579 0.8848 
PanNet 2.5685 11.7391 0.8898 2.9607 0.9840 0.9618 0.8898 

ResTFNet 2.6448 12.2164 0.8969 3.0638 0.9828 0.9617 0.8975 
TPNwFB 2.6331 11.9128 0.8906 2.9720 0.9834 0.9617 0.8888 

Ours 2.3971 11.2365 0.9048 2.8235 0.9853 0.9660 0.9061 

4.3.4. Experiment with Ikonos Dataset 
The fusion results of the Ikonos dataset with four bands are shown in Figure 8. Figure 

8a shows the HRMS (with a resolution of 256 × 256 pixels), Figure 8b–f shows the fusion 
results of the traditional algorithms, and Figure 8g–l shows the fusion results of the deep 
learning methods. All of the traditional methods produced images with obvious spectral 
distortion and blurred or lost edge details. It can be clearly observed from the figure that 
the images obtained using the PNN and DRPNN methods had obvious spectral distor-
tion. At the same time, because the spatial structure is too smooth, much of the edge in-
formation was lost and many artefacts were produced. 

The index values shown in Table 6 objectively show a comparison of the various 
methods, and the overall effect of deep learning is clearly better than that of the traditional 
methods. These data show that the networks with encoder–decoder structures achieved a 
better performance than the other structures. ResTFNet [40] obtained significantly supe-
rior results using this dataset. The image from our proposed method is closest to the orig-
inal image, and the evaluation index clearly shows the effectiveness of the proposed 
method. 

Table 6. Evaluations using the Ikonos dataset (best result is in bold). 

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM 
DWT 10.5533 27.6226 0.3325 6.6046 0.8132 0.3591 0.3485 
GLP 4.1592 18.6534 0.5146 4.0825 0.9214 0.6853 0.5322 
GS 4.4746 19.3090 0.4943 4.2446 0.9140 0.6560 0.5299 

HPF 4.0864 18.6456 0.5015 4.0770 0.9208 0.6803 0.5210 
PPXS 4.1144 18.5605 0.4182 4.0434 0.9233 0.6615 0.4756 
PNN 3.2697 10.5819 0.7377 2.5439 0.9749 0.8434 0.7786 

DRPNN 3.4152 10.7096 0.7233 2.5020 0.9755 0.8422 0.7711 
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PanNet 2.1556 6.4254 0.8191 1.5415 0.9909 0.9148 0.8525 
ResTFNet 0.7217 1.7198 0.9497 0.5064 0.9994 0.9816 0.9712 
TPNwFB 1.3316 3.7853 0.9022 1.0422 0.9969 0.9563 0.9276 

Ours 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748 
 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Figure 8. Results using the Ikonos dataset with four bands (resolutions of 256 × 256 pixels): (a) reference image; (b) DWT; (c) GLP; 
(d) GS; (e) HPF; (f) PPXS; (g) PNN; (h) DRPNN; (i) PanNet; (j) ResTFNet; (k) TPNwFB; (l) ours. 

4.3.5. Full-Resolution Experiment 
The fusion results of the Ikonos dataset with four bands are shown in Figure 9. Figure 

9a shows the LRMS (with a resolution of 256 × 256 pixels), Figure 9b–f shows the fusion 
results of the traditional algorithms, and Figure 9g–l shows the fusion results of the deep 
learning methods. For the full-resolution experiment, we used the model trained by the 
reduced-resolution experiment and the real data as the input to generate fused images. In 
this experiment, we directly input MS and PAN images into models without any resolu-
tion reduction, which guarantees the ideal full-resolution experimental results, and fol-
lows a similar approach as the other models. 

In contrast with the reduced-resolution experiment, we used LRMS as the target for 
comparison with the fused image, so the greater the texture, the better the fusion effect. 
By observing the fusion images, DWT, and GS, all were found to have obvious spectral 
distortion, and the edge information of GS appeared fuzzy. Although the overall spatial 
structure information was well preserved in the GLP and HPF methods, local information 
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was lost. The merged image in the PPXS method was too smooth, resulting in severe loss 
of edge details. 

ResTFNet, TPNwFB, and our proposed method had the best overall performance. 
The objective data analysis demonstrated that PPXS is very competitive in Dλ, but be-
comes slightly worse in QNP and Ds. Notably, the methods based on deep learning ex-
hibited a performance gap from the non-deep learning methods. Table 7 shows that the 
network proposed in this paper achieved a better effect in the full-resolution experiment, 
which fully demonstrated that the innovation proposed in this paper plays a positive role 
in pansharpening. As shown in Table 8, for different deep learning methods, we had the 
longest processing time in the test mode. The data clearly show that the more complex the 
model, the more time it takes to generate a single fusion image, but a more complex struc-
ture can achieve higher performance results. Our method is mainly to optimize the struc-
ture from the perspective of improving the effect of the fusion result. The issue of opti-
mizing the network runtime was not considered. 

Table 7. Evaluations using the QuickBird real dataset (best result is in bold). 

Method QNP Dλ Ds 
DWT 0.5691 0.2569 0.2342 
GLP 0.8978 0.0436 0.0613 
GS 0.9218 0.0222 0.0573 

HPF 0.8647 0.0309 0.1077 
PPXS 0.7407 0.0045 0.2559 
PNN 0.7763 0.1274 0.1103 

DRPNN 0.8601 0.0293 0.0889 
PanNet 0.9074 0.0361 0.0586 

ResTFNet 0.9198 0.0265 0.0551 
TPNwFB 0.9215 0.0260 0.0539 

Ours 0.9253 0.0260 0.0500 

Table 8. Different deep learning methods for processing time. 

Method TIME 
PNN 1.8064 

DRPNN 1.8562 
PanNet 2.0114 

ResTFNet 2.2514 
TPNwFB 2.6903 

Ours 2.7232 
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Figure 9. Results using the QuickBird real dataset with four bands (resolutions of 256 × 256 pixels): (a) reference image; (b) DWT; 
(c) GLP; (d) GS; (e) HPF; (f) PPXS; (g) PNN; (h) DRPNN; (i) PanNet; (j) ResTFNet; (k) TPNwFB; (l) ours. 

5. Discussion 
5.1. Discussion of MFEBwAM 

In this subsection, we examine the influence of each part of the model through abla-
tion learning in order to obtain the best performance of the model. We propose a multi-
scale block with an attention mechanism to fully grasp and use the multi-scale features in 
the model. 

To verify the effectiveness of the proposed module and the effect of different receiv-
ing field parameters on the fusion results, several convolutional blocks with different re-
ceiving field sizes were cascaded to form a multi-scale feature extraction module. We com-
pared the multi-scale blocks of different scales with test their effect. We selected the best 
multi-scale blocks using convolutional kernel combinations with different receptive field 
sizes, where the convolutional kernel sizes were K = {1,3,5,7,9}. These convolutional ker-
nels of different sizes were combined in various ways to determine the multi-scale blocks 
with the highest performance experimentally. The experimental results are shown in Ta-
ble 9. 

Many studies on the CNN framework indicate that the depth and width of the net-
work significantly impact the quality of the results. A deeper and wider network structure 
helps the network learn richer feature information and captures the mapping between the 
semantic information and context information in the features. As shown in the table, the 
objective evaluation index clearly indicates that our proposed method is superior to the 
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other composite multi-scale blocks. We used four branches with receptive field sizes of 3, 
5, 7, and 9, separately, although if we increased the parameters and the amount of calcu-
lations, we would obtain clearly better results. 

To verify the effectiveness of multi-scale modules with attention mechanisms in our 
overall model, we compared them using four datasets. We experimented with networks 
without multi-scale modules and dual branch networks with multi-scale modules and 
compared the fusion results. The experimental results are shown in Table 10. 

Table 9. Quantitative evaluation results of multi-scale feature extraction modules with different 
combinations are shown in bold. 

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM 
K = 1,3,3,5 2.2015 9.7735 0.9571 2.6459 0.9907 0.9869 0.9542 
K = 1,3,5,5 2.3236 10.7120 0.9519 2.9033 0.9889 0.9843 0.9487 
K = 1,3,5,7 2.2028 10.0900 0.9557 2.7201 0.9901 0.9858 0.9524 
K = 3,3,5,7 2.1144 9.5339 0.9605 2.5787 0.9913 0.9874 0.9567 
K = 3,5,5,7 2.2613 10.4199 0.9538 2.8112 0.9894 0.9849 0.9506 
K = 3,5,7,7 2.3164 10.3704 0.9530 2.7964 0.9895 0.9853 0.9501 
K = 3,5,7,9 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569 

Table 10. Quantitative evaluation results of different structures using different datasets. The best 
performance is shown in bold. In A, a contrasting network of multi-scale modules without attention 
mechanisms is used. In B, our network is used. 

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM 
QuickBird (A) 2.2933 10.1812 0.9553 2.7446 0.9899 0.9855 0.9525 
QuickBird (B) 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569 

WorldView-2 (A) 3.8541 16.1349 0.8678 3.9645 0.9574 0.9332 0.8435 
WorldView-2 (B) 3.7239 16.1352 0.8705 3.9623 0.9572 0.9342 0.8468 
WorldView-3 (A) 2.4843 11.9051 0.8945 2.9258 0.9662 0.9466 0.8848 
WorldView-3 (B) 2.3971 11.2365 0.9048 2.8235 0.9853 0.9660 0.9061 

Ikonos (A) 0.8433 2.1165 0.9517 0.5979 0.9990 0.9810 0.9710 
Ikonos (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748 

The objective evaluation index is shown in the table. Increasing the width and depth 
of the network made the network extract richer feature information and identify addi-
tional mapping relationships that met the expectations. Deleting multi-scale modules led 
to a lack of multi-scale feature learning ability and detail learning, which cannot enhance 
the use of more effective features in the current task, thereby decreasing the image recon-
struction ability. Therefore, according to the experimental results, we choose to use a 
multi-scale module with an attention mechanism to extract the PAN and MS image fea-
tures separately, thus improving the function of our network. 

5.2. Discussion of Feedback Connections 
To make full use of the deep features with powerful representation, we used multiple 

subnets to obtain useful information from the deep features in the middle of the subnet-
work through feedback, and we refined the weak shallow features. From the application 
of the feedback connections in other image processing fields, we know that the number of 
iterations of the subnetwork significantly impacts the final results. We evaluated the net-
work with different numbers of iterations using the QuickBird dataset. The experimental 
results are shown in Table 11. 

According to the experimental results, an insufficient number of iterations made the 
feedback connection less effective, so that the deep features could not fully refine the shal-
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low features, whereas too many iterations led to convergence difficulties or feature explo-
sions. This increases the computation and affects the convergence of the network. Hence, 
we chose to do the pansharpening task using a network that iterated the subnet three 
times and added feedback to the continuous network. 

To demonstrate the effectiveness of the feedback connectivity mechanism using dif-
ferent datasets, we trained a network with the same four subnet structures and attached 
the loss function to each subnet, but we disconnected the feedback connection between 
each subnetwork to make the network unable to use valuable information to perfect the 
low-level function. A comparison of the resulting indexes is shown in Table 12. We can 
see that the feedback connection significantly improves the network performance and 
gives the network a solid early reconstruction ability. 

Table 11. Results of the network quantitative evaluation with different iterations. The best perfor-
mance is shown in bold. 

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM 
1 2.4321 11.0341 0.9511 2.9753 0.9881 0.9833 0.9465 
2 2.1202 10.0387 0.9576 2.7089 0.9902 0.9861 0.9529 
3 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569 
4 1.9929 9.6510 0.9607 2.6114 0.9910 0.9872 0.9563 

Table 12. Quantitative evaluation results of various structures using different datasets. The best 
performance is shown in bold. In A, a contrasting network of multi-scale modules without attention 
mechanisms is used. In B, our network is used. 

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM 
QuickBird (A) 2.2933 10.1812 0.9553 2.7446 0.9899 0.9855 0.9525 
QuickBird (B) 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569 

WorldView-2 (A) 3.8541 16.1349 0.8678 3.9645 0.9574 0.9332 0.8435 
WorldView-2 (B) 3.7239 16.1352 0.8705 3.9623 0.9572 0.9342 0.8468 
WorldView-3 (A) 2.4843 11.9051 0.8945 2.9258 0.9662 0.9466 0.8848 
WorldView-3 (B) 2.3971 11.2365 0.9048 2.8235 0.9853 0.9660 0.9061 

Ikonos (A) 0.8433 2.1165 0.9517 0.5979 0.9990 0.9810 0.9710 
Ikonos (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748 

5.3. Discussion of MFRB 
In contrast with other two-stream networks for pansharpening, which used encoder-

decoder structures to decode only the results after the last level encoding, and we decoded 
the results after each level encoding. Moreover, we added dense connections among the 
multilevel features obtained in order to enhance the ability of the network to make full 
use of all of the features and to reduce the loss of information during upsampling and 
downsampling. To show that this further improves the network performance, we trained 
a network that only begins decoding operations from the features after the last level of 
encoding, and we compared the results with those of our proposed network using four 
datasets. The experimental results are shown in Table 13. 

The objective evaluation index clearly indicates that the multilevel coding features 
were decoded separately, and the dense connections effectively used the information of 
various scales to reduce the differences in the semantic feature level in the encoder and 
decoder, reduce the difficulty of training the network, and further improve the network 
image reconstruction ability. 
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Table 13. Quantitative evaluation results of different structures using different datasets. The best 
performance is shown in bold. In A, a contrasting network without MFRB is used. In B, our network 
is used. 

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM 
QuickBird (A) 2.2933 10.1812 0.9553 2.7446 0.9899 0.9855 0.9525 
QuickBird (B) 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569 

WorldView-2 (A) 3.8541 16.1349 0.8678 3.9645 0.9574 0.9332 0.8435 
WorldView-2 (B) 3.7239 16.1352 0.8705 3.9623 0.9572 0.9342 0.8468 
WorldView-3 (A) 2.4843 11.9051 0.8945 2.9258 0.9662 0.9466 0.8848 
WorldView-3 (B) 2.3971 11.2365 0.9048 2.8235 0.9853 0.9660 0.9061 

Ikonos (A) 0.8433 2.1165 0.9517 0.5979 0.9990 0.9810 0.9710 
Ikonos (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748 

6. Conclusions 
In this study, we proposed a deep learning-based approach to solve the pansharpen-

ing problem by combining convolutional neural network technology with domain-spe-
cific knowledge. We proposed a multilevel dense connection network with feedback con-
nections (MDCwFB). This method draws on the U-Net++ [38] network architecture, in-
creasing a small number of parameters, significantly improving the network depth and 
width, and enhancing the network reconstruction ability and pansharpening image qual-
ity. We considered the two objectives of spectral information preservation and spatial in-
formation preservation. We chose to use a two-stream structure to process the PAN and 
LRMS images, respectively, in order to make full use of the two images. Special multi-
scale feature extraction blocks were used to extract powerful multi-scale features and to 
enhance the more important features using attention mechanisms. Feedback mechanisms 
maintain powerful deep functions to refine low-level functions and help shallow net-
works obtain useful information from rough reconstructed HRMS. Many experiments 
proved that our proposed pansharpening method is fully effective. The proposed method 
uses a structure to enhance the multi-scale feature extraction, and it decodes and recon-
structs different levels of coding features, making it more sensitive to multi-scale features. 
It has a remarkable effect on remote sensing image fusion with complex image infor-
mation. Our method achieves better results for images with rich spectral and spatial in-
formation, such as images with large vegetation, large buildings, and various features of 
different objects. 
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