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Abstract: In recent years, deep learning has been successfully applied to hyperspectral image clas-
sification (HSI) problems, with several convolutional neural network (CNN) based models achiev-
ing an appealing classification performance. However, due to the multi-band nature and the data 
redundancy of the hyperspectral data, the CNN model underperforms in such a continuous data 
domain. Thus, in this article, we propose an end-to-end transformer model entitled SAT Net that is 
appropriate for HSI classification and relies on the self-attention mechanism. The proposed model 
uses the spectral attention mechanism and the self-attention mechanism to extract the spectral–spa-
tial features of the HSI image, respectively. Initially, the original HSI data are remapped into multi-
ple vectors containing a series of planar 2D patches after passing through the spectral attention 
module. On each vector, we perform linear transformation compression to obtain the sequence vec-
tor length. During this process, we add the position–coding vector and the learnable–embedding 
vector to manage capturing the continuous spectrum relationship in the HSI at a long distance. 
Then, we employ several multiple multi-head self-attention modules to extract the image features 
and complete the proposed network with a residual network structure to solve the gradient disper-
sion and over-fitting problems. Finally, we employ a multilayer perceptron for the HSI classifica-
tion. We evaluate SAT Net on three publicly available hyperspectral datasets and challenge our 
classification performance against five current classification methods employing several metrics, 
i.e., overall and average classification accuracy and Kappa coefficient. Our trials demonstrate that 
SAT Net attains a competitive classification highlighting that a Self-Attention Transformer network 
and is appealing for HSI classification. 

Keywords: deep learning; hyperspectral image (HSI) classification; long-distance dependence; self-
attention; transformer 
 

1. Introduction 
Hyperspectral image (HSI) conceives high-dimensional data containing massive in-

formation in both the spatial and spectral dimensions. Given that ground objects have 
diverse characteristics in different dimensions, hyperspectral images are appealing for 
ground object analysis, ranging from agricultural production, geology, and mineral ex-
ploration to urban planning and ecological science [1–10]. Early attempts exploiting HSI 
mostly employed support vector machines (SVM) [11–13], K-means clustering (KNN) 
[14], and polynomial logistic regression (MLR) [15] schemes. Traditional feature extrac-
tion mostly relies on feature extractors designed by human experts [16,17] exploiting the 
domain knowledge and engineering experience. However, these feature extractors are not 
appealing in the HSI classification domain as they ignore the spatial correlation and local 
consistency and neglect exploiting the spatial feature information of HSI. Additionally, 
the redundancy of HSI data makes the classification problem a challenging research prob-
lem. 
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In recent years, deep learning (DL) has been widely used in the field of remote sens-
ing [18]. Given that deep learning can extract more abstract image features, the literature 
suggests several DL-based HSI classification methods. Typical examples include Stacked 
Autoencoder (SAE) [19–21], Deep Belief Network (DBN) [22], Recurrent Neural Network 
(RNN) [23,24], and Convolutional Neural Network (CNN) [25–27]. For example, Dend et 
al. [19] use a layered and stacked sparse autoencoder to extract HSI features, while Wan 
et al. [20] propose a joint bilateral filter and a stacked sparse autoencoder, which can ef-
fectively train the network using only a limited number of labeled samples. Zhou et al. 
[21] employ a semi-supervised stacked autoencoder with co-training. When the training 
set expands, confidential predictions of unlabeled samples are generated to improve the 
generalization ability of the model. Chen et al. [22] suggest a deep architecture combined 
with the finite element of the spectral space using an improved DBN to process three-
dimensional HSI data. These methods [19–24] achieved the best results in the three da-
tasets of IN, UP, and SA, as follows: 98.39% [21], 99.54% [19], and 98.53% [21], respectively. 
Zhou et al. [23] extend the long-term short-term memory (LSTM) network to exploit the 
spectral space and suggest an HSI classification scheme that treats HSI pixels as a data 
sequence to model the correlation of information in the spectrum. Hang et al. [24] use a 
cascaded RNN model with control loop units to explore the HSI redundant and comple-
mentary information, i.e., reduce redundant information and learn complementary infor-
mation, and fuse different properly weighted feature layers. Zhong et al. [25] designed an 
end-to-end spectral–spatial residual network (SSRN), which uses a continuous spectrum 
and spatially staggered blocks to reduce accuracy loss and achieve better classification 
performance in the case of uneven training samples. In [26], the authors propose a deep 
feature fusion network (DFFN), which introduces residual learning to optimize multiple 
convolutional layers as identity mapping that can extract deeper feature information. Ad-
ditionally, the work of [27] suggests a five-layered CNN framework that integrates the 
spatial context and the spectral information of HSI and integrates into the framework both 
spectral features and spatial context. Although current literature manages an overall ap-
pealing classification performance, the classification accuracy, network parameters, and 
model training should still be improved. 

Deep neural network models increase the accuracy of classification problems; how-
ever, as the depth of the network increases, they also cause network degradation and in-
crease the difficulty of training. Prompted by He et al. [28], the residual network (ResNet) 
is introduced into the HSI classification [29–31] problem. Additionally, Paoletti et al. [30] 
design a novel CNN framework based on the feature residual pyramid structure, while 
Lee et al. [31] propose a residual CNN network that utilizes the context depth of the adja-
cent pixel vectors using residuals. These network models with residual structure afford a 
deep network that learns easier, enhances gradient propagation, and effectively solves 
deep learning-related problems such as gradient dispersion. 

Due to the three-dimensional nature of HSI data, current methods have a certain de-
gree of spatial or spectral information loss. To this end, 3D-CNNs are widely used for HSI 
classification [32–35], with Chen et al. [32] proposing a 3D-CNN finite element model 
combined with regularization that uses regularization and virtual sample enhancement 
methods to solve the problem of over-fitting and improve the model’s classification per-
formance. Seydgar et al. [33] suggest an integrated model that combines a CNN with a 
convolutional LSTM (CLSTM) module that treats adjacent pixels as a sequence of recur-
sive processes, and makes full use of vector-based and sequence-based learning methods 
to generate deep semantic spectral–spatial characteristics, while Rao et al. [34] develop a 
3D adaptive spatial, spectral pyramid layer CNN model (ASSP-SCNN), where the ASSP-
SCNN can fully mine spatial and spectral information, while additionally, training the 
network with variable sized samples increases scale invariance and reduces overfitting. 
In [35] the authors suggest a deep CNN (DCNN) scheme that during network training 
combines an improved cost function and a Support vector machine (SVM) and adds cate-
gory separation information to the cross-entropy cost function promoting the between-
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classes compactness and separability during the process of feature learning. These meth-
ods [32–35] achieved the best results in the three datasets of IN, UP, and SA, respectively, 
of 99.19%, 99.87%, and 98.88% [33]. However, despite the appealing accuracy of CNN-
based solutions, these impose a high computational burden and increase the network pa-
rameters. The models proposed in [33] and [35] converge at 50 and 100 epochs, respec-
tively. To solve this problem, quite a few algorithms extract the spatial and spectral fea-
tures separately and introduce the attention mechanism for HSI classification [36–41]. For 
example, Zhu et al. [36] propose an end-to-end residual spectral–spatial attention network 
(RSSAN), which can adaptively realize the selection of spatial information and spectrum 
information. Through the function of weighted learning, this module enhances the infor-
mation features that are useful for classification, and Haut et al. [37] introduce the atten-
tion mechanism into the residual network (ResNet), suggesting a new vision attention-
driven technology that considers bottom-up and top-down visual factors to improve the 
feature extraction ability of the network. Wu et al. [38] develop a 3D-CNN-based residual 
group channel and space attention network (RGCSA) appropriate for HSI classification 
combining bottom-up and top-down attention structures with residual connections, mak-
ing full use of context information to optimize the features in the spatial dimension and 
focus on the area with the most information. This method achieved 99.87% and 100% over-
all classification accuracy on the IN and UP datasets, respectively. Li et al. [39] design a 
space spectrum attention network (JSSAN) to simultaneously capture the remote interde-
pendence of spatial and spectral data through similarity assessment, and adaptively em-
phasize the characteristics of informational land cover and spectral bands, and Mou et al. 
[40] improve the network by involving a network unit for the spectral attention module 
using the global spectrum space context and the learnable spectrum attention module to 
generate a series of spectrum gates reflecting the importance of the spectrum band. Qing 
et al. [41] propose a multi-scale residual network model with an attention mechanism 
(MSRN). The model uses an improved residual network and spatial–spectral attention 
module to extract hyperspectral image information from different scales multiple times, 
fully integrates and extracts the spatial spectral features of the image. A good classification 
effect has been achieved on the HSI classification problem. These methods [36–41] 
achieved the best result in the SA dataset of 99.85% [37]. 

Although CNN models manage good results on the HSI classification problem, these 
models still have several problems. The first one being that the HSI classification task is at 
the pixel level, and thus due to the irregular shape of the ground objects, the typical con-
volution kernel is unable to capture all the features [42]. Another deficiency of CNNs is 
the small-size convolution kernel limiting the CNN’s receptive field to match the hyper-
spectral features over their entire bandwidth. Thus, in-depth utilization of CNN is limited, 
and the requirements for convolution kernels of different classification tasks vary greatly. 
Due to the large HSI spectral dimensionality, it is not trivial to use long-range sequential 
dependence between distant positions of the spectral band information because it is diffi-
cult to use for CNN-based HSI classification specific context-based convolutional kernels 
to capture all the spectral features. 

Spurred by the above problems, this paper proposes a self-attention-based trans-
former (SAT) model for HSI classification. Indeed, a transformer model was initially used 
for natural language processing (NLP) [43–47], achieving great success and attracting sig-
nificant attention. To date, transformer models have been successfully applied to com-
puter vision fields such as image recognition [48], target detection [49], image super-res-
olution [50], and video understanding [51]. Hence, in this work, the proposed SAT Net 
model first processes the original HSI data into multiple flat 2D patch sequences through 
the spectral attention module and then uses their linear embedding sequence as the input 
of the transformer model. The image feature information is extracted via a multi-head self-
attention scheme that incorporates a residual structure. Due to its core components, our 
model effectively solves the gradient explosion problem. Verification of the proposed SAT 
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Net on three HSI public data sets against current methods reveals its appealing classifica-
tion performance. 

The main contributions of this work are as follows: 
1. Our network employs a spectral attention module and uses both the spectral atten-

tion module and the self-attention module to extract feature information avoiding 
feature information loss. 

2. The core process of our network involves an encoder block with multi-head self-at-
tention, which successfully handles the long-distance dependence of the spectral 
band information of the hyperspectral image data. 

3. In our SAT Net model, multiple encoder blocks are directly connected using a multi-
level residual structure and effectively avoid information loss caused by stacking 
multiple sub-modules. 

4. Our proposed SAT Net is interpretable, enhancing its HSI feature extraction capabil-
ity and increasing its generalization ability. 

5. Experimental evaluation on HSI classification against five current methods high-
lights the effectiveness of the proposed SAT Net model. 
The remainder of this article is organized as follows. Section 2 introduces in detail 

the multi-head self-attention, the encoder block, the spectral attention, and the overall ar-
chitecture of the proposed SAT Net. Section 3 analyzes the interplay of each hyper-param-
eter of SAT Net against five current methods. Finally, Section 4 summarizes this work. 

2. Methodology 
In this section, we first introduce the Spectral attention module, then we derive a 

detailed formula for the multi-head self-attention module and the encoder module. Fi-
nally, we give the detailed HSI classification process of the proposed model. 

2.1. Spectral Attention Block 
The attention mechanism [52] imitates the internal process of a biological observation 

behavior. It is a mechanism that aligns internal experience and external sensation to in-
crease the observation precision and can quickly extract important features of coefficient 
data. The attention mechanism is currently an important concept in neural networks 
widely used in several computer vision tasks [53]. In this paper, we introduce the spectral 
attention module to enhance the feature extraction ability of the proposed deep learning 
network. Given a feature map 𝑦𝜖𝑅 × ×  as input, we define a 1-D spectral attention map 𝑀 𝜖𝑅 × × .The purpose of using spectral attention is to extract information features use-
ful for HSI classification by changing the weight of spectral information, which can be 
defined as presented in Equation (1). 

 y = 1𝐻 × 𝑊 𝑦 (𝑚, 𝑛)y = max(𝑦 )𝑀 (𝑦 ) = 𝑓 𝑊1 𝑊0 𝑦 + 𝑊1 𝑊0(y ) y = 𝑀 (𝑦 )𝑦 ⎭⎪⎪⎬
⎪⎪⎫

 (1) 

where 𝑦 𝜖𝑅 × × , 𝑦 (𝑚, 𝑛) is 𝑦  at position (m, n),  represents the multiplication ele-
ment, y  the output of spectral attention, and max(.)the maximum area.  y  和y  
represent the global average and maximum pooling, respectively. The first FC layer is 
used as a dimensionality reduction layer parameterized by W0, while the second FC layer 
is a dimensionality increasing layer parameterized by W1. 𝑓  refers to the ReLU acti-
vation function, and 𝑊0𝜖𝑅 × , 𝑊1𝜖𝑅 × , 𝑀 𝜖𝑅 × × , W0, and W1 are shared 
weights. Finally, we multiply 𝑀 (𝑦 ) with the input 𝑦  to obtain y . 

The spectral attention module is presented in Figure 1, where we use global average 
and global maximum pooling to extract the spectral information of the image. The two 
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different pooling schemes extract more abstract spectral features, which are then followed 
by two FC layers and activation functions to establish two-pooling channel information. 
Then, we perform a correlation process to combine the weights of the two spectral feature 
channels. Finally, the newly assigned feature weight is multiplied by the input feature 
map to correct the weights of the input feature map and afford to extract higher-level 
feature information. 

MaxPool

AvgPoolInput feature 
map

Shared MLP

Spectral attention

Output feature 
map

 
Figure 1. Spectral attention mechanism. The module uses operations such as maximum pooling, 
average pooling, and shared weights to re-output feature maps with different weights. 

2.2. Multi-Head Self-Attention 
A CNN scheme is strictly limited by its kernel size and number of layers, thus weak-

ening its advantage in capturing the long-range dependence of input data [52] and ulti-
mately it is imposed to ignore some sequence information of the HSI input data. The self-
attention mechanism improves the attention mechanism, which reduces the dependence 
on external information and can better capture the internal data correlation or its charac-
teristic information. In this work, we utilize a self-attention variant to extract image fea-
tures, namely the multi-head self-attention module. 

Therefore, we initially remap X  to q ,k , v  by utilizing the three initialization 
transformation matrices W , W , and W : q  = W X  (2) k  = W X  (3) v  = W X  (4) 

where X  is that the original HSI data is processed first, and then the block is noticed 
through the spectrum. The resulting flat 2D block with the same size W , W , and W  
are three different weight matrices, which linearly change the input original vector and 
perform on each input three different linear transformations to obtain the intermediate 
vectors q , k , and v , and ultimately increase the diversity of the model feature sam-
pling. 

Then, we calculate the weight vector a  according to the 𝑞  and k  parameters 
obtained from Equations (2) and (3), respectively, which is expressed as: 

a = exp 𝑞 ∙ k √𝑑 ∑ exp (𝑞 ∙ k √𝑑) (5) 

where i, j, m(1, N + 1), with N the number of flattened 2D blocks (Section 2.3 presents a 
detailed calculation of N). After that, we apply the dot product operation on the 𝑞  and k , and divide by √𝑑, where d is the dimensions of 𝑞 and k, respectively, to normalize 
the data. Finally, the weight vector a is output through a softmax function. The a vector 
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depends on the 𝑞 vector and all k vectors, and thus ultimately, Equation (5) produces 
in total N + 1 vectors with a length of N + 1 per vector. 

Next, we combine Equations (4) and (5) to obtain the 𝑣, and a vector and perform a 
weighted average operation to calculate vector c :  𝑐 = a v  (6) 

The output vector of Equation (6) is the weighted average of all 𝑣 vectors, with the 
weights provided by the a vector. 

Our deep learning pipeline combines a multi-head self-attention block under multi-
ple self-attention concatenation schemes with the detailed process presented in Figure 2. 
The multi-head self-attention input is the vector produced by Equation (6), employing 
different W , W , and W  parameters during the matrix operations in Equations (2)–(4) 
to obtain different 𝐶 vectors. Ultimately, all 𝐶 outputs are stacked, forming the multi-
head self-attention output. Finally, the latter output passes through a fully connected layer 
to create N + 1 u-vectors, where each u  vector has a one-to-one correspondence with X . 

X1 X2 X3 XN+1

q1 k1 v1 q2 k2 v2 q3 k3 v3 qN+1 kN+1 vN+1

a11

c1 c2 c3 cN+1

Output of 
self-attention layer:

…………

…………

…………

Dense …………Dense Dense Dense

U1 U2 U3 UN+1…………

a22 a33 aN+1N+1

Processed flattened 2D blocks (with position coding)

Weight vector a 

Intermediate vector 
obtained after linear 

transformation

Equation(5)

Equation(6)

Equation(2,3,4)

 

Figure 2. Multi-Head Self-Attention structure: After mapping, linear change, matrix operation, and other operations, the 
output sequence obtained has the same length as the input sequence, and each output vector depends on all input vectors. 

2.3. Encoder Block 
According to the transformer concept employed in NLP and the suggestion of Doso-

vitskiy et al. [54], an image 𝑥𝜖𝑅 × ×  can be remapped into a sequence of flattened 2D 
patches 𝑥 𝜖𝑅 ×( ∙ ). We extend [54] and add a processing step where the patch image 
obtained from the original data is mapped through the spectral attention block to extract 
the relevant features. Thus, ultimately, we obtain N flattened 2D blocks of the same size, 
with the dimension of each block being (𝑃 ∙ 𝐶), with P the size of the setting block, 𝑁 =
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𝐻 ∙ 𝑊 𝑃 , and H, W, C are the width, height, and channel number of the image, respec-
tively. Then, for each vector, we perform a linear transformation (fully connected layer) 
and compress the dimension (𝑃 ∙ 𝐶) into dimension D. As a reference, we use the en-
coder model of the transformer, and since the decoder model is not used, we add a learn-
able embedding vector 𝑥  and introduce a positional encoding 𝐸 . This process is 
represented by: 𝑧0 = 𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥𝑝1E; 𝑥𝑝2E; 𝑥𝑝3E; ⋯ ⋯ ; 𝑥𝑝𝑁E + 𝐸𝑝𝑜𝑠 (7) 

where E represents the linear transformation layer, 𝑃 ∙ 𝐶 is the input dimension, and D 
is the output dimension. The trainable variable 𝐸  is used to represent the position in-
formation of the added sequence. When the positions are close, they often have similar 
codes, and the patches in the same line/column also have similar position codes. 

We design the encoder block by utilizing several operations, including the norm, 
multi-head self-attention, and dense, as expressed in Equation (8) and illustrated in Figure 
3. It is worth noting that in the latter figure, the Gaussian Error Linear Unit (GELU) [55] 
activation function introduces the idea of random regularization, affording the network 
to converge faster and increasing the model’s generalization ability. Additionally, we em-
ploy multiple residual blocks to eliminate problems such as gradient dispersion. The Mul-
tilayer Perceptron (MLP) exploited contains two layers with a GELU non-linearity 
scheme. Finally, depending on the scenario, the encoder block presented in Figure 3 can 
be stacked multiple times as required to achieve a high HSI classification. The latter is 
discussed in Section 3.3, where LN represents Layer Normalization and MHSA multi-
head Self-Attention. zl = MLP LN MHSA LN(zl−1) + zl−1 + MHSA LN(zl−1) + zl−1 (8) 

Dense

Dense+GELU

Norm

M
ulti-Head

Self-Attention

NormEmbedded
Patches

[Batch_size, N+1, D]

Encoder

 
Figure 3. Transformer Encoder Block. This module is composed of the norm, multi-head self-atten-
tion, and dense and other structures connected in the form of residuals. 

2.4. Overview of the Proposed Model 
Finally, the vectors obtained through stacked encoder modules are input to two fully 

connected layers employing GELU activation functions. Then, we exploit the first of the 
two vectors, i.e., the learnable embedding vector 𝑥  of the classification, to obtain the 
final classification result, which is expressed as: 𝑦 = 𝑀𝐿𝑃(𝑧 ) (9) 

where 𝑧  is an additional embeddable vector used for classification and refers to the out-
put of the encoder block, i.e., utilizing the dense, GELU, and dense blocks presented in 
Figure 4. The execution process of the entire SAT network is shown in the latter figure. 
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Figure 4. The proposed SAT Net architecture. After the original HSI data is processed, it is input into the spectral attention 
and decoder modules with multi-head self-attention to extract HSI features. Second, the encoder module uses a multi-
layer residual structure for connection, thereby effectively reducing information loss, and finally through the fully con-
nected layer, it outputs classification information. 

First, around each pixel, we extract patches of block size 𝑙 × 𝑙 × 𝑜, with the third di-
mension being the spectral dimension of different his, while for the edge pixels that cannot 
be directly extracted, we employ a padding operation. Ultimately, we obtain the final sam-
ple data with shape (m, 𝑙, 𝑙, 𝑜), where m is the number of samples and 𝑙 is the width and 
height of the sample, respectively. A detailed analysis of the sample size is presented in 
Section 3.3. For the processed sample data, we pass it through the spectral attention mod-
ule to redistribute the weight of the spectral information. Since the spectral attention 
mechanism does not change the shape of the input feature map, the shape of the output 
sample data is still (m, 𝑙, 𝑙, 𝑜). 

Once the raw HSI data are remapped into a set of ( 𝑙 × 𝑙 × 𝑜 ) image patches, we pro-
cess each sample into an 𝑙 × 𝑙 𝑝 × 𝑝 sequence of flattened 2D patches with shape (P, P, o). 
However, the transformer-model expects a two-dimensional NxD matrix as an input (Re-
move the Batch_size dimension), where 𝑁 = 𝑙 × 𝑙 𝑝 × 𝑝 is the sequence length and D the 
dimension of each vector of the sequence (Set to 64 in this article). Therefore, we reshape 
the 𝑙 × 𝑙 𝑝 × 𝑝 2D patches into a two-dimensional matrix of shape (𝑙 × 𝑙 𝑝 × 𝑝, o × P × P), 
and apply a linear transformation layer on the latter two-dimensional matrices to ulti-
mately create a two-dimensional Matrix (N, D). Then, we introduce the embedding vector 𝑥  and the position code 𝐸  (as described in Section 2.2) and create a matrix of size 
(Batch_size, N + 1, D) (Add Batch_size dimension) used as the input to the encoder block. 
Here, we use multiple encoder modules (the specific number of modules is discussed in 
Section 3.3.3) to continue extracting image features. In contrast to Dosovitskiy et al. [54], 
we change the direct connection of a single encoder module and employ the residual 
structure to inter-connect each encoder module, with the detailed process shown in Figure 
4. This strategy affords to reduce the information loss caused by stacking multiple encoder 
modules, and the model convergence speed is accelerated. The classification results are 
finally output through two fully connected layers.  
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3. Experiments, Results, and Discussion 
In this section, we first introduce three publicly available HSI data sets and then an-

alyze the five factors that influence the classification accuracy of the proposed model. Fi-
nally, we challenge the proposed model against current state-of-the-art methods and dis-
cuss the experimental results. 

3.1. Data Set Description 
For our experiments, we consider three publicly available HSI data sets, namely the 

Salinas (SA), the Indian Pines (IN), and the University of Pavia (UP). Detailed information 
on all datasets is presented in Table 1. 

Table 1. Datasets Employed During Trials. 

Data Sensor Wavelength (nm) 
Spatial Size 

(Pixel)s 
Spectral Size No of Classes 

Labeled 
Samples 

Spatial  
Resolution (m) 

SA AVIRIS 400–2500 512 × 217 224 16 54,129 3.7  
IN AVIRIS 400–2500 145 × 145 200 16 10,249 20  
UP ROSIS 430–860 610 × 340 103 9 42,776 1.3 m 

3.1.1. Salinas (SA) 
This dataset includes HSI collected by the Airborne Visible/Infrared Imaging Spec-

trometer (AVIRIS) sensor in Salinas, California, USA. It has 224 spectral bands and a spec-
tral resolution of 400~2500 nm. Each HSI has a size of 512 × 217 pixels and a spatial reso-
lution of 3.7 m/pixel. This dataset has in total 54,129 marked pixels presenting 16 object 
classes. The pseudo-color image and the corresponding ground truth map are illustrated 
in Figure 5, with the sample division ratio of the training and the test set shown in Table 
2. 

   
(a) (b)  

Figure 5. Salinas images: (a) pseudo-color image; (b) ground-truth labels. 

Table 2. Training and Testing Samples for the SA Dataset. 

No Class Training Testing Total 
1 Brocoli_green_weeds_1 402 1607 2009 
2 Brocoli_green_weeds_2 744 2982 3726 
3 Fallow 394 1582 1976 
4 Fallow_rough_plow 278 1116 1394 
5 Fallow_smooth 536 2142 2678 
6 Stubble 792 3167 3959 
7 Celery 716 2863 3579 

Brocoli_green_weeds_1
Brocoli_green_weeds_2
Fallow
Fallow_rough_plow
Fallow_smooth
Stubble
Celery
Grapes_untrained
Soil_vinyard_develop
Corn_senesced_green_weeds
Lettuce_romaine_4wk
Lettuce_romaine_5wk
Lettuce_romaine_6wk
Lettuce_romaine_7wk
Vinyard_untrained
Vinyard_vertical_trellis
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8 Grapes_untrained 2254 9017 11,271 
9 Soil_vinyard_develop 1240 4963 6203 

10 Corn_senesced_green_weeds 656 2622 3278 
11 Lettuce_romaine_4wk 214 854 1068 
12 Lettuce_romaine_5wk 386 1541 1927 
13 Lettuce_romaine_6wk 182 734 916 
14 Lettuce_romaine_7wk 214 856 1070 
15 Vinyard_untrained 1454 5814 7268 
16 Vinyard_vertical_trellis 360 1447 1807 

 Total 10,822 43,307 54,129 

3.1.2. Indian Pines (IN) 
This dataset was collected by the AVIRIS sensor in Northwestern Indiana, USA in-

volving 200 spectral bands and a spectral resolution of 400~2500 nm. It includes an HSI of 
145 × 145 pixels and a spatial resolution of 20 m/pixel, with 10,249 marked pixels involving 
16 object classes. The pseudo-color image and ground truth map are presented in Figure 
6. The sample ratio between the training and the test set is shown in Table 3. 

  

 
(a) (b) 

Figure 6. Indian Pines images: (a) pseudo-color image; (b) ground-truth labels. 

Table 3. Training and Testing Samples for the IN Dataset. 

No. Class Training Testing Total 
1 Alfalfa 8 38 46 
2 Corn-no till 284 1144 1428 
3 Corn-min till 166 664 830 
4 Corn 46 191 237 
5 Grass/pasture 146 584 730 
6 Grass/tress 96 387 483 
7 Grass/pasture-mowed 6 22 28 
8 Hay-windrowed 94 384 478 
9 Soybeans-no till 194 778 972 

10 Soybeans-min till 490 1965 2455 
11 Soybeans-clean till 118 475 593 
12 Wheat 40 165 205 
13 Woods 252 1013 1265 

Aldalfa Corn-notill Corn-mintill Corn

Grass-pasture Grass-trees

Grass-pasture-mowed

Hay-windrowed

Oats

Soybean-mintill Soybean-clean

Soybean-notill

Wheat

Woods Buildings-Grass-Trees-Drives

Stone-Steel-Towers
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14 Buildings-grass-trees 76 310 386 
15 Stone-steel towers 18 75 93 
16 Oats 4 16 20 

 Total 2038 8211 10,249 

3.1.3. University of Pavia (UP) 
The Reflective Optics Spectrographic Imaging System (ROSIS) sensors collected this 

HSI in Pavia, Italy, involving imagery of 610 × 340 pixels and a spatial resolution of 1.3 
m/pixel. The spectral bands are 103 with a resolution of 430~860 nm. In total, there are 
42,776 marked pixels of nine object classes. The pseudo-color image and ground truth map 
are shown in Figure 7, with the training and test sets presented in Table 4. 

   
(a) (b)  

Figure 7. University of Pavia images: (a) pseudo-color image; (b) ground-truth labels. 

Table 4. Training and Testing Samples for the UP Dataset. 

No Class Training Testing Total 
1 Asphalt 1326 7294 6631 
2 Meadows 3728 20,513 18,649 
3 Gravel 418 2308 2099 
4 Trees 612 3370 3064 
5 Sheets 268 1479 1345 
6 Bare Soil 1004 5531 5029 
7 Bitumen 266 1463 1330 
8 Bricks 736 4050 3682 
9 Shadows 188 1041 947 
 Total 8546 34,230 42,776 

We randomly selected 20% of the dataset for training for our experiments, and the 
remaining 80% was for testing. A detailed experimental analysis is presented in Section 
3.2. 

3.2. Experimental Setup 
We evaluate the performance of the proposed SAT Net model on an Intel(®) Xeon(®) 

Gold 5218 with 512 GB RAM and an NVIDIA(Headquartered in Santa Clara, USA) Am-
pere A100 GPU with 40 GB RAM. Our platform operates on windows 10 utilizing the 
tensorflow2.2 deep learning framework and the python3.7 compiler. We optimize the 
model by exploiting the Adam optimizer [56] with a batch size of 64 and employ the cross-
entropy loss function for reverse gradient propagation. We also employ a five-folder 
cross-validation [57] scheme to train and test the model in the experiments 3.3.1 and 3.3.2. 

Ashalt

Meadows

Gravel

Tree

Sheets

Soil

Bricks

Bitumen

Shadows
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Specifically: we divide each data set into five parts, accounting for 20% of the total data 
set. During each training round four parts are used as the training set and one part is used 
as the test set. In total, we consider five rounds of training exploiting each time a different 
subset of the data set as a training and a testing set. Finally, the average performance of 
the five test results is considered the model’s accuracy. In the experiments that follow. We 
quantitatively evaluate the performance of all competitor methods relying on the overall 
classification accuracy (OA), the average accuracy (AA), and the kappa coefficient (K). 

3.3. Image Preprocessing 
The first batch of trials involves investigating the interplay between the hyperparam-

eter setup and the overall classification performance of the proposed SAT Net. These hy-
perparameters involve the extracted cube size, i.e., are the size of the 3D extracted patch, 
the size of the 2D patches, the number of stacked encoder blocks, the learning rate, and 
the proportion of training to testing samples. 

3.3.1. Image Size (IS) 
In this trial, we investigate the cube sizes of 16, 32, and 64, which are extracted around 

each pixel of the HSI raw data, with the corresponding results presented in Table 5. From 
the latter table, we observe that for IS = 16, the SA, IN, and UP datasets manage an OA of 
97.18%, 93.42%, and 96.45%, respectively. However, despite the OA metric being rela-
tively high, it is still lower than the optimum performance attained when IS = 64. This is 
because a smaller extraction cube interferes with the spatial continuity, while as IS in-
creases, the performance also increases, and ultimately IS = 64 achieves the highest classi-
fication results. It should be noted that due to our hardware, our trials are limited to a 
maximum of IS = 64. 

Table 5. Evaluation of several hyperparameters under five-folder cross-validation. (Highest Perfor-
mance is in Boldface). 

IS PS Dataset OA (%) AA (%) K × 100 
  SA 97.18 97.74 97.51 

16 4 IN 93.42 93.64 93.77 
  UP 96.45 97.03 96.87 
  SA 96.49 97.10 97.35 
 4 IN 94.16 94.45 94.08 
  UP 96.34 97.53 96.98 

32  SA 97.57 96.46 96.33 
 8 IN 97.27 97.05 97.79 
  UP 97.08 98.13 98.22 
  SA 98.36 98.14 98.07 
 4 IN 96.62 96.76 95.32 
  UP 98.52 98.47 97.89 
  SA 97.96 98.73 98.32 

64 8 IN 97.33 97.52 97.16 
  UP 98.62 98.53 99.01 
  SA 99.91 99.72 99.81 
 16 IN 99.43 98.75 98.85 
  UP 99.55 99.50 99.47 

3.3.2. Patch Size (PS) 
In this experiment, we vary the size of the flattened 2D patch sequence. The different 

PS evaluated are inversely proportional to the number of the linear embedding sequences 
that are input to the encoder block. Thus, we set PS to 4, 8, and 16 with the corresponding 



Remote Sens. 2021, 13, 2216 13 of 21 
 

 

results presented in Table 5. From the latter table, we confirm the findings of Dosovitskiy 
et al. [54] that 𝑛𝑢𝑚 = 𝐼𝑆 𝑃𝑆 , and thus for our trials, it should be greater than 16. 
Hence, for our trials, we employ a trial-and-reject strategy and conclude that for 𝑛𝑢𝑚 = 16 our method manages an appealing performance, which we adopt for the 
trials to follow. 

3.3.3. Depth Size 
Here, we vary the number of stacked encoder blocks within the proposed SAT Net, 

with the stack cardinality set to 2, 3, 4, 5, and 6. The corresponding experimental results 
are shown in Figure 8, highlighting that as the number of encoder blocks increases, the 
classification accuracy increases, but also the total network parameters affecting the diffi-
culty during network training increase as well. However, increasing the model parame-
ters too much will cause the model to overfit and ultimately reduce its classification accu-
racy. For our trials, an encoder block cardinality of three manages a classification perfor-
mance of 99.91%, 99.03%, and 99.47%, for the SA, IN, and UP datasets, respectively. 

 
Figure 8. Overall classification accuracy per dataset under various encoder block sizes. 

3.3.4. Training Sample Ratio 
The proportion of training vs. testing data affects the fitting process of the model 

during its training. Hence, we evaluate the training proportions of 3%, 5%, 10%, 20%, 30%, 
and 40% of the entire dataset, with the corresponding results presented in Figure 9. From 
the latter figure, we observe that when the proportion of the training set is 3% and 5%, the 
classification result of IN is poor, and this is because the total number of samples in the 
IN dataset is relatively small. However, when the proportion of the training set exceeds 
20%, all three datasets achieve quite appealing classification results. For the subsequent 
trials, and to compare our technique against current methods, e.g., Zhong et al. [25], we 
set the training set ratio to 20% of the total samples. 

 
Figure 9. Overall accuracy per dataset under different training set proportions. 
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3.3.5. Learning Rate 
The learning rate affects the gradient descent rate of the model, and thus choosing an 

appropriate learning rate can control the convergence performance and speed of the 
model. For our experimental analysis, we set the learning rate to 0.0001, 0.0005, 0.001, and 
0.005, respectively, with the corresponding results shown in Figure 10. We optimize SAT 
Net’s performance by setting the learning rate for SA to 0.001 and UP and IN to 0.0005. 

 
Figure 10. The overall classification accuracy of the three data sets at different learning rates. 

3.4. Evaluation 
We challenge the proposed SAT Net against convolutional neural network (CNN) 

[58] (CNN architecture with five layers of weights), spectral attention module-based con-
volutional network (SA-MCN) [40] (Recalibrate spatial information and spectral infor-
mation), three-dimensional convolutional neural network (3D-CNN) [32], and the spec-
tral–spatial residual network (SSRN) [25], and the multi-scale residual network model 
with an attention mechanism (MSRN)[41]. For fairness, we set the ratio of training set and 
test set to 2:8. We also optimize the model by exploiting the Adam optimizer [56] with a 
batch size of 64 and employ the cross-entropy loss function for reverse gradient propaga-
tion. 

3.4.1. Quantitative Evaluation 
Tables 6–8 present the classification accuracy of each object class, and method evalu-

ated exploiting the OA, AA, and K metrics. From the results, we observe that the CNN 
network, its classification results are still lacking due to the spectral feature information 
loss of the 2D-CNN that ignores the 3D nature of the HSI data. SA-MCN extracts spectral 
information features based on spectral attention. The 3D-CNN directly extracts the feature 
information of the spatial and spectral dimensions, which significantly improves the ac-
curacy of HSI classification. 

Table 6. Classification Results of Various Methods for the SA Dataset (Highest Performance is in 
Boldface). 

No Class CNN SA-MCN 3D-CNN SSRN MSRN Proposed 
1 Brocoli_green_weeds_1 80.64 95.72 100.00 96.38 99.31 99.69 
2 Brocoli_green_weeds_2 82.75 92.64 98.53 96.56 99.28 100.00 
3 Fallow 80.14 97.33 97.38 99.55 100.00 99.25 
4 Fallow_rough_plow 83.52 91.46 98.12 98.72 98.32 100.00 
5 Fallow_smooth 82.33 92.18 98.13 99.59 99.71 99.58 
6 Stubble 78.86 93.52 97.89 98.37 100.00 100.00 
7 Celery 84.39 91.42 96.64 99.73 98.82 99.58 
8 Grapes_untrained 86.51 95.41 98.32 100.00 99.73 100.00 
9 Soil_vinyard_develop 82.43. 88.83 98.95 97.17 100.00 99.78 
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10 
Corn_senesced_ 

green_weeds 81.46 90.39 100.00 98.13 99.62 99.71 

11 Lettuce_romaine_4wk 82.12 94.74 99.13 98.14 99.17 100.00 
12 Lettuce_romaine_5wk 86.77 92.71 97.35 99.63 97.63 99.54 
13 Lettuce_romaine_6wk 81.26 87.36 98.74 97.85 99.86 100.00 
14 Lettuce_romaine_7wk 86.08 95.13 97.62 98.54 100.00 99.92 
15 Vinyard_untrained 79.31 92.78 98.33 99.19 99.32 100.00 
16 Vinyard_vertical_trellis 81.52 94.17 97.86 99.34 99.17 99.75 
 Overall accuracy (%) 83.15 93.76 98.14 99.15 99.63 99.91 
 Average accuracy (%) 82.41 93.21 98.08 98.89 99.41 99.63 
 Kappa × 100 82.23 93.16 98.03 99.05 99.51 99.78 

Table 7. Classification Results of Various Methods for the IN Dataset (Highest Performance is in 
Boldface). 

No Class CNN SA-MCN 3D-CNN SSRN MSRN Proposed 
1 Alfalfa 84.29 92.16 99.15 97.31 100.00 99.02 
2 Corn-no till 83.18 92.41 96.23 98.17 100.00 99.37 
3 Corn-min till 82.51 90.40 97.44 99.38 99.25 98.38 
4 Corn 87.23 89.82 98.16 98.32 100.00 100.00 
5 Grass-pasture 79.16 87.63 99.27 99.13 100.00 99.21 
6 Grass-tress 78.24 94.64 98.23 99.18 98.56 99.14 
7 Grass-pasture 81.33 92.76 97.33 98.86 100.00 99.19 
8 Hay-windrowed 80.12 91.51 97.28 99.24 100.00 98.51 
9 Oats 81.78. 93.13 98.12 99.34 100.00 99.27 

10 Soybeans-no till 80.62 92.38 97.76 97.82 99.17 99.34 
11 Soybeans-min till 81.28 90.33 97.92 98.17 100.00 100.00 
12 Soybeans-clean till 83.16 88.92 98.19 99.18 100.00 99.23 
13 Wheat 80.14 90.76 99.13 97.32 100.00 98.86 
14 Woods 77.32 88.86 97.22 98.86 99.38 99.46 
15 Buildings-grass-trees 80.13 94.17 98.56 99.35 98.89 99.28 
16 Stone-steel towers 82.71 92.36 98.16 99.14 99.38 99.29 
 Overall accuracy (%) 82.33 92.76 98.13 99.08 99.37 99.22 
 Average accuracy (%) 81.52 91.39 97.38 98.92 99.45 99.08 
 Kappa × 100 82.09 91.54 97.92 98.73 99.61 99.19 

Table 8. Classification Results of Various Methods for the UP Dataset (Highest Performance is in 
Boldface). 

No Class CNN SA-MCN 3D-CNN SSRN MSRN Proposed 
1 Asphalt 83.36 90.12 98.13 99.36 98.74 99.32 
2 Meadows 81.19 91.36 96.89 97.35 100.00 100.00 
3 Gravel 77.32 90.18 97.56 98.37 99.56 99.45 
4 Trees 80.57 88.25 98.34 100.00 100.00 99.53 
5 Metal 81.65. 89.32 97.72 99.82 98.83 99.31 
6 Soil 84.33 89.73 98.17 98.26 100.00 99.94 
7 Bitumen 82.36 90.16 99.46 97.79 98.32 99.27 
8 Bricks 81.37 91.33 98.47 98.86 100.00 100.00 
9 Shadows 86.59 90.50 96.45 99.32 99.67 99.72 
 Overall accuracy (%) 84.13 92.25 98.03 99.12 99.82 99.64 
 Average accuracy (%) 82.76 92.37 98.21 99.08 99.59 99.67 
 Kappa × 100 82.88 91.76 98.14 98.93 99.71 99.49 
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Nevertheless, 3D-CNN still does not fully utilize the space and spectrum-related in-
formation. On the contrary, SSRN exploits the spatial–spectrum attention module to re-
distribute the spatial and spectral information weights achieving good classification re-
sults. The proposed SAT Net attains the most appealing results over all three data sets, 
especially on the SA dataset, where it manages an overall classification accuracy of 99.91%. 
The MSRN network uses an improved residual network and space-spectral attention 
module to extract hyperspectral image information from different scales and multiple 
times, and fully integrates and extracts the spatial spectral features of the image. The best 
results are attained on the IN dataset managing an Overall accuracy, Average accuracy, 
and Kappa of 0.9937, 0.9945, and 0.9961, respectively. Regarding the proposed SAT Net, 
it obtains the most attractive results on the SA data set, as its overall classification accu-
racy, average classification accuracy and Kappa reaches 0.9991, 0.9963 and 0.9978, respec-
tively. Finally, on the UP data set the proposed methods has comparable performance to 
MSRN. Indeed, the overall accuracy and Kappa coefficient are slightly inferior to the 
MSRN model, while the average accuracy is slightly superior to the MSRN model. Com-
pared to the competitor methods, we extract the image features via a multi-head self-at-
tention scheme that avoids partial information loss when utilizing regular convolution 
kernels during feature extraction and solves the problem of HSI long-distance depend-
ence. 

3.4.2. Qualitative Evaluation 
Figures 11–13 show the overall accuracy curve of the proposed model against the 

competitor models. The results indicate that as the number of training steps increases, the 
accuracy of all models is continuously improving. Among the models, CNN has the low-
est initial OA. SA-NET has the slowest convergence speed, MSRN has the fastest conver-
gence speed, and SAT NET has the second-best convergence speed. The proposed model 
converges well in 20 epochs on the SA dataset and converges well within 30 epochs on the 
IN and UP datasets. Figures 14–16 show the visualization results (pseudo-color classifica-
tion map) of different models on the three public datasets we utilize in this work. The 
corresponding classification maps obtained by CNN, and SA-MCN manage an inferior 
performance, with significant noise levels, spectra, and poor continuity between different 
object classes. The results obtained by the 3D-CNN and SSRN methods are better, con-
taining less point noise. MSRN also achieved good classification results. In contrast, the 
classification map generated by the proposed SAT Net model and MSRN has smoother 
boundaries, less noise, and overall manages a higher classification accuracy. Figure 17 is 
a partially enlarged view of the classification results of MSRN and SAT NET on the three 
datasets of SA, IN, and UP. It is observed from the enlarged image that in the SA dataset, 
the classification result of the SAT Net model has less continuous noise, and there is less 
noise only at the boundary between Grapes_untrained and Vinyard_untrained. In the IN 
dataset, MSRN and SAT Net have some pixel misdivisions at the border of Soybeans-clean 
till and Soybeans-min till. In the UP dataset, MSRN and SAT Net are mixed with some 
Meadow features in the bare soil features. 
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Figure 11. Overall accuracy curve of different models in SA dataset. 

 
Figure 12. Overall accuracy curve of different models in IN dataset. 

 
Figure 13. Overall accuracy curve of different models in UP dataset. 
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(a) (b) (c) (d) (e) (f) 

Figure 14. The classification map on the SA dataset for (a) CNN, (b) SA-MCN, (c) 3D-CNN (d) SSRN, (e) MSRN, and (f) 
proposed SAT Net. 

      
(a) (b) (c) (d) (e) (f) 

Figure 15. The classification map on the IN dataset for (a) CNN, (b) SA-MCN, (c) 3D-CNN (d) SSRN, (e) MSRN, and (f) 
proposed SAT Net. 

      
(a) (b) (c) (d) (e) (f) 

Figure 16. The classification map on the UP dataset for (a) CNN, (b) SA-MCN, (c) 3D-CNN (d) SSRN, (e) MSRN, and (f) 
proposed SAT Net. 

      
(a) (b) (c) (d) (e) (f) 

Figure 17. (a) (MSRN) and (b) (SAT NET) are partial results of the UP dataset, (c) (MSRN), and (d) (SAT NET) are partial 
results of the UP dataset, (e) (MSRN) and (f) (SAT NET) are partial results of the UP dataset. 



Remote Sens. 2021, 13, 2216 19 of 21 
 

 

4. Conclusions 
This article proposes a deep learning model that is appropriate for HSI classification 

entitled SAT Net. Our technique successfully employs a transformer scheme for HSI pro-
cessing and proposes a new strategy for HSI image classification. Indeed, we first process 
the HSI data into a linear embedding sequence and then use the spectral attention module 
and the “multi-head self-attention” module to extract image features. The latter module 
solves long-distance dependence on the HSI spectral band and simultaneously discards 
the convolution operation avoiding information loss caused by the irregular processing 
of the typical convolution kernel during object classification. Overall, SAT Net combines 
multi-head self-attention and linear mapping, regularization, activation functions, and 
other operations to form an encoder block with a residual structure. To improve the per-
formance of SAT Net, we stack multiple encoder blocks to form the main structure of our 
model. We verified the effectiveness of the proposed model by conducting two experi-
ments on three publicly available datasets. The first experiment analyzes the interplay of 
our model’s hyperparameters, such as image size, training set ratio, and learning rate, to 
the overall attained classification performance. The second experiment challenges the pro-
posed model against current classification methods. In comparison with models such as 
CNN, SA-MCN, 3D-CNN, and SSRN on the three public datasets, SAT NET’s OA, AA, 
and Kappa achieved better results. In comparison with MSRN, SAT NET achieved better 
results on the SA dataset. It achieved classification performance comparable to that of 
MSRN on the UP dataset, whereas it is slightly inferior to MSRN on the IN dataset; how-
ever, it uses less convolution (spectral attention module) to achieve better classification 
performance. In comparison with other methods, it provides a novel idea for HSI classifi-
cation. Second, SAT NET better handles the long-distance dependence of HSI data spec-
trum information. On the three public data sets, i.e., SA, IN and UP, the proposed method 
achieved an overall accuracy of 99.91%, 99.22%, and 99.64% and an average accuracy of 
99.63%, 99.08%, and 99.67%, respectively. Due to the small number of samples in the IN 
data set and the uneven data distribution, the classification performance of the SAT net-
work still needs to be improved. In the future, we will study methods such as data expan-
sion, weighted loss function, and model optimization to improve the classification of 
small-sampled hyperspectral data. 
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