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Abstract: Today, mobile laser scanning and oblique photogrammetry are two standard urban remote
sensing acquisition methods, and the cross-source point-cloud data obtained using these methods
have significant differences and complementarity. Accurate co-registration can make up for the
limitations of a single data source, but many existing registration methods face critical challenges.
Therefore, in this paper, we propose a systematic incremental registration method that can successfully
register MLS and photogrammetric point clouds in the presence of a large number of missing data,
large variations in point density, and scale differences. The robustness of this method is due to
its elimination of noise in the extracted linear features and its 2D incremental registration strategy.
There are three main contributions of our work: (1) the development of an end-to-end automatic
cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and
restore the scale; and (3) an incremental registration strategy that simplifies the complex registration
process. The experimental results show that this method can successfully achieve cross-source data
registration, while other methods have difficulty obtaining satisfactory registration results efficiently.
Moreover, this method can be extended to more point-cloud sources.

Keywords: point-cloud registration; photogrammetric point cloud; MLS point cloud; linear feature;
incremental registration

1. Introduction

Mobile laser scanning (MLS) and oblique photogrammetry are two standard urban
remote sensing acquisition methods used today. Active laser scanning usually has high
accuracy and can efficiently obtain dense 3D point clouds on both sides of urban roads [1],
which has important applications in three-dimensional (3D) model reconstruction, urban
growth, and other fields. With the development of dense matching algorithms, oblique
photogrammetry as a passive remote sensing method can provide a large number of
photogrammetric point clouds with rich textures and perfect scene coverage [2]; these
features give the method great application potential [3].

However, the increasing complexity of urban space introduces challenges in data
collection [4]. Data from a single source can be limited by, e.g., a single description
scale and a large number of missing data [5], making it difficult to accurately express the
complete and rich detailed features of the target [6]. As shown in Figure 1, the MLS is
limited to a single perspective and a lack of texture, and photogrammetric point clouds are
often inaccurate and smoothed when describing sharp structures [7], there are significant
differences and complementarities between the two in terms of perspective coverage,
observation scale, spatial density, texture attributes, etc. The precise co-registration of the
cross-source point clouds can provide a basis for obtaining a complete description of the
scene, engaging in 3D model reconstruction, changing monitoring, and other important
tasks [8].
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Figure 1. Cross-source point clouds have obvious differences in descriptions of the same buildingFigure 1. Cross-source point clouds have obvious differences in descriptions of the same building.

Due to their different acquisition principles, cross-source point clouds feature signifi-
cant differences in coverage, spatial resolution, and expression scale, and the challenges
of their timing are complex. In general, detecting geometric characteristics, identifying
correspondences [9], and restoring the scale are the three important tasks when registering
cross-source point clouds in arbitrary initial positions and orientations. However, the
following obstacles make the task difficult: (1) Due to differences in the descriptions of the
same structures caused by voids and noise, the form and accuracy of the local neighbor-
hood features extracted from the cross-source point clouds are inconsistent [10]. (2) Due
to the differences in coverage caused by perspective, the number of strictly correspond-
ing features is difficult to guarantee [11]. (3) Massive point-cloud data have significant
redundancy and a high computing cost, which requires efficient processing.

To overcome the above obstacles, this paper proposes an incremental registration
method for cross-source point clouds. The main contributions of this paper are as follows:

• An end-to-end automatic cross-source point-cloud registration method;
• A method to extract the same linear features from cross-source point clouds to reduce

noise and simplify the scene, thereby guaranteeing the similarity measures of features;
• An incremental registration strategy that can simplify the complex registration process

and restore both the scale and 3D alignment.
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The rest of this paper is organized as follows: Section 2 briefly reviews the related
works, Section 3 describes the proposed method in detail, Section 4 reports the experiments
and analyzes the results, and the conclusions and outlook are presented in Section 5.

2. Literature Review

The accurate registration of point clouds from different sources is a prerequisite
for collaborative computing, integrated modeling, and other applications [12]. In data
collection and preprocessing, different auxiliary data can be used to convert a point cloud to
the world coordinate system. For instance, MLS can use the GPS/IMU inertial navigation
module to calculate the trajectory of geographic coordinates [13]. However, the error
sources of the secondary data collection are different, so further registration remains
necessary [14].

For a long period of time, point-cloud registration focused on solving the rigid-body
transformation problems for a pair of point clouds or multiple groups of point clouds. The
most common solution is the Iterative Closest Point (ICP) algorithm [15,16]. Since point
clouds usually do not strictly correspond with each other, and repeated point-by-point
traversal consumes large amounts of computing resources, many scholars have improved
the ICP algorithm. These improvements include point-to-line PC-ICP [17], NICP with
normal vector constraints, Voxel-GICP based on voxel segmentation [18], etc. However,
these algorithms have high requirements for the data overlap and usually require accurate
initial alignment; otherwise, they will easily converge to the wrong local extrema and fail
to obtain the correct conversion parameters. Thus, coarse-to-fine matching strategies are
gradually becoming mainstream [19].

The core of the registration is the recognition and correspondence of features, which
can be divided into feature primitives such as a point, line, and plane. Point primitives have
the best generalization and flexibility. However, the accuracy of feature points extracted
from an original point cloud is limited by the fact that the discrete original point cloud
cannot describe all features of the target; the descriptions of small structures are especially
limited [20]. Extracting spatial points from topological structures offers greater stability [11].
For example, Stamos and Leordeanu [21] first identified the intersection points of adjacent
planes and then estimated the transformation of adjacent point clouds based on at least
two corresponding intersection points. Under the guidance of a priori semantic structural
information, the edges of buildings and structures represent effective and available features
for, e.g., further fitting of the building outline [22] and the intersection points of vertical
lines [23]. However, such methods require the most accurate and detailed raw point-cloud
data that can be obtained. Moreover, transcendental semantics are more complex in large
scenes, which limits the use of such data in urban environments with complex ground
features and structural types across a large range.

The line and plane, as more advanced geometric elements, usually require more
complex extraction methods and have more accurate information expression abilities
to cope with more challenging data processing requirements. For example, hull edges
were previously extracted from noisy data obtained from floating platforms [24]; curves
were extracted from an historical site’s scanning point clouds with a fine structure and
registered [25]; central axes were extracted from incomplete data (and a correlation was
realized) [26]; and the plane, sphere, and cylinder were extracted from a scene to identify the
corresponding relations [27]. A complex but reasonable extraction process can significantly
improve the accuracy of cloud descriptions and applications, especially for complex or
noisy data [28]. However, existing methods for feature extraction also aim at specific
applications or specific data, as it is impossible to extract exactly the same features from
different data sources, and it is common for features to be similar but not identical.

Therefore, to improve the applicability of the algorithm, the existing registration
methods all seek to process the point-cloud registration of all scenes. Unfortunately, there
is still no method that can effectively handle the point-cloud registration of all scenes [8].
Although researchers have sought to improve the generalization ability in algorithm design,
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novel photogrammetric point clouds have physical conditions different from those of laser
point clouds, and there are even more significant differences between the data that need
to be registered [29]. This limits the efficiency and accuracy of existing algorithms in
application. To address the complex challenges of cross-source point-cloud registration, we
propose an incremental registration strategy that considers the geometry of the main body.

3. Methodology
3.1. Problem Formulation and Overview of Methods

Assume that the MLS point cloud is represented as S = {si} and the photogrammetric
point cloud as V = {vi}, where S is the target that usually has a definite scale and higher
accuracy. The two sets of point clouds usually have different coordinate systems but
partially overlapping regions, Ω. Two or more pairs of corresponding points can be
identified and determined, and the rotational matrix R and translational matrix T can be
calculated. Then, the rigid body transformation of S is carried out in a three-dimensional
space to realize the alignment of S and V. The whole process of change can be seen as the
solution to six degrees-of-freedom (DOF) parameters, with rotation and translation in the
directions of the three coordinate axes, respectively. This process can be expressed using
Equation (1):

si = Rvi + T. (1)

In the registration task of the cross-source point clouds, since the photogrammetric
point cloud is scale free, the constraint of scale factor λ should be added. Notably, the
scale variation of the point cloud should be consistent in the three axes. As a result, the
registration process is no longer a rigid body transformation with six degrees of freedom
but a similar transformation process with seven degrees of freedom featuring a triaxle
uniform scale factor, which can be expressed as

si = λ(Rvi + T). (2)

It would be a complicated task to directly solve the seven registration factors simulta-
neously. Since our registration task is mainly aimed at urban areas, the photogrammetric
point cloud can restore the vertical orientation using the facades of the buildings in the
scene, while the horizontal compensation function of the laser scanner and the integrated
navigation system can also ensure the correct vertical orientation. In this way, the rotation
task of the point cloud around the three coordinate axes is reduced to the rotation angle ϑ

around a single coordinate axis (0, 0, 1)T , and the rotation matrix R can be simplified to
R∗ = (0, 0, ϑ)T . Many building planes in MLS are incomplete and often feature noise in
the photogrammetric point cloud, which makes it difficult to accurately measure the simi-
larity of the extracted 3D plane. When the scene is projected onto the plane, the property
of clustering can be used to remove noise and improve the integrity of features, extract
accurate and complete 2D linear features of the building, and divide the 3D registration
task into 2D registration on the horizontal plane, with height deviation in the direction of
the Z axis. The translation matrix can be decomposed into T∗ = (∆x, ∆y, 0)T on a 2D plane
with height offset ∆H. In this way, the registration task of cross-source point clouds can be
changed into the following formula:

si = λ(R∗vi + T∗). (3)

3.2. Extract a Simplified Point Cloud by Eliminating Noise from the Cross-Source Point Cloud

The first task is to extract the same building edges from different sources of point
clouds. These edges mainly refer to the outlines of buildings in urban areas and also include
artificial or natural breaklines. Due to the voids and noise in point clouds, point clouds
from different sources feature different representations of the small structures in buildings,
such as corners or columns, but the building outlines remain similar. This similarity will
affect the extraction of line features with the same name. When a line segment lacking an
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outline appears in the point cloud, that segment will disappear in the other point cloud at
the same time, while the line segment of the outline is less likely to disappear [30]. This
is the main basis for the registration of point clouds with significant differences between
different sources. Based on the projection point density and the aggregation of the normal
vector, the point cloud used to express the building outline can be separated from the
original point cloud.

Preliminary screening of the source point cloud based on the projection point density
can effectively eliminate errors and simplify the scene. For a given point-cloud data set
P, we randomly select multiple seed points and calculate the mean value of the distance
between the seed points and their adjacent points as the point density ρ, which represents
the average point spacing of the current point clustering. Subsequently, the point cloud
is projected onto the horizontal plane, and grid segmentation is performed. The step
size of grid segmentation l and the threshold value of grid screening δn are determined
according to ρ. For each grid, if the number of points exceeds the threshold δn, the points
are retained in the point set P0. Experiments show that for MLS point clouds and oblique
photogrammetric point clouds, l = 30ρ and δn = 10ρ can meet most requirements. A more
detailed step size s and a higher δn can provide more accurate facade segmentation results.
The points in P0 that are retained by preliminary screening not only contain a large number
of building facades but also feature the elements of ground objects, such as streetlights
and vegetation. Point clouds can also form clusters with aggregation. The clusters that
belong to the building outline of the scene, such as the facades of buildings, tend to have
high consistency in their normal vectors. The linear features of building outlines can be
extracted effectively based on the significance detection of the normal vector.

For each point contained in P0, the starting point of the normal vector is shifted to
the origin of the coordinates. The unit sphere formed at this time is called the Gaussian
Reference Sphere, through which we can intuitively observe a significant aggregation
effect [31]. Each center of focus represents the presence of the main plane direction in
the scene. The closer a point is to the center, the more likely it is to be located on the
main plane. The discrete points without an aggregation effect can be eliminated via
outlier detection [32]. Notably, the point-normal vectors in the same plane can be oriented
180 degrees relative to each other, so the normal direction needs to be corrected first. The
K-means clustering method [33] was adopted to obtain the center in the present study. The
normal vector of each point was compared with the clustering centers, and the points with
angles less than 15 degrees were stored in the simplified point set Pc.

Pc. represents the main facade distribution of the scene, a set of points selected from
the original point cloud that are most likely to be located on the outline of the building.
The results of the point cloud extraction reduce the noise and ignore many small structures,
which effectively inhibits the influence of noise and simplifies the scene. This process is
shown in Figure 2. The simplified point clouds extracted from the original point cloud are
distributed in two main plane directions. These directions can accurately describe the main
results of the scene and serve as the basis for subsequent steps.
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Figure 2. The simplified point extracted from the MLS point cloudFigure 2. The simplified point extracted from the MLS point cloud.

3.3. D Registration and Scale Recovery Based on Line-Group Matching

The simplified point cloud effectively reduces the noise and redundancy of the scene.
However, due to the influence of data voids, noise, and other conditions, it is not only time-
consuming but also not sufficiently robust to identify the corresponding point, line, and
plane features. The scale of the photogrammetric point cloud also needs to be considered.
Therefore, the method in this paper adopts 2D line segment registration to restore the
scale consistency of the cross-source point clouds and align the 2D line segments first. In
this part of the operation, the simplified points are projected onto the horizontal plane,
and a two-dimensional projection map is generated according to the grid segmentation.
For each grid, if there are points inside the grid, those points are filled with color, and
the point labels within the grid are recorded. We used the Line Segment Detector (LSD)
algorithm [34] to extract the line features of the two-dimensional projection images, and
employed the optimized line-segment group method to match the two-dimensional line
features [35].

The method of line-segment group matching was selected because this method enables
extraction of the linear feature similarities and local differences between line segment clustering
and can overcome the differences in line features extracted from cross-source point clouds. The
core of this method involves defining the relative property differences between groups [36] and
constructing feature descriptors with multiple feature description components.

For a given segment i (p1 p2 in Figure 3), the property-difference value s is the sum of
the edge gradient of each pixel of the line segment, and the gradient g of a line segment
is the average edge gradient of each pixel. The calculations in this step require detecting
the image gradient, which is obtained from the LSD line-detection step. Then, for a line
segment i with salience value s, one of the segment’s endpoints is arbitrarily taken as
the search center, and k adjacent line segments are searched. The line segments with
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significance greater than the threshold ε are screened and clustered into groups, where
ε = r× s, and r is a ratio. For the other end point of line segment i, another clustering result
will be obtained. Therefore, in the process of line segment clustering, each line segment i
corresponds to two clustering centers and two groups of clustering results. Considering the
identification requirements for the building outline in cross-source point-cloud matching,
we can adjust the threshold r to explicitly describe the relative property differences between
line segments. An increase in threshold k will increase the significance of the current line
segment and introduce more local structure information on the line-segment distribution
features. However, this information will increase the difficulty in matching and the amount
of calculations needed for similarity measurements. The parameter of {r = 0.5, k = 5} is
a balanced choice. Our experiments show that this parameter can be adapted to most
situations [35].
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Figure 3 shows the line-segment clustering process. In the upper part of the figure,
two two-dimensional line-feature images obtained from two different sources are shown.
These images clearly share similar linear features. Some broken lines that do not represent
the major body are ignored, which increases the expressive weight of the line group in
the building outline, as shown in the lower-left part of Figure 3. Here, i is the current line
segment with two endpoints p1 and p2, and a, b, . . . , f represents the other line segments
around i. For line segment i with endpoint p1 and k = 3, the line-segment group is
{i, b, d, f }, and {a, c, e} is excluded due to a lack of salience. Similar parallel line segments,
such as stairs, are common in cities, and are also a cause of the noise problem in data. As
shown in the lower-right portion of Figure 3, we only selected the most significant segment
from among a group of adjacent parallel line segments for clustering.

The scale restoration of the photogrammetric point clouds is an important issue worthy
of attention. To measure the similarity between a pair of corresponding line segments p1 p2
and q1q2, thirteen component feature descriptors were constructed according to Wang’s
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method [35], including five scaling factors; this step is key to overcoming the scaling
differences. Subsequently, the line segments in the line group were sorted according to
Ferrari [36], and each corresponding line segment in the line group of p1 p2 and q1q2 was
measured. The sum of the similarity degrees was used to measure the similarity in the
line-segment group. This method can determine the optimal line segment mapping and
maximize the similarity measurement between two line-segment groups. Matching results
often contain individual errors. Such errors are unavoidable and can be eliminated using
RANSAC. Figure 4 shows the results of a set of similarity measures.

Line feature image from MLS 

point cloud

Line feature image from 

photogrammetry point cloud

Figure 4. Line segment matching result for a 2D line-feature image from a 
cross-source point cloud.

Figure 4. Line segment matching result for a 2D line-feature image from a cross-source point cloud.

According to the mapping relationship between points and two-dimensional projected
images, we can easily detect the two-dimensional correspondence relationship between
points and calculate the two-dimensional affine transformation factor. Scale consistency
recovery and two-dimensional alignment can be used to achieve cross-source point clouds.
Since the two-dimensional grid and internal points do not have a one-to-one correspon-
dence, the point closest to the center of the grid is generally chosen as the corresponding
point. Meanwhile, the step size of the grid can be smaller to improve the accuracy.

3.4. Incremental Height Offset and Overall Optimization

After 2D transformation, the scale of the multi-source point cloud is restored, and
the cross-source point cloud is accurately registered in the horizontal direction. However,
differences remain in the elevation direction of the Z axis. Figure 5d shows the location of
the section taken from the MLS point cloud (in blue). Figure 5e shows the position of the
section taken from the photogrammetric point cloud (in green). The superposition of the
two sections is shown in Figure 5f. It can be seen that even though the blue point cloud is
incomplete, and the green point cloud is noisy, the elevation offset of the two remains clear.
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a)2D registration result by line group matching. Blue: MLS point 

cloud. Colored: Photogrammetry point cloud.

b) Building façade extract from cross-source. Red: façade 

from MLS. Green: façade from Photogrammetric

c) 2D registration of the facade superposition 

relationship schematic

d) Extracting cross section (blue) from MLS point cloud

e) Extracting cross section (green) from  Photogrammetry 

point cloud

f) Cross sectional point cloud visually shows the elevation 

deviation of cross-source point cloud

Figure 5. 2D alignment and height 
offset.

Figure 5. 2D alignment and height offset.

In the preliminary screening of the main facade points, the point cloud is projected on
the horizontal plane and divided into high-density grid areas and low-density grid areas
based on the projection-point density. The high-density area is used as the primary result
of the elevation points, while the low-density area is usually distributed horizontally and
contains a large number of ground points, which will serve as the basis for our elevation
offset estimation [36]. The two point clouds to be registered, which are represented as
S = {si} and V = {vi}, were projected and segmented two-dimensionally according to the
same grid, and the average normal vector direction (ns, nv) and average elevation (hs, hv)
for each grid were calculated. If the angle between the normal vectors ∆nsv = (ns·nv) is
greater than 8◦, the area where the grid is located is considered to be affected by strong
noise and will no longer participate in the height deviation estimation. For the rest of
the grid, the height difference ∆hsv is calculated and counted, and the peak value of the
histogram is taken as the elevation offset.
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4. Experiments
4.1. Data Sets and Evaluation Metric Descriptions

We collected two challenging data sets to evaluate the performance of the proposed
algorithm. The first data set was collected from Southwest Jiaotong University (SWJTU),
whose campus has a total area of 1800 m × 1600 m. The second data set was collected from
Shenzhen Qianhai Exhibition Center (QEC), whose campus has a total area of 380 m × 380 m.
It should be noted that the data collected in this paper were intended for other project purposes
and were not subject to any special conditions at the data-collection stage.

The SWJTU Photogrammetric point cloud (SP) was obtained using an RIY DG-3
camera mounted on a “DJI M600Pro” UAV platform. This sensor can collect color image
data from one vertical viewing angle and four oblique viewing angles simultaneously. The
focal length of the camera’s face is 28 mm, and the focal length of the camera’s side is 40 mm.
SP contains a total of 28,886 images and was first used for real 3D modeling. The SWJTU
mobile laser scanning point cloud (SMLS) was collected using an ILSP-300 mobile laser
scanner. The data were first used in the Double First-Class Subject Construction Project of
Southwest Jiaotong University. To verify the scalability of our method, we acquired SWJTU
airborne laser scanning point cloud (SALS) data from a municipal project in Chengdu, with
a density of four points per square meter. We selected the method of Yang [22] to identify
the top contours of the buildings and generate two-dimensional projection images to pair
the ALS data using our method.

The QEC Photogrammetric point cloud (QP) containing 405 images was also obtained
using the RIY DG-3 camera. The QEC airborne laser scanning point cloud (QALS) data
from the Qianhai 3D Reconstruction Project were collected using a small UAV platform
with a laser scanner, which can reach an average density of 30 points per square meter. The
details of the data set are shown in Table 1.

Table 1. Detailed description of the data set.

Data Set Abbreviation Range (m) Points Average Point Distance (m)

SWJTU
SP 1200 × 600 659,318,734 0.01

SALS 1800 × 1600 12,710,409 0.4
SMLS 300 × 300 22,456,066 0.05

QEC
QP 380 × 380 140,513,227 0.01

QALS 300 × 300 6,757,291 0.08

The two selected data sets solve different challenges. Firstly, the complex structure of
the buildings in the SWJTU data set produces considerable noise in the photogrammetric
point cloud. At the same time, there are many trees and bushes in the scene, leading to
a large number of voids in the MLS point cloud. These challenges can be used to fully
evaluate the performance of the algorithm. Buildings in the QEC data set feature small
eaves and a large number of transmission materials, introducing more noise into the point-
cloud data. In the next section, we further evaluate the robustness of our algorithm. In the
experiment section, we quantitatively compare and analyze the scale recovery, the accuracy
of feature matching, and the accuracy of registration. Several characteristic scenarios
are presented, and the rotation error er and shift error et are considered as evaluation
criteria [29,37].

4.2. Experiment Results
4.2.1. Qualitative Evaluations

In this section, we present the registration results to show that the proposed method
can overcome the various differences present in cross-source point clouds and achieve
accurate co-registration. To illustrate the qualitative evaluation of our method, we provide
the registration results (both whole and in part) in Figures 6–8. In these figures, the SALS
data set is colored green, which darkens from a high to low elevation. The SMLS data is
instead colored red, while SP uses the true texture color.
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1

2

a) An overview of the registration results

b) Connection of cross-

source point cloud

c) Two close-up areas

Figure 6. Overview of the SWJTU data set cross-source point-cloud registration.
Figure 6. Overview of the SWJTU data set cross-source point-cloud registration.

b) Connection of cross-

source point cloud

c)close-upa) An overview of the registration results

Figure 7. Overview of the QEC data set cross-source point-cloud registration.Figure 7. Overview of the QEC data set cross-source point-cloud registration.
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Figure 6a shows the registration results from the overall top perspective. Here, the
bounding boxes for three kinds of data are shown. Ranging from large to small, these
boxes represent SALS (colored green by elevation), SP (real color), and SMLS (colored red
by elevation). It can be seen that the coverage range is significantly different between each
data set. Figure 6b illustrates the seams of the cross-source point cloud, which shows that
the building outline is aligned. Figure 6c indicates the positions of two close-up areas
through yellow boxes. The corresponding two details are magnified and shown in Figure 8.
Figure 7 shows the registration results for the QEC data set.

Figure 8 shows the separate data for three sources alongside the results for the pair
registration and co-registration of three kinds of data from the same perspective. As shown
by the results, although the SWJTU data set contains point clouds captured from the
aerial and ground perspectives, and the resolution and noise levels of the point clouds
are significantly different, we can still obtain good registration results. First, the scale
recovery results are excellent, thereby overcoming the bottleneck of traditional point-cloud
registration with rigid body transformation as the paradigm, and do not require manual
operation to be achieved. In addition, the figure clearly shows that the major edges of the
building correspond exactly. To clarify the results, we illustrate the output data as pairs
of alignment in the detailed display. The three data sets from different sources are then
aligned together.

4.2.2. Further Detailed Assessment

To further evaluate the effectiveness of the cross-source point-cloud registration
method proposed in this paper, we selected a characteristic section in the SWJTU data set
that contains four challenging data types. As shown in Figure 9, we cut the point cloud
slice with a thickness of 1 m in the scene and observed it from a side view. Figure 9a shows
the spatial position of the point cloud slice’s profile. We can easily determine the exact
location of this point cloud slice using the real texture of SP. The well-aligned structure can
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be seen in the section shown in Figure 9b, which again uses red for SMLS and green for
SALS. At this point, to achieve a clearer contrast, we colored the SP blue. At the same time,
four special positions are marked with gray circles. Further details are shown in panels c,
d, e, and f of Figure 9.

f) Registration of steps and eaves

b) Sectional view of co-registration result

a) Diagram of Section Position

c) Registration of vegetation 

areas d) Registration of building facades 

and roof

e) Registration of regions containing 

gross errors

Figure 9. Section display of the registration 
results.

Figure 9. Section display of the registration results.

Figure 9c shows the vegetation element. In the cloud of blue photogrammetry points,
this element appears as a ball protruding from the ground. The red SMLS points depict the
main branches of the vegetation, while the green SALS point cloud has only a few scattered
points, making it difficult to describe the structure of the vegetation. The geometric
similarities of the three-point clouds are difficult to determine, even via manual interactions.
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Under the proposed method, we believe that cross-source point clouds can achieve co-
registration with this vegetation but cannot be measured using a certain value.

Figure 9d illustrates the facade and roof of the building. The laser-scanning point
clouds obtained from the air and ground are distributed on the top and the facade, re-
spectively, with few overlapping areas. In addition, the windows cause laser beams to
be emitted, leaving unused MLS points within the interior of the building. At this stage,
the photogrammetric point cloud is more like a bridge connecting the laser points from
different platforms, and the three register well together.

Figure 9e illustrates the area near the ground at the bottom of the building. It can
be seen that the photogrammetric point cloud features obvious noise and two obvious
abnormal bulges on the ground, which may have been caused by the low vegetation on
the ground. Although it may seem that the cross-source point clouds are not consistent,
they remain aligned. Clearly, the traditional registration method has difficulty converging
to the current position and is more likely to deviate to a position that seems correct but is
ultimately incorrect.

Figure 9f illustrates the entrance of the building. Thus, this image includes common
ground features such as eaves, steps, and vegetation. The overhead perspective of the image
makes it difficult to collect data under the eaves, which leads to the photogrammetric point
cloud in this area appearing distorted and clearly incorrect. Meanwhile, the steps present
obvious structural changes, and the passivation phenomenon of the photogrammetric
point cloud for the sharp feature description is obvious here. The same phenomenon can
be observed in the structures of the windows.

To sum up, the four types of cases illustrated in Figure 9 represent key areas where it
is difficult to obtain accurate results using traditional registration methods. However, our
method achieved observably accurate co-registration.

4.3. Quantitative Evaluations

Quantitative evaluations involve three important aspects, including the restoration of
scale, the accuracy of feature matching, and the accuracy of co-registration.

First is the restoration of scale. For this aspect, we selected four distinct and complete
building boundaries and recorded the lengths of the building edges before and after scale
restoration using manual intervention. The recovery error ∆lsc and recovery rate ρsc were
set to measure the scale restoration results using the following formula:{

∆lsc = ∆[edge(SP∗)− edge(SP)]
ρsc = |∆lsc|/edge(SP∗) (4)

where edge(∗) represents the building edge length in the specified data set, and |∗| refers
to the absolute value. The recovery error ∆lsc represents the difference in the Euclidean
distance of the corresponding building edges between different data sets, while the recovery
rate ρsc represents the deviation of scale recovery. Figure 10 shows the specific positions
of the four building edges, and the statistics for scale recovery are presented in Table 2.
Notably, since the edge-length measurement is based on manual intervention, the selection
error will also accumulate in the recovery error and recovery rate, which is inevitable.
Surprisingly, the scale restoration results still generally reached more than 98.5%.
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Figure 10. The four building edges used to compare scale restoration.

Table 2. Comparison of building edge length before and after scale restoration.

Line1 Line2 Line3 Line4

SMLS 57.5366 38.4725 105.655 102.468
SP 44.7318 30.3245 81.548 78.8507

SP * 57.5932 39.0434 104.9948 101.522
∆lsc −0.0566 −0.5709 0.6602 0.946
ρsc 99.9% 98.5% 99.4% 99.0%

To facilitate the accuracy of the feature matching, the proposed method increases the
role of the linear features present on the building outline to overcome the differences across
the source point clouds. The effectiveness of this method was verified by the following
quantitative experiment. In Figure 11, the left side shows the matching results of the
directly extracted line features from the cross-source point cloud, while the right side uses
the linear features extracted by our method for matching. It can be seen that the line
features directly extracted from the original point cloud are irregular. Although a matching
relationship was obtained during the similarity measurements, this relationship was clearly
incorrect. Ultimately, reasonable and accurate matching results could not be obtained. On
the other hand, by extracting the linear features of the building outline, the redundant
information in the scene was effectively reduced, and the accuracy and effectiveness of
the similarity measurements were significantly improved. The experimental statistics are
shown in Table 3.
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Figure 11. The extraction of linear features improved the accuracy of feature matching.

Table 3. Statistics of the line-feature-matching results.

Data Set Candidate
Line Segment

The Number
of Matches Correct Match Incorrect Match

Original SMLS 373
12 2 10Original SP 628

Simplify SMLS 121
35 32 3Simplify SP 381

To quantitatively evaluate the accuracy of the cross-source point-cloud co-registration,
we take the rotation error er and the shift error et as the evaluation criteria. For a selection
of the point clouds to be registered, the target point cloud S = {si} and the source point
cloud V = {vi}, the scale factor λ, the rotation matrix R, and the translation matrix T are
calculated through the registration process:{

er = arccos
tr(R−R)−1

2
et = ‖T − T‖

(5)

where R and T represent the true value of registration. Here, the true value was obtained
through three independent manual interactive registration results to obtain the average
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value, thereby reducing the manual errors. The registration tasks were then divided into
three groups: SP + SMLS, SP + SALS, and SMLS + SALS. We intended to compare the
results of the proposed method with those of existing open-source mainstream algorithms,
but due to the large differences in the coverage of the three source point clouds, it was
difficult to obtain effective results by directly using the GICP algorithm or other open-
source algorithms. Notably, even if we provided accurate initial registration through
manual intervention, the results of the fine registration would still obtain the incorrect local
optima. Table 4 shows the accuracy of the registration results obtained using the method
proposed in this paper. Then, we manually cut the data range to make it more manageable
in size and obtained good registration results under the GICP method. To better measure
the effect of registration, the average distance of the nearest point between the two groups
of point clouds and their MSE/RMSE errors were counted after registration. The results
are shown in Table 5.

Table 4. The statistics of the rotational error and translation error of the co-registration results.

SMLS + SP SALS + SP SMLS + SALS QP + QALS

er(m) 0.015 0.32 0.24 0.29
et(deg) 0.03 0.09 0.12 0.08

Table 5. Statistics of the co-registration results after manual cutting.

Average Nearest Point Distance MSE RMSE

SP-SMLS
GICP 1.33954 6.3839 2.52664

Purposed
method 1.47263 6.31827 2.51362

QP-QALS

Coarse reg-
istration 3.25631 2.82787 1.68163

GICP 0.94886 1.71269 1.3087
Purposed
method 0.302516 0.613933 0.783539

4.4. Discussion and Limitations

The characteristics of the proposed method and its possible limitations are discussed below.

(1) Effective linear feature extraction and descriptions greatly reduce the influence of
redundant information and errors in the registration process and overcome the im-
portant challenge of cross-source point-cloud registration, which involves a similar
overall structure but significantly different details. In this method, similar linear
features that lie on the building outline are highlighted to effectively improve the
validity and robustness of the candidate features.

(2) An automatic point-cloud scale-restoration method was developed. By using robust
line feature extraction and similarity measurements of 2D line-segment groups, ac-
curate corresponding feature mapping and 2D affine transformation were realized
between the cross-source point clouds.

(3) A cross-source point cloud automatic registration framework with strong applicability
was designed and implemented. By extracting the principal structures and reducing
the degrees of freedom, the complex registration process among the differentiated multi-
source point clouds was decomposed into several independent and interrelated steps.

(4) As a limitation, some mismatched feature pairs remained in the 2D line-segment
group’s similarity measurement. Although no decisive interference was observed in
our data set, there is no guarantee that the applicability of our algorithm will not be
limited with a further increase in data diversity and differentiation.
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5. Conclusions

In this paper, an effective co-registration method for cross-source point clouds was
proposed, and a simplified point-cloud extraction method was introduced. This method can
effectively simplify the scene and overcome noise, as well as extract similar linear features
from building outlines taken from different sources. Subsequently, 2D line-segment-group
matching and affine transformation were performed to restore the scale of the point cloud
and align it on the horizontal plane. The incremental registration process effectively
realized cross-source point-cloud co-registration.

Comprehensive experiments were carried out to evaluate the capabilities of the proposed
method. The test results demonstrated that this method is suitable for cross-source point-
cloud registration with significant differences. In the key areas where traditional registration
methods have difficulty obtaining accurate results, the proposed method achieved good
results. Nevertheless, the limitations of the proposed method require further investigation.
Therefore, our future research focus will be to apply this approach to more complex cases.
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