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Abstract: Addressing inland water transparency and driver effects to ensure the sustainability and
provision of good quality water in Sri Lanka has been a timely prerequisite, especially under the
Sustainable Development Goals 2030 agenda. Natural and anthropogenic changes lead to significant
variations in water quality in the country. Therefore, an urgent need has emerged to understand the
variability, spatiotemporal patterns, changing trends and impact of drivers on transparency, which
are unclear to date. This study used all available Landsat 8 images from 2013 to 2020 and a quasi-
analytical approach to assess the spatiotemporal Secchi disk depth (ZSD) variability of 550 reservoirs
and its relationship with natural (precipitation, wind and temperature) and anthropogenic (human
activity and population density) drivers. ZSD varied from 9.68 cm to 199.47 with an average of
64.71 cm and 93% of reservoirs had transparency below 100 cm. Overall, slightly increasing trends
were shown in the annual mean ZSD. Notable intra-annual variations were also indicating the
highest and lowest ZSD during the north-east monsoon and south-west monsoon, respectively. The
highest ZSD was found in wet zone reservoirs, while dry zone showed the least. All of the drivers
were significantly affecting the water transparency in the entire island. The combined impact of
natural factors on ZSD changes was more significant (77.70%) than anthropogenic variables, whereas,
specifically, human activity accounted for the highest variability across all climatic zones. The
findings of this study provide the first comprehensive estimation of the ZSD of entire reservoirs and
driver contribution and also provides essential information for future sustainable water management
and conservation strategies.

Keywords: Google Earth Engine; Landsat 8; quasi-analytical derivation; Secchi disk depth; Sri Lanka;
water transparency

1. Introduction

Inland water is one of the most crucial and limited natural resources that plays a
pivotal role in sustaining biodiversity and human society [1,2]. However, regional envi-
ronmental conditions, such as climatic and anthropogenic factors, threaten their ecological
functions [3,4]. Regular observations are vital to assess the impact of surface water variation
on the environment. Inland water deterioration is recognised as an emerging issue in Sri
Lanka by the National Action Plan for Haritha (Green) Lanka Programme of 2009–2016 [5].

Water transparency is one of the most common indicators of water quality impair-
ment, and the Secchi disk depth (ZSD) is a direct representation of the water clarity, often
referred to as a proxy for the overall water quality of the waterbody. ZSD indicates water
transparency as observed by the human eye and also represents the light availability for
the benthic ecosystem [6]. Over centuries, limnologists have widely and regularly used
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the Secchi disk to measure water transparency, and clarity has been explained in terms of
its attenuation in the vertical direction of water [7]. ZSD is still widely in use locally [8–10]
and globally [11,12]. In Sri Lanka, there have been a limited number of in-situ ZSD based
studies reported at reservoirs or river basin scale [13–17]. However, so far, an island wide
comprehensive investigation of water transparency distribution and its dynamics has not
been executed and remains unknown.

Generally, on the reservoir scale, catchment characteristics and morphometric factors
are primary determinants of ZSD that regulate nutrient runoff, transport and prolonged re-
tention of light attenuating sediments and nutrients [14,18]. In addition, various substantial
natural and anthropogenic contributory factors of water transparency changes have been
identified in Sri Lanka. Most of the studies aim to explain influencing factors at the reser-
voir scale [19,20]. Nevertheless, the roles of them were not systematically obtained to date.
The country also identified the importance of water resource planning and conservation,
and the provision of adequate good quality water has been a timely requirement, especially
under the United Nations Sustainable Development Goals (SDGs) 2030 Agenda. A proper
understanding of the historical ZSD dynamics and its drivers as a source for drinking water,
food production, irrigation, hydro power generation and aquatic ecosystem services is
vital. Additionally, it might be helpful to attain these global targets.

Particularly over recent decades, remote sensing techniques have extensively used in
the applications of a range of inland water quality monitoring and have demonstrated their
strong capabilities with certain limitations [21,22]. The onboard mounted satellite sensors
capture reflectance from the water surface at various wavelengths. These observations
are mainly imaging with the visible portion of the electromagnetic spectrum and can be
used to extract the water quality parameters, such as ZSD, from their spectral responses.
Many studies have widely established the relation between water-leaving reflectance and
its optically active constituents. Organic and inorganic suspended solids, phytoplankton,
and coloured dissolved organic matter are the optically active contributing parameters for
the water-leaving reflectance [23,24].

In the recent past, ZSD estimations have been widely derived semi-analytically [25].
Optically active water quality constituents derive by utilizing the relationship between
water quality parameters and inherent optical properties (IOP) [26,27]. Due to the entire
dependence on water-leaving radiance rather than in-situ measurements, these models
depicted more applicability and reliable results [28]. According to the new underwater
visibility theory [29], the ZSD derivation model consisted of a combination of the quasi-
analytical algorithm (QAA) [30,31] and a mechanistic model for the derivation of the
absorption coefficient and backscattering. This algorithm was implemented for Landsat
8 OLI (Operational Land Imager) multispectral data and was shown to be well performed
with a large number of in-situ ZSD validation samples across inland, coastal and oceanic
water environments with a range of 0.1–30 m [32–34]. The latest updated version of QAA
(QAA_v6) also improved the performance in turbid water in specific [35].

However, uses of remotely sensed data for water turbidity or clarity assessments,
especially on reservoir ZSD retrieval and monitoring, is rare in Sri Lanka. Water qual-
ity deterioration is an emerging issue in a country suffering from water scarcity, where
sufficient information is not available for investigation. Given the scarcity and lack of
consistent data on water transparency changes, variability, and drivers, an urgent need
has emerged to understand the spatiotemporal dynamics and impacts of drivers. In this
study, we investigate the spatial and temporal patterns of surface water transparency in Sri
Lanka, and their relations to natural and anthropogenic driving forces from 2013 to 2020
by quasi-analytically derived Secchi depth using Landsat 8 OLI data and GEE.

2. Materials and Methods
2.1. Study Area

We study all 550 inland reservoirs in Sri Lanka with a permanent water area (retained
water over 80% of the entire study period) greater than 1 ha, demarcated from all available
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Landsat images. Their spatial distribution is shown in Figure 1a. Permanent water areas
were considered to exclude shallow areas or regions covered by floating or submerged
aquatic vegetation or islands. These reservoirs include several kinds of inland water
features other than reservoirs, such as lakes, wetlands, rainwater retention ponds and other
waterbodies. General catchment characteristics of studied reservoirs in three climatic zones
are summarized in Table 1.
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Table 1. General characteristics and number of water bodies studied in three climatic zones during the study period
(2013–2020). Mean values are given in brackets.

Parameter
Zone

Dry Wet Intermediate

Elevation (m) −6.00–277.00 (53.50) −10.00–503.00 (342.68) −6–1885.00 (135.51)
Permanent water area (ha) 1.08–2719.44 (81.37) 1.08–696.69 (79.54) 1.08–1489.86 (119.04)

Catchment area (ha) 0.09–54,111.80 (2113.27) 0.09–221,707.00 (7590.01) 0.09–51,046.90 (3414.36)
Water depth (m) 1.03–14.90 (3.06) 0.98–13.40 (8.54) 1.3–15.80 (6.75)

Number of water bodies 444 40 66

2.2. Data Used
2.2.1. Landsat 8 Data

A total of 1369 Landsat 8 OLI level 2 surface reflectance images between May 2013
and November 2020 were acquired along paths 140 to 142, and rows 53 to 56. The Tier
1 collection was used for this study (Table 2). Level 2 surface reflectance is atmospherically
corrected data at a 30 m resolution.

Table 2. The number of Landsat 8 OLI images (2013–2020) used per path/row in this study.

Year 2013 2014 2015 2016 2017 2018 2019 2020 Total

Number of images 106 180 182 195 188 186 177 155 1369

2.2.2. In-Situ Data

Sixty-five ZSD in-situ samples were measured from five reservoirs from dry (3) and wet
(2) zones from 2015 to 2019, and a summary of the sampling stations are given in Table 3
with the time window between the in-situ measurement and Landsat 8 OLI overpass.
Observations obtained by the previous studies were also collected [13]. Coordinates of
water sampling stations were recorded using a handheld global positioning system device.
A standard Secchi disk with 25 cm diameter and alternating black and white quadrants
was used to determine the in-situ field observations. The Secchi depth was determined as
the vertically downward depth when the disk disappears from human eyesight through
the water with a suitable sunshade. Reservoirs were sampled between 10 a.m. and 3 p.m.
from the shaded side of the boat to avoid the solar altitudinal effects.

Five Landsat 8 OLI images only were corresponded to the date of the in-situ field
measurements, resulting in 34 appropriate cloud-free observations for validation of the ZSD
model employed in this study. The closest pixel to the in-situ observation was obtained
for the matchup pairs. Only suitable water pixels excluding cloud, shadow, land and
other potential noises were considered for the validation. Previous studies reported that
the time window within ±23 days between the in-situ sampling and satellite overpass
could produce acceptable results. For example, a time window of ±7 days used to assess
water transparency of waterbody by ZSD using Landsat TM (Thematic Mapper) and
Multispectral Scanner [36], a time window of ±10 days used to validate ZSD models
of 10,000 lakes in Minnesota using Landsat TM and Enhanced Thematic Mapper Plus
(ETM+) [11], a time window of ±11 days used to estimate suspended solids concentration
in the Indus Delta region using Landsat 7 ETM+ [25], time window between±23 days used
for the classification of water quality types in Pearl River estuary and adjacent area using
Landsat 5 TM [37]. We used a matchup time window of ±0–12 days to collocate in-situ
measurements and Landsat 8 OLI images. In addition to ZSD, for 37 sampling stations,
Total Suspended Solids (TSS) were also collected.
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Table 3. Information on in-situ ZSD samples collected during the study period.

Reservoir Number of
Total Samples

Number of
Validation
Samples

Sampling
Date

In-Situ ZSD (cm)
Image

Acquisition
Date

Time
Window 2

Max Min Mean Std. Dev.

Sooriyawewa 1 6 6 20-10-2014 70 58 62.67 3.73 20-10-2014 0
Sooriyawewa 1 6 1 16-12-2014 140 90 110.00 17.30 07-12-2014 9
Sooriyawewa 1 6 1 26-02-2015 112 79 98.00 11.25 25-02-2015 1

Kandy 9 2 04-11-2018 170 110 142.78 18.43 16-11-2018 12
Parakrama
Samudra 17 14 07-11-2018 190 120 156.76 27.60 16-11-2018 9

Dambulla 10 10 05-11-2018 80 70 75.50 4.15 16-11-2018 11
Beira 11 - 03-12-2019 21 12 17.73 2.49 - -

1 In-situ ZSD data were acquired from [13]. 2 Time window between in-situ measurement and Landsat 8 OLI overpass.

2.2.3. Geographical, Climatic and Anthropogenic Data

The water quality variation in Sri Lanka was driven by several natural (geographical
and climatic) and anthropogenic factors [14,17,19,20,38]. We categorized them two-fold:
precipitation, temperature, wind speed, average water depth, elevation as natural drivers,
and population density and Normalized Difference Vegetation Index (NDVI) as anthro-
pogenic factors. These datasets were obtained in the Google Earth Engine (GEE) platform,
and the information of the GEE datasets are summarized in Table 4 with their resolution
and GEE assets. A preliminary investigation on the influence of these potential drivers on
water transparency over climatic zones over the study period was conducted.

Table 4. Google Earth Engine datasets used in this study.

Data/Product Variable
Resolution

GEE Asset Address
Spatial Temporal

Landsat 8 OLI Surface reflectance 30 m 16 days LANDSAT/LC08/C01/T1_SR
SRTM DEM V3 Elevation (m) 30 m static USGS/SRTMGL1_003
TRMM 3B43 V7 Precipitation rate (mm/h) 0.25◦ 1 month TRMM/3B43V7
ECMWF ERA5 U component of wind (ms−1) 0.25◦ 1 month ECMWF/ERA5/MONTHLY
ECMWF ERA5 V component of wind (ms−1) 0.25◦ 1 month ECMWF/ERA5/MONTHLY
ECMWF ERA5 2m Temperature (K) 0.25◦ 1 month ECMWF/ERA5/MONTHLY

NASA SEDAC GPWv411 Population density 30′ 5 years CIESIN/GPWv411/GPW_
Population_Density

The catchment areas of all studied reservoirs were derived from the Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model (DEM) provided by the National
Aeronautics and Space Administration (NASA). Elevation of each reservoir was also
extracted from this SRTM DEM. The average water depth of reservoirs was also derived
using the geostatistical method described in [39] from the SRTM DEM. By adopting this
approach, an average water depth of 336 reservoirs was successfully retrieved.

Monthly cumulative precipitations were calculated from the Tropical Rainfall Measur-
ing Mission (TRMM) product 3B43 V7 from Goddard Earth Science Data and Information
Services from 2013–2019. Monthly precipitations collected from 25 meteorological stations
were used for 2020 [40]. Monthly mean 2 m temperature, u_component_of_wind_10m
and v_component_of_wind_10m were collected from the European Centre for Medium-
Range Weather Forecasts (ECMWF). We used these u and v component wind vectors to
calculate the monthly mean wind speed (W) using Equation (1). Population density data
were obtained from the gridded population of the world (GPW) dataset from the NASA
Socioeconomic Data and Applications Centre (SEDAC) at the Centre for International
Earth Science Information Network (CIESIN) in 2010, 2015 and 2020. Annual population
densities were obtained by interpolating these data.

W =
√

u2 + v2, (1)
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Annual average precipitation, temperature, wind speed, NDVI and population density
were calculated for each catchment area from 2013 to 2020. Average water depth and
elevation data remained constant throughout the study period due to the lack of continuous
data availability.

2.3. Image Processing and Water Extraction

The Landsat 8 OLI Level 2 data were obtained through the GEE platform. Level 2
surface reflectance is atmospherically corrected data by the Landsat Surface Reflectance
Code (LaSRC) algorithm [41]. LaSRC algorithm was based on the Second Simulation of the
Satellite Signal in the Solar Spectrum Vectorial (6SV) model. Level 2 products are reliable
in the derivation of ZSD using the QAA approach [33,34].

We estimated remote sensing reflectance (Rrs) from surface reflectance and trans-
formed this to the range of 0 to 1 by using the following Equation (2) [42,43]:

Rrs =
Surface reflectance× 0.0001

π
(2)

Suitable water pixels were only selected for analysis by masking cloud and cloud
shadow pixels using the quality attributes of a particular pixel determined by the CFMask
algorithm and removing reflectance values out of the range of 0 and 1. All suitable
observations were then cumulated to obtain monthly and annual mean ZSD (Figure 2).
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This study employed the Support Vector Machine (SVM) approach to perform super-
vised surface water classification in the GEE platform with a manually created training
sample set [44]. The first seven bands of Landsat 8 OLI and NDVI image were used for wa-
ter classification. These input variables were identified as ideal for efficient water detection
by excluding particular objects, such as floating and submerged vegetation and shadows,
in machine learning approaches [45].
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2.4. Modelling of ZSD Using QAA

The quasi-analytical algorithm [29,30] is precisely interpreting the sighting of a Secchi
disk by combined empirical and analytical approaches using radiative transfer equations.
This algorithm was applied to Landsat 8 OLI observations to derive water transparency [32].
QAA based ZSD derivation model mainly consists of:

1. Estimation of IOPs,
2. Estimation of Kd,
3. Estimation of ZSD.

2.4.1. Estimation of IOPs

Time series Landsat remote sensing reflectance was processed with the QAA_v6 [29,32]
algorithm in order to obtain the total absorption a(λ) and backscattering bb(λ) coefficients.
This algorithm consists of seven steps, including three semi-analytical models and two
models per empirical and analytical approaches [30]. The variables and the main steps
are summarized in Table 5. The first four bands of the Landsat 8 OLI sensor, centred at
wavelengths 443,483,555, and 670, were used for the ZSD model.

Table 5. Main steps of the QAA_v6.

Step Variable QAA_v6 Approach

1 rrs(λ) = Rrs
0.52+1.7Rrs

Semi-analytical

2 u (λ) =
bb(λ)

a(λ)+bb(λ)
=
−g0±
√

g0
2+4g1rrs(λ)

2g1
Semi-analytical

3 a(λ0)
a(λ0) = aw(λ0) + ∆a(λ0)

a(670) = aw(670) + 0.39
(

rrs(670)
rrs(443)+rrs(490)

)1.14
, λ0 = 670

Empirical

4 bbp(λ0) bbp(670) = u(λ0) a(λ0)
1−u(λ0)

− bbw(λ0) Analytical

5 η = 2.0
(

1.0− 1.2 exp
(
−0.9 rrs(443)

rrs(555)

))
Empirical

6 bbp(λ) = bbp(λ0)
(

λ0
λ

)η
Semi-analytical

7 a(λ) =
(1−u (λ)) (bbw(λ)+bbp(λ))

u (λ)
Analytical

At first, Landsat remote sensing reflectance Rrs observed in the nadir direction were
converted to the subsurface remote sensing reflectance (rrs). In the second step, according
to the radiative transfer function based on [46], u(λλ), a ratio, is expressed in terms of rrs,
g0 and g1, where g0 and g1 are 0.089 and 0.125 sr−1, respectively. Then, the total absorption
coefficient (a) estimated at the reference wavelength (λo) in the next step where, aw is the
absorption coefficient of pure water and assumed as a constant, ∆a(λo) is the contributions
from non-water constituents and empirically assessed from rrs spectra by considering λo as
670 nm. In step four, the backscattering coefficients of suspended particles (bbp) calculated
from the analytical equation where bbw is the backscattering coefficients of pure seawater.
Further, in steps five and six, bbp values at the other three wavelengths were estimated by
the widely used power expression where, power coefficient, η was empirically estimated
from rrs [47]. Finally, the total absorption coefficient was derived in the last step.

2.4.2. Estimation of Kd

Kd was calculated by the following the radiative transfer equation [48] by using the
estimated IOPs:

Kd(λ) = (1 + m0 × θs) a(λ)+
(

1− γ
bbw(λ)

bb(λ)

)
×m1 ×

(
1−m2 × e−m3 ×a(λ)

)
bb(λ), (3)

where, m0, m1, m2, m3 and γ are model parameters, and their values are 0.005, 4.26, 0.52,
10.8, and 0.265, respectively. θs is the solar zenith angle in degrees. bbw(λ) refers to the
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backscattering coefficient of pure water based on [49]. a(λ) and bb(λ) are the absorption
and backscattering coefficients estimated by QAA_v6.

2.4.3. Estimation of ZSD

The new underwater visibility theory stated that the ZSD is inversely proportional to
the minimum value of the diffuse attenuation coefficient Kd in the maximum transparent
spectral window of the water body within the visible range of 443–670 nm [29]:

Zsd =
1

2.5 Ktr
d min

ln

(∣∣0.14− Rtr
rs
∣∣

0.013

)
(4)

where, Rtr
rs is the remote sensing reflectance that corresponds to the wavelength with

minimum Kd. Landsat 8 OLI has four spectral bands (443, 483, 555, and 670 nm) within the
visible domain.

2.5. Accuracy Assessment of ZSD Model

In-situ ZSD sample dataset was used to validate the model. The statistical indicators
used for validation were root mean square error (RMSE), the mean absolute difference
(MAD), the mean absolute percentage error (MAPE), and determination coefficient (R2).

MAD =
1
N

N

∑
1

∣∣Xest,i − Xobs,i
∣∣ (5)

MAPE =
1
N

N

∑
1

(∣∣∣∣Xest,i − Xobs,i

Xobs,i

∣∣∣∣)× 100% (6)

where, Xest and Xobs are the ZSD derived from Landsat 8 OLI, and in-situ measurements,
respectively; N is the number of the matching observations.

2.6. Evaluating ZSD Trends and the Effects of Driving Factors

For each studied reservoir, mean annual and mean monthly ZSD were calculated
from all available observations. Mean annual ZSD values were estimated from 2013 to
2020 and subsequently averaged to obtain the mean ZSD value during the entire study
period. In order to obtain the annual rate of change in ZSD during the study period,
linear regressions were performed with all mean annual ZSD values per reservoir. A non-
parametric Mann–Kendall trend test identified the significance level of these resultant
trends [50]. A k-means feature-based clustering method was employed in MATLAB to
categorize reservoirs according to their mean monthly ZSD values.

To investigate the long-term influence of driving factors on the inter-annual variation
in the ZSD, a multiple linear model (MLM) regression analysis was conducted. All these
statistical analyses were performed in the RStudio.

3. Results
3.1. Observation Frequency of Reservoirs

Landsat 8 OLI sensor is capturing ground as segments of 185 × 180 km and has a
forward overlap of 8.5 km and a side overlap of 18 km between its paths in Sri Lanka.
Repeated observations are generally possible every 16 days, and eight-day frequencies
in certain regions fall under path overlapping. Hence, a maximum annual observation
frequency of 23 to 46 epochs is probable for each reservoir subject to the location.

The number of clear observations of reservoirs is influenced by both cloudiness
and shadowiness. Likewise, data quality is subjective to the atmospheric conditions.
Cloud coverage is highly abundant around Sri Lanka and exerts great significance on the
availability of suitable, good quality images [51]. After removing cloud and shadow and
selecting good quality observations within reflectance range of zero and one, narrowed
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down the annual average observation frequency from 1 to 30 (Figure 3). Overall, reservoirs
were mostly captured eight times annually, with a mean of 10.96 observations per year
(Figure 4a). The median of successful observations per month ranged between 246 and
492 for the entire study period across the country (Figure 4b). Figure 4b indicates that
the highest number of valid observations that occured during January, March, April and
October; however, the least happened in September and November. The number of annual
average observations was calculated by dividing the valid observations of each reservoir
by 7.5, which is the number of years of the study period. Figure 3 shows the annual average
number of successful observations for each reservoir during the entire study period with
ground paths of the OLI sensor. Reservoirs located in the path overlapping regions clearly
indicated a higher frequency concerning other areas. Cloud coverage peaked along the
northern and north-western coastal areas of the island, exhibiting a significantly smaller
number of observations per year (fewer than six).
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3.2. Accuracy Assessment

The accuracy of Landsat 8 OLI derived ZSD was assessed from a total of 34 matched up
pairs of in-situ field measurements and modelled values (Figure 5). The model estimated
values were highly consistent (R2 = 0.67) with in-situ ZSD within a range of 70 to 190 cm
with resulting in the RMSE of only 32.60 cm, the MAD of 28.44 cm and the MAPE of 36.08%.
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3.3. Spatial Distribution of Water Transparency

Water transparency varied spatially across the whole country from 2013 to 2020.
We computed water transparency over the last eight years using Landsat 8 OLI images.
Figure 6 shows the distribution of the mean ZSD of all 550 reservoirs studied with the
lowest value of 9.68 cm, the highest of 199.47 cm, and an average of 64.71 cm. This result
indicated that the mean water transparency was relatively lower in Sri Lanka within a short
range. During the study years, the highest ZSD observed in the country was 312.36 cm
(Figure 6b), and great variation between their highest and lowest ZSD was obvious among
several reservoirs. Notably, about 93 % of the reservoirs showed relatively lower water
transparency than 100 cm, and only 37 reservoirs were shown as more transparent than
that (Figure 6c).
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The distribution of mean ZSD showed several spatial patterns across the climatic zones.
Mean ZSD was higher in the wet zone 91.05 ± 43.22 cm, then followed by the intermediate
zone at 81.82 ± 29.79 cm, with the lowest in the dry zone with 59.81 ± 21.06 cm. Wet and
intermediate zones had most of the reservoirs with a ZSD range of above 50 cm. Most
reservoirs have the highest transparency (i.e., ZSD > 100 cm) located in these two zones.
Reservoirs with the lowest transparency of ZSD < 50 cm were generally distributed along
the coastal regions of the dry zone. Additionally, most reservoirs in this zone were shown
a ZSD between 50 and 100 cm, while very few large reservoirs had a ZSD above 100 cm.

3.4. Inter- and Intra-Annual Variations in ZSD

The spatial distribution of the annual mean ZSD rate of change of all reservoirs studied
from 2013 to 2020 is shown below in Figure 7a. Overall, the water transparency trend of
Sri Lanka has indicated an increasing tendency at a rate of 1.02 ± 2.33 cm/year over the
last eight years. ZSD of reservoirs increased at a maximum rate of 13 cm/year while they
decreased up to -15 cm/year. The rate of changes in all 550 reservoirs are presented in
Figure 7c. There was an increase in the mean annual ZSD in 68% of the study reservoirs,
and 8% showed a significant rise (p-value < 0.05). The remaining 174 (32%) reservoirs
decreased in their water transparency during the entire study period. Reservoirs with a
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decreasing tendency were shown to be prominent along the coastal regions and in the
south-eastern part of the dry zone.
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Reservoirs are numbered according to longitudinal values.

The inter-annual variations of the entire country and three climatic zones from 2013 to
2020 are plotted in Figure 8a. The overall trend of ZSD showed a slight fluctuating growth.
ZSD has increased from 57.20 cm to 65.46 cm during the study years. The reservoirs in the
wet zone showed the highest transparency ranging from 79.96–100.62 cm. Transparency
was then followed by the intermediate zone, which increased from 69.02 cm to 84.55 cm. The
dry zone had the lowest ZSD range of 52.91–64.70 cm. On the other hand, the intermediate
zone was shown to have the highest increasing rate in transparency at 1.39 cm/year,
followed by the dry zone with 1.00 cm/year and the lowest rate was observed in the wet
zone, a rate of 0.65 cm/year.

The mean monthly ZSD of the three zones are plotted in Figure 8b along with four
monsoon seasons in Sri Lanka: the north-east monsoon (NEM), the first inter monsoon
season (FIM), the south-west monsoon (SWM) and the second inter monsoon (SIM). Overall,
all zones showed the lowest ZSD values during the SWM. Dry and intermediate zones
were highest in ZSD during the NEM, whereas the wet zone had during the NEM and
SIM. Except for the wet zone in the SWM, all zones exhibited a gradual decrease in ZSD
from their highest occurrence season to the lowest, and vice versa. The wet zone had a
fluctuation pattern during the SWM and peaked in November. Dry and intermediate zones
had the highest and lowest transparency during February and July, respectively.
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3.5. Categorization of Reservoirs by Intra-Annual Variation

We calculated the mean monthly ZSD from all available images over the study period.
A total number of 549 water bodies with more than ten valid monthly observations were
selected for this analysis. All reservoirs were classified into seven different groups by a
feature-based clustering with percentages (Figure 9). The spatial distribution of these seven
ZSD trends across Sri Lanka is presented in Figure A1 (Appendix A).

Class 1 (N = 40) reservoirs had a peaked mean ZSD in April with a gradual increase
since January which was subsequently followed by a decreased water transparency trend
until the end of the year. This type of reservoir is available only in the dry and intermediate
climatic zones. Class 2 (N = 109) reservoirs showed a gradual decline in mean ZSD until
November, with the highest transparency in February, then again followed a sharp increase
in mean ZSD in December. Class 3 (N = 61) reservoirs showed a gradual decrease in mean
ZSD values from January to September and continued to reach the highest mean value in
December. Class 4 (N = 115) reservoirs had the lowest water transparency from July to
September in the year, with a peak in December. This type of reservoir is highest in number.
Class 5 (N = 104) reservoirs showed the highest water transparency during December with
a sharp increase during September. Class 6 (N = 50) indicated a mean peak in November
and then continued to drop to their lowest transparency in June. In contrast to all other
categories, Class 7 (N = 70) reservoirs showed a concave pattern with slight fluctuations
in the mean ZSD values. ZSD remained almost the same across the entire year except
for November.
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3.6. Natural and Anthropogenic Drivers

We included natural and anthropogenic induced environmental changes as drivers.
Precipitation, temperature and wind speed were considered natural effects, and population
density and NDVI were an indication of anthropogenic activities. MLMs were fitted over
the annual mean values of ZSD and drivers of each catchment to quantify the overall
effect of drivers on the spatial distribution of ZSD from May 2013 to November 2020 in the
entire country and three climatic zones. When natural and anthropogenic scenarios are
combined, the overall effects on inland water transparency were noticeable, as illustrated in
Figure 10. Each of the factors included in the MLM (R2 = 0.30) were indicated a significant
effect (p-value < 0.05) on the water transparency of Sri Lanka. Overall, interannual ZSD
variations were significantly related to natural activities (precipitation and wind), whereas
anthropogenic activities (NDVI and population) have about 27% of the effect in the entire
country. ZSD distribution was shown to be negatively correlated with the wind in all zones
(Table 6).
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Table 6. Results from multiple linear models with driving factors on the zonal water transparency
from May 2013 to November 2020.

Zone Factor Estimate Standard
Error t-Value p-Value

Dry Precipitation 0.00493 0.00082 5.978 <0.001
Dry Wind −6.00339 0.31672 −18.955 <0.001
Dry NDVI 32.64817 2.53673 12.87 <0.001
Dry Temperature 4.00676 0.33801 11.854 <0.001
Dry Population 0.00493 0.00082 5.978 <0.001
Wet Precipitation 0.00285 0.00547 0.521 0.602
Wet Wind −20.96000 3.46900 −6.043 <0.001
Wet NDVI 96.56000 21.35000 4.523 <0.001
Wet Temperature 8.40600 1.29200 6.505 <0.001
Wet Population −0.000000029 0.0000000128 −2.276 0.024

Intermediate Precipitation −0.00121 0.00326 −0.37 0.711
Intermediate Wind −6.68342 1.52244 −4.39 <0.001
Intermediate NDVI 27.91368 10.36472 2.693 0.007
Intermediate Temperature −4.22236 1.01604 −4.156 <0.001
Intermediate Population 0.000000063 0.00000002 3.207 0.001

The influences imposed by the driving factors on spatial water transparency distri-
bution differ per zone. All of the drivers, except precipitation, significantly influenced
water transparency in wet and intermediate zones. In dry zone, precipitation and wind
were shown to be the most significant influences. On the contrary, wind (40.57%) and
temperature (23.48%) among the climate variables had significant negative and positive
influences on water transparency changes in the wet zone. The population also had a
negative effect in this zone. In the intermediate zone, temperature and wind had a similarly
strong effect on water transparency as in the wet zone, whereas temperature had a negative
association. In all climatic zones, climate factors played the leading roles in regulating
the ZSD variations. Figure 10 also indicates that the impact of human population and
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human-induced land-use alterations on the inter-annual variations was about 26% in all
three zones.

In addition to the aforementioned contributing factors, the relation of two geographical
factors: elevation and water depth, on transparency distribution was analyzed and were
not included in the MLM models due to the unavailability of continuous data. Figure 11
shows the partial influence of both elevation and water depth of reservoirs on transparency
distribution patterns of Sri Lanka. Satellite-derived ZSD of the Sri Lankan reservoirs studied
were depicted moderate linear relationships with both elevation (N = 536, R2 = 0.32, p-value
< 0.001) and water depth (N = 336, R2 = 0.41, p-value < 0.001).

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 21 
 

 

effect in this zone. In the intermediate zone, temperature and wind had a similarly strong 
effect on water transparency as in the wet zone, whereas temperature had a negative as-
sociation. In all climatic zones, climate factors played the leading roles in regulating the 
ZSD variations. Figure 10 also indicates that the impact of human population and human-
induced land-use alterations on the inter-annual variations was about 26% in all three 
zones. 

Table 6. Results from multiple linear models with driving factors on the zonal water transparency 
from May 2013 to November 2020. 

Zone Factor Estimate Standard Error t-Value p-Value 
Dry Precipitation  0.00493 0.00082 5.978 <0.001  
Dry Wind  −6.00339 0.31672 −18.955 <0.001  
Dry NDVI 32.64817 2.53673 12.87 <0.001 
Dry Temperature 4.00676 0.33801 11.854 <0.001  
Dry Population 0.00493 0.00082 5.978 <0.001 
Wet Precipitation  0.00285 0.00547 0.521 0.602 
Wet Wind  −20.96000 3.46900 −6.043 <0.001  
Wet NDVI 96.56000 21.35000 4.523 <0.001  
Wet Temperature 8.40600 1.29200 6.505 <0.001  
Wet Population −0.000000029 0.0000000128 −2.276 0.024  

Intermediate  Precipitation  −0.00121 0.00326 −0.37 0.711 
Intermediate  Wind  −6.68342 1.52244 −4.39 <0.001  
Intermediate  NDVI 27.91368 10.36472 2.693 0.007  
Intermediate  Temperature −4.22236 1.01604 −4.156 <0.001  
Intermediate  Population 0.000000063 0.00000002 3.207 0.001  

In addition to the aforementioned contributing factors, the relation of two geograph-
ical factors: elevation and water depth, on transparency distribution was analyzed and 
were not included in the MLM models due to the unavailability of continuous data. Figure 
11 shows the partial influence of both elevation and water depth of reservoirs on trans-
parency distribution patterns of Sri Lanka. Satellite-derived ZSD of the Sri Lankan reser-
voirs studied were depicted moderate linear relationships with both elevation (N = 536, 
R2 = 0.32, p-value < 0.001) and water depth (N = 336, R2 = 0.41, p-value < 0.001). 

 
Figure 11. (a) The linear relationship between elevation of reservoirs and their ZSD; (b) The linear 
relationship between water depth and ZSD of reservoirs. 

4. Discussion 
4.1. Surface Water Transparency and Driving Forces 

Studies have investigated climatic, catchment, and anthropogenic drivers of water 
transparency at local to regional scales and found that the combined effect of these factors 
on water transparency was much higher than their individual impact [52,53]. Generally, 

Figure 11. (a) The linear relationship between elevation of reservoirs and their ZSD; (b) The linear
relationship between water depth and ZSD of reservoirs.

4. Discussion
4.1. Surface Water Transparency and Driving Forces

Studies have investigated climatic, catchment, and anthropogenic drivers of water
transparency at local to regional scales and found that the combined effect of these factors
on water transparency was much higher than their individual impact [52,53]. Generally,
reservoir water quality dynamics are mainly influenced by characteristics of catchment,
such as elevation, landscape, climatic conditions, vegetation and soil, population density,
and the land use pattern in Sri Lanka [14]. Over the study years, the entire country showed a
slight increase of 10 cm in its annual transparency with little fluctuations, which was mainly
due to changes in precipitation and its spatiotemporal patterns, increasing temperature,
surface runoff sediments, nutrients from excessive agrochemical runoff, excessive sand
mining, domestic sewage, industrial waste discharge, rapid urbanization and land use
pattern changes [15,20,38,54,55]. Understanding the effects of such factors responsible for
transparency variation is vital for the management of these dynamic reservoir systems.

Among the climate factors studied, we have shown that precipitation had the highest
significant impact on ZSD variation in the entire country, and that effect was more prevalent
in the dry zone reservoirs. Results also revealed that the ZSD was generally highest during
the SIM and NEM (October to February) seasons, which could reflect the occurrence of
the highest precipitation, and on the contrarywise lowest during the driest SWM (May
to September) season. These findings were similar to what other researchers have found
at the reservoir scale [14,16]. Many studies reported that wind-driven sediment resus-
pension negatively impacts water transparency and is generally more prevalent among
shallow reservoirs of Sri Lanka [14,56,57]. This significant contribution of wind can be
explained by its overall 24% negative impact on the temporal distribution of ZSD in the
entire island during the study years (Table 6). Here, we also showed that temperature was
negatively associated with ZSD in intermediate zone reservoirs. This was probably due to
the availability of favorable temperature conditions for the growth of phytoplankton in
these reservoirs [17,58].
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Human activities are always highlighted as one of the main contributory factors for
contamination, and we counted in direct and indirect anthropogenic activities in the catch-
ments. Direct influences are determined according to the population density [59], while
indirect impacts are in the form of human-induced land-use changes, which influence
sediment delivery, algal production, and vegetation cover [60,61]. According to the pre-
vious findings, population density has a significant influence on the rapid deterioration
and degradation of the quality of surface water in Sri Lanka as the transparency is directly
affected by the rate of sewage collection within the catchment [16,38]. This study also
showed that the influence of the population was a significant factor in all zones. Indeed,
it was negatively related to the changes in wet zone (Table 6), where urbanization, indus-
trialization and the associated growth in population density have been prevalent in the
island [62].

Generally, the human-induced impact of land-use type on water transparency was
produced by socioeconomic and policy activities. Transparency showed a decreasing trend
with the rising land-use alterations in the catchment [11,60]. In this study, NDVI was used
as a measure for the human-induced alterations in vegetation cover due to the importance
given to the effect of landcover change and agricultural activities on water quality in Sri
Lanka [63,64]. Our results revealed that NDVI was one of the significant contributors
which affects about 20% of water transparency changes in the entire country and more
prevalent among the reservoirs located in dry and wet zones. Significantly, NDVI had
a positive association with ZSD and was accounted for the highest variability of water
transparency among the drivers in all three zones (Table 6), which was consistent with
the recent study which reported that high catchment vegetation cover positively impacts
the water quality of the reservoir [20]. This might be related to continuous variation in
catchment vegetation cover, which typically resulted from intensified human activities such
as cultivation, intensification, irrigated agricultural expansion, deforestation, emergence
and expansion of urban regions, infrastructural projects, agricultural plantations and
shifting cultivation from forest to pioneer farmland in the country [63,64]. This finding
further suggested that efficient land use management could be one of the crucial water
management factors in Sri Lanka.

4.2. The Relation between ZSD Variation and Total Suspended Solids

Total Suspended Solids mainly contributed to the ZSD of reservoirs in Sri Lanka. This is
due to the fact that wind-driven sediment resuspension was observed as a more prominent
contributing factor in shallow reservoirs in dry and intermediate zones [14,57]. In-situ
TSS observations were collected from Beira, Kandy, Parakrama Samudra and Dambulla
reservoirs (Table 3). TSS concentrations of collected water samples were analyzed in the
laboratory using the standard method [65]. A solid negative correlation was found between
in-situ ZSD and TSS (R2 = 0.88, N = 37, p-value = 2.20 × 10−6) in these reservoirs and is
shown in Figure A2 (Appendix A). ZSD varied with the fluctuating water level during dry
and wet periods in dry and intermediate zone reservoirs [14,16]. Soil erosion declines the
transparency and improves with catchment vegetation cover in intermediate and wet zone
catchments [20]. A significant contribution of temperature on phytoplankton growth was
reported in several reservoirs across the intermediate zone with the reduction of ZSD [17].

4.3. Limitations and Future Improvements

Since the ZSD model entirely relies on surface reflectance, this technique prerequi-
sites several considerations to achieve accurate outcomes, including reliable image pre-
processing and atmospheric correction. An accurate atmospheric correction, therefore
remains a challenge [41]. Therefore, the applied atmospheric correction method may have
an impact on the results derived. Although the QAA is widely in use, there is an uncertainty
due to the power coefficient η, which was originally derived based on oceanic or coastal
water data that might affect the performance of this ZSD model over inland water [66].
Further, an underestimation of QAA was observed in highly turbid inland water [67,68].
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Therefore, there is a possibility for uncertainties in the resultant trends in highly turbid
water bodies.

Sensors with only a few broad bands do not provide sufficient data for accurate
retrieval of optically active water quality parameters across a wide range of inland water
conditions. Landsat 8 OLI sensor can be an effective monitoring tool for water transparency.
However, they have a limitation in receiving signals in the 400–450 nm in order to capture
some clear water, which generally included for ocean colour space sensors, and restricted
their usage for the quasi-analytical derivation of ZSD and other optically active water
quality parameters [32]. By including such feasible, virtually estimated reflectance bands at
these missing wavelengths we can further improve the accuracy of the analytical derivation
approach [69].

Surface water bodies in Sri Lanka are dynamic [51], and their transparency is driven
by several factors. In this study, we focused only on the quantitative analysis of the selected
major factors driving variation in transparency. Further consideration of all significant
driver activities together might improve our understanding of how much each factor
contributes to the transparency variation across the country, such as excessive application
of agrochemicals, industrial wastewater discharge and sediments transportation [15,19,70].
However, quantification of actual driving factors is challenging as they differ at the catch-
ment scale and may influence each other. The lack of data on drivers at the catchment or
large scale has so far offered a challenge over time.

Since the spatial resolution of the satellite is limited to 30 m and revisit time interval
limited to 16 days, these issues might be challenging. These limitations can be potentially
addressed by supplementing with additional very high-resolution satellite images. Simi-
larly, local areas or individual reservoirs can be supplemented with drone images with a
meter or submeter resolution. Overall, the good performance of QAA over this tropical
island suggests that this approach can accurately capture ZSD dynamics of waterbodies in
areas with similar climatic or geographical conditions.

5. Conclusions

For the first time, this study provided water transparency trends of 550 reservoirs
across Sri Lanka from 2013 to 2020 using Landsat 8 OLI images in a semi-analytical
approach in the GEE platform, and the following conclusions could be drawn through the
comprehensive analyses of ZSD distribution, trends, and effect of environmental variables
at catchment scale of climatic zones (dry, wet and intermediate) of Sri Lanka:

1. The mean ZSD of all reservoirs ranged from 9.68 cm to 199.47 cm with an average of
64.71 cm, and among them, about 93.30% (N = 513) of the reservoirs showed a ZSD
lower than 100 cm.

2. The wet zone was highest in water transparency (91.05 ± 43.22 cm), followed by
the intermediate zone with 81.82 ± 29.79 cm, and the lowest among the dry zone
reservoirs (59.81 ± 21.06 cm).

3. All reservoirs in Sri Lanka exhibited a mean annual growth rate of change 1.02± 2.33 cm
with increasing tendencies observed in 68% (N = 374) of the reservoirs. Statistically
significant changes (increasing/decreasing) were observed in 9.45% of reservoirs.

4. The transparency was generally highest in NEM (December to February) season, and
at its lowest during SWM (May to September) season.

5. Both natural and anthropogenic drivers were significantly affecting water trans-
parency. The impact of natural factors (precipitation, wind and temperature) on ZSD
changes was more significant (77.70%) when compared to anthropogenic variables as
a whole. In contrast, human activity (NDVI) accounted for the highest variability in
all zones. The entire country and dry zone were significantly influenced by all five
drivers (precipitation, wind, temperature, NDVI and population density). Except for
precipitation, all other drivers studied exhibited statistically significant effects in wet
and intermediate zones.
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