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Abstract: Despite significant progress in object detection tasks, remote sensing image target detection
is still challenging owing to complex backgrounds, large differences in target sizes, and uneven
distribution of rotating objects. In this study, we consider model accuracy, inference speed, and
detection of objects at any angle. We also propose a RepVGG-YOLO network using an improved
RepVGG model as the backbone feature extraction network, which performs the initial feature
extraction from the input image and considers network training accuracy and inference speed. We
use an improved feature pyramid network (FPN) and path aggregation network (PANet) to reprocess
feature output by the backbone network. The FPN and PANet module integrates feature maps of
different layers, combines context information on multiple scales, accumulates multiple features, and
strengthens feature information extraction. Finally, to maximize the detection accuracy of objects
of all sizes, we use four target detection scales at the network output to enhance feature extraction
from small remote sensing target pixels. To solve the angle problem of any object, we improved the
loss function for classification using circular smooth label technology, turning the angle regression
problem into a classification problem, and increasing the detection accuracy of objects at any angle.
We conducted experiments on two public datasets, DOTA and HRSC2016. Our results show the
proposed method performs better than previous methods.

Keywords: image target detection; deep learning; multiple scales; any angle object; remote sensing
of small objects

1. Introduction

Target detection is a basic task in computer vision and helps estimate the category
of objects in a scene and mark their locations. The rapid deployment of airborne and
spaceborne sensors has made ultra-high-resolution aerial images common. However,
object detection in remote sensing images remains a challenging task. Research on remote
sensing images has crucial applications in the military, disaster control, environmental
management, and transportation planning [1–4]. Therefore, it has attracted significant
attention from researchers in recent years.

Object detection in aerial images has become a prevalent topic in computer vision [5–7].
In the past few years, machine learning methods have been successfully applied for remote
sensing target detection [8–10]. David et al. [8] used the Defense Science and Technology
Organization Analysts’ Detection Support System, which is a system developed particularly
for ship detection in remote sensing images. Wang et al. [9] proposed an intensity-space
domain constant false alarm rate ship detector. Leng et al. [10] presented a highly adaptive
ship detection scheme for spaceborne synthetic-aperture radar (SAR) imagery.

Although these remote sensing target detection methods based on machine learning
have achieved good results, the missed detection rate remains very high in complex ground
environments. Deep neural networks, particularly the convolutional neural network
(CNN) class, significantly improve the detection of objects in natural images owing to
the advantages in robust feature extraction using large-scale datasets. In recent years,
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systems employing the powerful feature learning capabilities of CNN have demonstrated
remarkable success in various visual tasks such as classification [11,12], segmentation [13],
tracking [14], and detection [15–17]. CNN-based target detectors can be divided into
two categories: single-stage and two-stage target detection networks. Single-stage target
detection networks discussed in the literature [18–21] include a you only look once (YOLO)
detector optimized end-to-end, which was proposed by Joseph et al. [18,19]. Liu et al. [20]
presented a method for detecting objects in images using a deep neural network single-shot
detector (SSD). Lin et al. [21] designed and trained a simple dense object detector, RetinaNet,
to evaluate the effectiveness of the focal loss. The works of [22–27], describing two-stage
target detection networks, include the proposal by Girshick et al. [22] of a simple and
scalable detection algorithm that combines the region proposal network (RPN) with a CNN
(R-CNN). Subsequently, Girshick et al. [23] developed a fast region-based convolutional
network (fast R-CNN) to efficiently classify targets and improve the training speed and
detection accuracy of the network. Ren et al. [24] merged the convolutional features of
RPN and fast R-CNN into a neural network with an attention mechanism (faster R-CNN).
Dai et al. [25] proposed a region-based fully convolutional network (R-FCN), and Lin
et al. [26] proposed a top-down structure, feature pyramid network (FPN), with horizontal
connections, which considerably improved the accuracy of target detection.

General object detection methods, generally based on horizontal bounding boxes
(HBBs), have proven quite successful in natural scenes. Recently, HBB-based methods
have also been widely used for target detection in aerial images [27–31]. Li et al. [27]
proposed a weakly supervised deep learning method that uses separate scene category
information and mutual prompts between scene pairs to fully train deep networks. Ming
et al. [28] proposed a deep learning method for remote sensing image object detection
using a polarized attention module and a dynamic anchor learning strategy. Pang et al. [29]
proposed a self-enhanced convolutional neural network, rotational region CNN (R2-CNN),
based on the content of remotely sensed regions. Han et al. [30] used a feature alignment
module and orientation detection module to form a single-shot alignment network (S2A-
Net) for target detection in remote sensing images. Deng et al. [31] redesigned the feature
extractor using cascaded rectified linear unit and inception modules, used two detection
networks with different functions, and proposed a new target detection method.

Most targets in remote sensing images have the characteristics of arbitrary directional-
ity, high aspect ratio, and dense distribution. Therefore, the HBB-based model may cause
severe overlap and noise. In subsequent work, an oriented bounding box (OBB) was used
to process rotating remote sensing targets [32–40], enabling more accurate target capture
and introducing considerably less background noise. Feng et al. [32] proposed a robust
Student’s t-distribution-aided one-stage orientation detector. Ding et al. [34] proposed an
RoI transformer that transforms horizontal regions of interest into rotating regions of inter-
est. Azimi et al. [36] minimized the joint horizontal and OBB loss functions. Liu et al. [37]
applied a newly defined rotatable bounding box (RBox) to develop a method to detect
objects at any angle. Yang et al. [39] proposed a rotating dense feature pyramid framework
(R-DFPN), and Yang et al. [40] designed a circular smooth label (CSL) technology to analyze
the angle of rotating objects.

To improve feature extraction, a few studies have integrated the attention mechanism
into their network model [41–43]. Chen et al. [41] proposed a multi-scale spatial and
channel attention mechanism remote sensing target detector, and Cui et al. [42] proposed
using a dense attention pyramid network to detect multi-sized ships in SAR images. Zhang
et al. [43] used attention-modulated features and context information to develop a novel
object detection network (CAD-Net).

A few studies have focused on the effect of context information in table checks, extract-
ing different proportions of context information as well as deep low-resolution high-level
and high-resolution low-level semantic features [44–49]. Zhu et al. [44] constructed a target
detection problem as an inference in a Markov random field. Gidaris et al. [45] proposed an
object detection system that relies on a multi-region deep CNN. Zhang et al. [46] proposed
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a hierarchical target detector with deep environmental characteristics. Bell et al. [47] used
a spatial recurrent neural network (S-RNN) to integrate contextual information outside
the region of interest, proposing an object detector that uses information both inside and
outside the target. Marcu et al. [48] proposed a dual-stream deep neural network model
using two independent paths to process local and global information inference. Kang
et al. [49] proposed a multi-layer neural network that tends to merge based on context.

In this article, we propose the RepVGG-YOLO model to detect targets in remote
sensing images. RepVGG-YOLO uses the improved RepVGG module as the backbone
feature extraction network (Backbone) of the model; spatial pyramid pooling (SPP), multi-
layer FPN, and path aggregation network (PANet) as the enhanced feature extraction
networks; and CSL to correct the rotating angle of objects. In this model, we increased
the number of target detection scales to four. The main contributions of this article are as
follows:

1. We used the improved RepVGG as the backbone feature extraction module. This
module employs different networks in the training and inference parts, while consid-
ering the training accuracy and inference speed. The module uses a single-channel
architecture, which has high speed, high parallelism, good flexibility, and memory-
saving features. It provides a research foundation for the deployment of models on
hardware systems.

2. We used the combined FPN and PANet and the top-down and bottom-up feature
pyramid structures to accumulate low-level and process high-level features. Simul-
taneously, we used the network detection scales to enhance the network’s ability
to detect small remote sensing targets. The pixel feature extraction portion ensures
accurate detection of objects of all sizes.

3. We used CSL to determine the angle of rotating objects, thereby turning the angle
regression problem into a classification problem and more accurately detecting objects
at any angle.

4. Compared with seven other recent remote sensing target detection networks, the
proposed RepVGG-YOLO network demonstrated the best performance on two public
datasets.

The rest of this paper is arranged as follows. Section 2 introduces the proposed model
for remote sensing image target detection. Section 3 describes the experimental validation
and discusses the results. Section 4 summarizes the study.

2. Materials and Methods

In this section, we first introduce the proposed network framework for target detection
in remote sensing images. Next, we present a formula derivation of the Backbone network
and multi-scale pyramid structure (Neck) for extracting and processing target features.
Then, we discuss the prediction structure of the proposed model and, finally, we detail the
loss function of the model.

2.1. Overview of the Proposed Model

We first perform operations such as random scaling, random cropping, and random
arrangement of the original dataset images, followed by data enhancement on the data to
balance the size and target sample ratio and segmentation of the image with overlapping
areas to retain the small target edge information. Simultaneously, we crop the original
data of the different sized segments into pictures of 608 × 608 pixels, which serve as the
input to the model. As shown in Figure 1, we first extract the low-level general features
from the processed image through the Backbone network. To detect targets of different
scales and categories, Backbone provides several combinations of receptive field size and
center step length. Then, we select the corresponding feature maps from different parts
of the Backbone input for Neck. Feature maps of varying sizes {152 × 152, 76 × 76, 38 ×
38, 19 × 19} are selected from the hierarchical feature maps to detect targets of different
sizes. By coupling the feature maps of different receptive field sizes, Neck enhances the
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network expressivity and distributes the multi-scale learning tasks to multiple networks.
The Backbone aligns the feature maps by width once, and directly outputs the feature maps
of the same width to the head network. Finally, we integrate the feature information and
convert it into detection predictions. We elaborate on these parts in the following sections.
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2.2. Backbone Feature Extraction Network

The Backbone network is a reference network for many computer tasks, often used to
extract low-level general features, such as color, shape, and texture. It can provide several
combinations of receptive field size and center step length to meet the requirements of
different scales and categories in target detection. ResNet and MobileNet comprise two
networks often used in various computer-vision tasks. The former can realize a combination
of different resolution features and extract a robust feature representation. The latter, with
its faster inference speed and fewer network parameters, finds use in embedded devices
with low computing power. The RepVGG [50] model has improved speed and accuracy
compared with Resnet34, ResNet50, ResNet101, ResNet152, and VGG-16. While MobileNet
and VGG have improved inference speed compared with models such as VGG-16, they
have lower accuracy. Therefore, considering both accuracy and inference speed, we use the
improved RepVGG as the backbone network in this study. The network improvements
arise from VGG network enhancements: identity and residual branches are added to the
VGG network block to utilize the advantages of the ResNet network. On the basis of the
RepVGG-B [50] network, we add a Block_A module at the end of the network to enhance
feature extraction and, at the same time, pass the feature map input of a specific shape to
the subsequent network. Figure 2 shows the execution process of the backbone feature
extraction network. The two-dimensional convolution in the Block_A module has a step
size of 2; thus, the feature map size will be halved after the Block_A module. Similarly,
because the two-dimensional convolution in the Block_B module has a step size of 1, the
size of the feature map remains unchanged after the Block_B module.
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Figure 2. Backbone feature extraction network.

For the input picture size of 608 × 608, Figure 2 shows the shape of the output
feature map of each layer. After each continuous Block_B module (Block_B_3, Block_B_5,
Block_B_15), a branch is output, and the high-level features are passed to the subsequent
network for feature fusion, thereby enhancing the feature extraction capability of the model.
Finally, the feature map with the shape {19, 19, 512} is passed to strengthen the feature
extraction network.

In addition, different network architectures are used in the training and inference
stages while considering training accuracy and inference speed. Figure 3 shows the training
and structural re-parameterization network architectures.
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Figure 3a shows the training network of the RepVGG. The network uses two branch
structures: the residual structure that contains only Block_A of the Conv1*1 residual branch,
the residual structure of Conv1*1, and the identity residual; and structure Block_B. Because
the training network has multiple gradient flow paths, a deeper network model can not
only handle the problem of gradient disappearance in the deep layer of the network, but
also obtain a more robust feature representation in the deep layer.

Figure 3b shows that RepVGG converts the multi-channel training model to a single-
channel test model. To improve the inference speed, the convolutional and batch nor-
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malization (BN) layers are merged. Equations (1) and (2) express the formulas for the
convolutional and BN layers, respectively.

Conv(x) = W(x) + b (1)

BN(x) = γ∗ (x−mean)
σ

+ β (2)

Replacing the argument in the BN layer equation with the convolution layer formula
yields the following:

BN(Conv(x)) = γ∗W(x)
σ + γ∗(b−mean)

σ + β

= γ∗W(x)
σ + γ∗µ

σ + β
(3)

Here, µ, σ, γ, and β represent the cumulative average, standard deviation, scaling
factor, and deviation, respectively. We use Wk ε RC2×C1×k×k to represent the input C1, the
output C2, and the convolution kernel of the convolution of k. With M1 ε RN×C1×H1×W1

and M2 ε RN×C2×H2×W2 denoting the input and output, respectively, the BN layer of the
fusion convolution can be simplified to yield the following:

W ′ i,:,:,: =
γi
σi

Wi,:,:,:

b′i = −
µiγi
σi

Wi,:,:,: + βi
BN(M ∗W,µ,σ,γ,β):, i, :,: = (M ∗W ′ ):,i,:,: + b′i

 (4)

where i ranges in the interval from 1 to C2; * represents the convolution operation; and
W ′ and b′i the weight and bias of the convolution after fusion, respectively. Let C1 = C2,
H1 = H2, and W1 = W2; then, the output can be expressed as follows:

M2 = BN
(

M1 × W3 , µ3,σ3,γ3,β3
)

+ BN
(

M1 ×W1 , µ1,σ1,γ1,β1
)

+ BN
(

M1 , µ0,σ0,γ0,β0
) (5)

where µk, σk, γk, and βk represent the BN parameters obtained after the k × k convolution
and µ0,σ0,γ0, and β0 represent the parameters of the identity branch. For the output of
three different scales, we adopt the following strategy for fusion. We can regard the identity
branch structure as a 1 × 1 convolution; for the Conv1*1 and the identity branches, the 1 ×
1 convolution kernel can be filled and converted into a 3 × 3 convolution kernel; finally,
we add the three 3 × 3 convolution kernels from the three output scales to obtain the final
convolution kernel, and add the three deviations to obtain the final deviation. The Block_B
module can be represented by Equation (5); further, because the Block_A module does
not contain the identity branch structure, it can be represented by the first two items in
Equation (5).

2.3. Strengthening the Feature Extraction Network (Neck)

In the target detection task, to make the model learn diverse features and improve
detection performance, the Neck network can reprocess the features extracted by the
Backbone, disperse the learning of different scales applied to the multiple levels of feature
maps, and couple the feature maps with different receptive field sizes. In this study, we
use SPP [51], improved FPN [26], and PANet [52] structure to extract the features. Figure 4
shows the detailed execution process of the model. The SPP structure uses pooling methods
of different scales to perform multi-scale feature fusion, which can improve the receptive
field of the model, significantly increase the receiving range of the main features, and
more effectively separate the most important context features, thereby avoiding problems
such as image distortion caused by cropping and zooming the image area. The computer-
based learning (CBL) module comprises a two-dimensional convolution process, BN, and
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Leaky_ReLU activation function. The input of the CSP2_1 module is divided into two parts.
One part goes through two CBL modules and then through a two-dimensional convolution;
the other part directly undergoes a two-dimensional convolution operation. Finally, the
feature maps obtained from the two parts are spliced, then put through the BN layer and
Leaky_ReLU activation function, and output after the CBL module.
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Figure 4 shows the shape of the feature map of the key parts of the entire network.
Note that the light-colored CBL module (the three detection scale output parts at the
bottom right) has a two-bit convolution step size of 2, whereas the other two-dimensional
convolutions have a step size of 1. FPN is top-down, and transfers and integrates high-level
feature information through up-sampling. FPN also transfers high-level strong semantic
features to enhance the entire pyramid, but only enhances semantic information, not
positioning information. We also added a bottom-up feature pyramid behind the FPN layer
that accumulates low-level and processed high-level features. Because low-level features
can provide more accurate location information, the additional layer creates a deeper
feature pyramid, adding the ability to aggregate different detection layers from different
backbone layers, which enhances the feature extraction performance of the network.

2.4. Target Boundary Processing at Any Angle

Because remote sensing images contain many complex and dense rotating targets, we
need to correct these rotating objects for more accurate detection of objects at any angle.
Common angle regression methods include the open source computer-vision, long edge,
and ordered quadrilateral definition methods. The predictions of these methods often
exceed the initial set range. Because the target parameters of learning are periodic, they
can be at the boundary of periodic changes. This condition can cause a sudden increase in
the loss value that increases the difficulty of learning by the network, leading to boundary
problems. We use circular smooth label (CSL) [40] to handle the angle problem, as shown
in Figure 5.
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Equation (6) expresses CSL, where g(x) is the window function.

CSL(x) =
{

g(x) , θ − r < x < θ + r
0, otherwise

(6)

where θ represents the angle passed by the longest side when the x-axis rotates clockwise,
and r represents the window radius. We convert angle prediction from a regression problem
to a classification problem and place the entire defined angle range into one category. We
choose a Gaussian function for the window function to measure the angular distance
between the predicted and ground truth labels. The predicted value loss becomes smaller
the closer it comes to the true value within a certain range. Introducing periodicity, i.e.,
the two degrees, 89 and −90, become neighbors, solves the problem of angular periodicity.
Using discrete rather than continuous angle predictions avoids boundary problems.

2.5. Target Prediction Network

After subjecting the image to feature extraction twice, we integrate the feature in-
formation and transform it into a prediction, as shown in Figure 6. We use the k-means
clustering algorithm to generate 12 prior boxes with different scales according to the labels
of the training set. Because remote sensing target detection involves detecting small targets,
to enhance the feature extraction of small pixel targets, we use four detection scales with
sizes of 19 × 19, 38 × 38, 76 × 76, and 152 × 152.

Taking the 19 × 19 detection scale as an example, we divide the input image into
multiple 19 × 19 grids. Each grid point is preset with three boxes of corresponding scales.
When these grids enclose an object, we use the corresponding grid for object detection.
Finally, the shape of the feature map output by the detection feature layer is {19, 19,
603}. The third quantity implies that each of the three anchors in the corresponding grid
consists of 201 dimension predictions. The width and height of the box and the coordinates
of the center point (x_offset, y_offset, h, w), confidence, 16 classification results, and
180 classification angles (described in Section 2.4). Based on the set loss function (described
in Section 2.6.3), iterative calculations for the backpropagation operation are performed and
the position and angle of the prediction box are continually adjusted and, finally, to attain
the highest confidence test results, non-maximum suppression screening is applied [53].
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2.6. Loss Function

In this section, we describe the bounding box regression loss function, the confidence
loss function with weight coefficients, and the classification loss function with increased
angle calculation.

2.6.1. Bounding Box Border Regression Loss

The most commonly used indicator in target detection, often used to calculate the
bounding box regression loss, the intersection over union (IoU) [54] value, is defined as
the ratio of the intersection and union of the areas of two rectangular boxes. Equation (7)
shows the IoU and the bounding box regression loss.

IoU =
|B∩ Bgt|
|B∪ Bgt|

LOSSIoU = 1− IoU

 (7)

where B represents the predicted bounding box, Bgt represents the real bounding box,∣∣B∩ Bgt∣∣ represents the B and Bgt intersection area, and
∣∣B∪ Bgt∣∣ represents the B and

Bgt union area. The following problems arise in calculating the loss function defined in
Equation (7):

1. When B and Bgt do not intersect, IoU = 0, the distance between B and Bgt cannot be
expressed, and the loss function LOSS_IoU cannot be directed or optimized.

2. When the size of B remains the same in different situations, the IoU values obtained
do not change, making it impossible to distinguish different intersections of B and Bgt.

To overcome these problems, the generalized IoU (GIoU) [55] was proposed in 2019,
with the formulation shown below:

GIoU = IoU − |C (B∪ Bgt)|
|C|

LOSSGIoU = 1− GIoU

}
, (8)
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where |C| represents the area of the smallest rectangular box containing B and Bgt, and∣∣C \(B∪ Bgt)∣∣ represents the area of the C rectangle excluding
∣∣B∪ Bgt∣∣. The calculation

of the bounding box frame regression loss uses the GIoU. Compared with using the IoU,
using the GIoU improves the measurement method of the intersection scale and alleviates
the above-mentioned problems to a certain extent, but still does not consider the situation
when B is inside Bgt. Furthermore, when the size of B remains the same and the position
changes, the GIoU value also remains the same, and the model cannot be optimized.

In response to this situation, distance-IoU (DIoU) [56] was proposed in 2020. Based
on IoU and GIoU, and incorporating the center point of the bounding box, DIoU can be
expressed as follows:

DIoU = 1− IoU +
ρ2(B, Bgt)

c2

LOSSDIoU = 1− DIoU

}
, (9)

where ρ2(B, Bgt) represents the Euclidean distance between the center points of B and Bgt,
and c represents the diagonal distance of the smallest rectangle that can cover B and Bgt

simultaneously. LOSSDIoU can be minimized by calculating the distance between B and
Bgt and using the distance between the center points of B and Bgt as a penalty term, which
improves the convergence speed.

Using both GIoU and DIoU, recalculating the aspect ratio of B and Bgt, and increasing
the impact factor av, the complete IoU (CIoU) [56] was proposed, as expressed below:

CIoU = IoU − ρ2(B, Bgt)
c2 − av

a = v
1−IOU+v

v = 4
π2

(
arc tan wgt

hgt − arc tan w
h

)2

LOSSCIoU = 1− IoU +
ρ2(B, Bgt)

c2 + av


(10)

where hgt and wgt are the length and width of Bgt, respectively; h and w are the length and
width of B, respectively; a is the weight coefficient; and v is the distance between the aspect
ratios of B and Bgt. We use LOSSCIoU as the bounding box border regression loss function,
which brings the predicted bounding box more in line with the real bounding box, and
improves the model convergence speed, regression accuracy, and detection performance.

2.6.2. Confidence Loss Function

We use cross-entropy to calculate the object confidence loss. Regardless of whether
there is an object to be detected in the grid, the confidence error must be calculated. Because
only a small part of the input image may contain objects to be detected, we add a weight
coefficient (λno) to constrain the confidence loss for the image area that does not contain
the target object, thereby reducing the number of negative samples. The object confidence
loss can be expressed as follows:

LOSSConf = −∑S2

i=0 ∑B
j=0 Iij

(
Ĉi

j log Ci
j +
(
1− Ĉi

j) log
(
1− Ci

j))RIou

+
(
1− Iij

)(
Ĉi log Ci +

(
1− Ĉi

j) log(1− Ci)
)
λno.

(11)

where S is the number of grids in the network output layer and B is the number of anchors.
I j
i indicates whether the j-th anchor in the i-th grid can detect this object (the detected

value is 1 and the undetected value is 0), and the value of Ĉi
j is determined by whether

the bounding box of the grid is responsible for predicting an object (if it is responsible for
prediction, the value of Ĉi

j is 1, otherwise it is 0). Ci
j is the predicted value after parameter

normalization (the value lies between 0 and 1). RIou represents the IoU of the rotating
bounding box.
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The complete decoupling of the correlation between the prediction angle and the
prediction confidence means the confidence loss is not only related to the frame parameters,
but also to the rotation angle. Table 1 summarizes the recalculation of the IoU [35] of the
rotating bounding box as the confidence loss coefficient, along with its pseudocode.

Table 1. Rotating intersection over union (IoU) calculation pseudocode.

Algorithm 1 RIoU computation

1: Input: Rectangles R1; R2; :::; RN
2: Output: RIoU between rectangle pairs RIoU
3: for each pair <Ri; Rj> (i < j) do
4: Point set PSet ϕ
5: Add intersection points of Ri and Rj to PSet
6: Add the vertices of Ri inside Rj to PSet
7: Add the vertices of Rj inside Ri to PSet
8: Sort PSet into anticlockwise order
9: Compute intersection I of PSet by triangulation
10: RIoU[i; j] Area(I)

Area(Ri)+ Area(Rj)− Area(I)
11: end for

Figure 7 shows the geometric principle of rotating IoU calculations. We divide the
overlapping part into multiple triangles with the same vertex, calculate the area of each
triangle separately, and finally add the calculated areas to obtain the area of the overlapping
polygons. The detailed calculation principle is as follows. Given a set of rotating rectangles
R1, R2, . . . , RN, calculate the RIoU of each pair of <Ri, Rj>. First, the intersection set,
PSet, of Ri and Rj (the intersection of two rectangles and the vertices of one rectangle in
the other rectangle form a set, PSet, corresponding to rows 4–7 of Table 1); then, calculate
the intersection area, I, of PSet and, finally, calculate the RIoU according to the formula
in row 10 of Table 1 (combine the points generated by the PSet into a polygon, divide the
polygon into multiple triangles, calculate the sum of the area of the multiple triangles as
the polygon area, and finally calculate the polygon area and remove the rotation of the
polygon area; corresponding to rows 8–10 of Table 1).
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2.6.3. Classification Loss Function

Because we converted the angle calculation from a regression problem into a clas-
sification problem, we calculate both the category and angle loss when calculating the
classification loss function. Here, we use the cross-entropy loss function for the calculation.
When the j-th anchor box of the i-th grid is responsible for a real target, we calculate
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the classification loss function for the bounding box generated by this anchor box, using
Equation (12).

LOSSClass = −
S2

∑
i=0

B
∑

j=0
Iij ∑

c∈Class, θ∈(0,180]

(
P̂i(c + θ) log Pi(c + θ)

+
(
1− P̂i(c + θ)

)
log(1− Pi(c + θ))

) (12)

where c belongs to the target classification category; θ belongs to the angle processed by the
CSL [40] algorithm; S is the number of grids in the network output layer; B is the number
of anchors; and I j

i indicates whether the j-th anchor in the i-th grid can detect this object
(the detected value is 1 and the undetected value is 0).

The final total loss function equals the sum of the three loss functions, as shown in
Equation (13). Furthermore, the three loss functions have the same effect on the total loss
function; that is, the reduction of any one of the loss functions will lead to the optimization
of the total loss function.

LOSS = LOSSCIoU + LOSSConf + LOSSClass (13)

3. Experiments, Results, and Discussion
3.1. Introduction to DOTA and HRSC2016 Datasets
3.1.1. DOTA Dataset

The DOTA dataset [57] comprises 2806 aerial images obtained from different sensors
and platforms, including 15 classification categories: plane (PL), baseball diamond (BD),
bridge (BR), ground track (GTF), small vehicle (SV), large vehicle (LV), ship (SH), tennis
court (TC), basketball court (BC), oil storage tank (ST), football field (SBF), roundabout
(RA), airport and helipad (HA), swimming pool (SP), and helicopter (HC). The image data
can be divided into 1411 training sets, 937 test sets, and 458 verification sets. The image
size ranges between 800 × 800 and 4000 × 4000 pixels. Dataset labeling consisted of a
horizontal and a directional bounding box for a total of 188,282 instances.

3.1.2. HRSC2016 Dataset

The HRSC2016 dataset [58] comes from six different ports, with a total of 1061 remote
sensing pictures. Examples of detection objects include ships on the sea and ships docked
on the shore. The images can be divided into 436 training sets (1207 labeled examples in
total), 444 test sets (1228 labeled examples in total), and 181 validation sets (541 labeled
examples in total). The image size ranges from 300 × 300 to 1500 × 900 pixels.

3.2. Image Preprocessing and Parameter Optimization

In this section, we describe image preprocessing, experimental parameter settings,
and experimental evaluation standards.

3.2.1. Image Preprocessing

Owing to the complex background of remote sensing target detection [59], large
changes in the target scale [60], special viewing angle [61–63], unbalanced categories [31],
and so on, we preprocess the original data. Directly processing the original high-resolution
remote sensing images not only increases equipment requirements, but also significantly
reduces detection accuracy. We cut the entire picture and send it to the proposed model
training module. During the test, we cut the test pictures into pictures of the same size as
those in the training set, and after the test, we splice the predicted results one by one to
obtain the total result. To ensure the loss of small target information at the cutting edge
during the cutting process, we allow the cut image to have a certain proportion of overlap
area (in this study, we set the overlap area to 30%). If the size of the original image is smaller
than the size of the cut image, we perform an edge pixel filling operation on the original
image to make its size reach the training size. In the remote sensing dataset (e.g., DOTA),
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the sample target size changes drastically, and small targets can be densely distributed
and large and small targets can be considerably unevenly distributed (the number of
small targets is much larger than the number of large targets). In this regard, we use the
Mosaic data enhancement method to splice the pictures in random zooming, cropping, and
arrangement, which substantially enriches the dataset and makes the distribution of targets
of different sizes more uniform. Mixed multiple images can have different semantics.
Enhanced network robustness occurs when the picture information allows the detector to
detect targets beyond the conventional context.

3.2.2. Experimental Parameter Settings

We evaluated the performance of the proposed model on two NVIDIA GeForce RTX
2080 Ti GPUs with 11 GB of RAM. We used the PyTorch 1.7 deep learning framework and
Python 3.7 compiler run on Windows 10. To optimize the network, we used stochastic
gradient descent with momentum, setting the learning rate momentum and weight decay
coefficients to 0.857 and 0.00005, respectively; the iterative learning rate for the first 50 K to
0.001; and the later iterative learning rate to 0.0001. The CIoU loss and classification loss
coefficients were set to 0.0337 and 0.313, respectively. The weight coefficient, λno, of the
confidence loss function was set to 0.4. The batch size was set to eight, and the epoch was
set to 500.

3.2.3. Evaluation Criteria

To verify the performance of the proposed method, two broad criteria were used to
evaluate the test results [64]: precision and recall. The accuracy rate indicates the detection
rate of the predicted true-positive samples, and the recall rate indicates the rate of correctly
identified true-positive samples. Accuracy and recall can be expressed as follows.

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

TP represents a real positive sample, TN represents a real negative sample, FP is a false
positive sample, and FN is a false negative sample. This study adopts the mean average
precision (mAP) [45–47] to evaluate all methods, which can be expressed as follows:

mAP =
∑Nclass

i=1

∫
Pi(Ri)dRi

Nclass
(16)

where Pi and Ri represent the accuracy and recall rate of the i-th class of classified objects,
respectively. Nclass represents the total number of detected objects in the dataset.

3.3. Experimental Results

Figure 8 shows the precision–recall curve of the DOTA detection object category. We
focus on the interval between 0.6 and 0.9, where the recall rate is concentrated. Except for
BR, when the recall value is greater than 0.6, the decline in the curves of the other types
of objects increases. The BD, PL, and TC curves all drop sharply when the recall value is
greater than 0.8. The results show that the overall performance of the proposed method is
stable and has good detection effectiveness.
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To prove that the proposed method has better performance, we compared the pro-
posed method (RepVGG-YOLO NET) to seven other recent methods: SSD [20], joint train-
ing method for target detection and classification (YOLOV2) [19], rotation dense feature
pyramid network (R-DFPN) [39], toward real-time object detection with RPN (FR-C) [25],
joint image cascade and functional pyramid network and multi-size convolution kernel to
extract multi-scale strong and weak semantic feature framework (ICN) [36], fine FPN and
multi-layer attention network (RADET) [65], and end-to-end refined single-stage rotation
detector (R3Det) [66]. Table 2 summarizes the quantitative comparison results of the eight
methods on the DOTA dataset. The table indicates that the proposed model has achieved
the most advanced results, achieving relatively stable detection results in all categories,
with an mAP of 74.13%. SSD and YOLOV2 networks have poor detection effectiveness
and relatively low detection effectiveness on small targets; their poor feature extraction
network performance needs improvement. The FR-C, ICN, and RADET network models
achieved good detection results.

Compared with other methods, owing to the increased processing of targets at any
angle and the use of four target detection scales, the proposed model achieved good
classification results for small objects with complex backgrounds and dense distributions
(for example, SV and SH achieved 71.02% and 78.41% mAP values). Compared with the
suboptimal method (i.e., R3Det), the suggested method achieved a 1.32% better mAP value.
In addition, using the FPN and PANet structures to accumulate high-level and low-level
features helped the improvement in the detection of categories with large differences in the
target scale of the same image (for example, BR and LV on the same image), with BR and
LV achieving classification results of 52.34% and 76.27%, respectively. We also obtained
relatively stable mAP values in single-category detection (PL, BR, SV, LV, TC, BC, SBF, RA,
SP, and HC achieved the highest mAP values).

Table 3 summarizes the proposed model and five other methods (i.e., rotation-sensitive
regression for oriented scene text detection (RRD) [67], rotated region-based CNN for ship
detection (BL2 and RC2) [68], refined single-stage detector with feature refinement for
rotating object (R3 DET) [66], and rotated region proposal and discrimination networks
(R2PN) [69]). Table 3 summarizes quantitative comparison results on the HRSC2016 dataset.
The results demonstrate that the proposed method achieves an mAP detection result of
91.54, which is better than the other methods evaluated on this dataset. Compared with
the suboptimal method (R3Det), the mAP for the proposed model was better by 2.21%.
Good results were achieved for the detection of ship instances with large aspect ratios and
rotation directions. The proposed method achieved 22 frames per second (FPS), which is
more than that achieved by the suboptimal method (R3Det).

Figure 9 shows the partial visualization results of the proposed method on the DOTA
and HRSC2016 datasets. The first three rows are the visualization results of the DOTA dataset,
and the last row shows the visualization results of the HRSC2016 dataset. Figure 9 shows that
the proposed model handles well the noise problem in a complex environment, and has a
better detection effectiveness on densely distributed small objects. Good test results were also
obtained for some samples with drastic size changes and special viewing angles.

Table 2. Comparison of the results with the other seven latest methods on the DOTA dataset (highest performance is in
boldface).

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP (%)

SSD 57.85 32.79 16.14 18.67 0.05 36.93 24.74 81.16 25.10 47.47 11.22 31.53 14.12 9.09 0.00 29.86
YOLOV2 76.90 33.87 22.73 34.88 38.73 32.02 52.37 61.65 48.54 33.91 29.27 36.83 36.44 38.26 11.61 39.20
R-DFPN 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.1 51.32 35.88 57.94

FR-C 80.2 77.55 32.86 68.13 53.66 52.49 50.04 90.41 75.05 59.59 57.00 49.81 61.69 56.46 41.85 60.46
ICN 81.36 74.3 47.7 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16

RADET 79.45 76.99 48.05 65.83 65.46 74.40 68.86 89.70 78.14 74.97 49.92 64.63 66.14 71.58 62.16 69.09
R3Det 89.24 80.81 51.11 65.62 70.67 76.03 78.32 90.83 84.89 84.42 65.10 57.18 68.1 68.98 60.88 72.81

proposed 90.27 79.34 52.34 64.35 71.02 76.27 77.41 91.04 86.21 84.17 66.82 63.07 67.23 69.75 62.07 74.13
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Table 3. Comparison of the results with five other recent methods on the HRSC2016 dataset.

Method mAP (%) FPS

BL2 69.6 –
RC2 75.7 –

R2PN 79.6 –
RRD 84.3 –

R3Det 89.33 10
proposed 91.54 22
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3.4. Ablation Study

We conducted a series of comparative experiments on the DOTA data set, as shown
in Table 4. We considered the influence of different combinations of the five factors of
backbone network, bounding box border regression loss (BBRL), data enhancement (DE),
multi-scale settings, and CSL on the final experimental results. We used mAP and FPS as
evaluation criteria to verify the effectiveness of our method.

Table 4. Ablation study on components on the DOTA dataset.

N Proposed Backbone BBRL DE Multi Scale CSL mAP FPS

1 3 RepVGG-A DIou 66.98 25
2 3 RepVGG-A CIou 67.19 25
3 3 RepVGG-B DIou 68.03 23
4 3 RepVGG-B CIou 69.98 23
5 3 RepVGG-B CIou 3 71.03 23
6 3 RepVGG-B CIou 3 3 72.25 22
7 3 RepVGG-B CIou 3 3 3 74.13 22

From Table 4, the first row is the baseline, the improved RepVGG-A is used as the
backbone, and the DIou is used as the BBRL. The backbone network is a reference network
for many computer tasks. We set the first and third groups, and the second combination
and the fourth group of experiments to verify the backbone network. The results show
that RepVGG-B has more complex network parameters and is deeper than RepVGG-A.
Consequently, using the improved RepVGG-B as the backbone (groups 3 and 4), mAP
increased by 1.05% and 2.79%, respectively. Choosing an appropriate loss function can
improve the convergence speed and prediction accuracy of the model. Here, we set the first
group, the second group, and the third combination and the fourth group of experiments to
analyze the BBRL. Because CIou recalculated the predicted bounding box, the aspect ratio
of the bounding box and the real bounding box increased, and the influence factor increased
to align the predicted bounding box with the actual box. Under the same conditions, better
results were obtained when CIou was used as the BBRL. The objective of DE is to increase
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the number and diversity of samples, which can significantly improve the problem of
sample imbalance. According to the experimental results of the fourth and fifth groups,
mAP increased by 1.06% after the image was processed by cropping, zooming, and random
arrangement. Because different detection scales have different sensitivities to objects of
different scales, there are many detection targets with large differences in size in remote
sensing images. We can observe from the experimental results of the fifth and sixth groups
that mAP improved by 1.21% when four detection scales were used. The increased number
of detection scales enhances the detection of small target objects. Because there are many
dense rotating targets in remote sensing images, we assume that the bounding box can be
predicted more accurately. Next, we set up the sixth and seventh groups of experiments.
The results show that, after using CSL, we can change the angle prediction from a regression
problem into a classification problem, and the periodicity problem of the angle was solved.
mAP improved by 1.88% to 74.13%. We finally chose the improved RepVGG-B model as
the backbone network with CIou as the BBRL loss function, using DE, Multi scale, and CSL
simultaneously, and finally obtaining RepVGG-YOLO NET.

4. Conclusions

In this article, we introduce a method for detecting targets from arbitrary-angle geo-
graphic remote sensing. A RepVGG-YOLO model is proposed, which uses an improved
RepVGG module as the backbone feature extraction network (Backbone) of the model,
and uses SPP, feature pyramid network (FPN), and path aggregation network (PANet)
as the enhanced feature extraction networks. The model combines context information
on multiple scales, accumulates multi-layer features, and strengthens feature information
extraction. In addition, we use four target detection scales to enhance the feature extrac-
tion of remote sensing small target pixels and the CSL method to increase the detection
accuracy of objects at any angle. We redefine the classification loss function and add the
angle problem to the loss calculation. The proposed model achieved the best detection
performance among the eight methods evaluated. The proposed model obtained an mAP
of 74.13% and 22 FPS on the DOTA dataset, wherein the mAP value exceeded that of the
suboptimal method (R3Det) by 1.32%. The proposed model obtained an mAP of 91.54%
on the HRSC2016 dataset. The mAP value and the FPS exceeded that of the suboptimal
method (R3Det) by 2.21% and 13, respectively. We expect to conduct further research on
the detection of blurred, dense small objects and obscured objects.
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