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Abstract: Wildlife monitoring is carried out for diverse reasons, and monitoring methods have
gradually advanced through technological development. Direct field investigations have been
replaced by remote monitoring methods, and unmanned aerial vehicles (UAVs) have recently become
the most important tool for wildlife monitoring. Many previous studies on detecting wild animals
have used RGB images acquired from UAVs, with most of the analyses depending on machine
learning–deep learning (ML–DL) methods. These methods provide relatively accurate results, and
when thermal sensors are used as a supplement, even more accurate detection results can be obtained
through complementation with RGB images. However, because most previous analyses were based
on ML–DL methods, a lot of time was required to generate training data and train detection models.
This drawback makes ML–DL methods unsuitable for real-time detection in the field. To compensate
for the disadvantages of the previous methods, this paper proposes a real-time animal detection
method that generates a total of six applicable input images depending on the context and uses
them for detection. The proposed method is based on the Sobel edge algorithm, which is simple
but can detect edges quickly based on change values. The method can detect animals in a single
image without training data. The fastest detection time per image was 0.033 s, and all frames of a
thermal video could be analyzed. Furthermore, because of the synchronization of the properties
of the thermal and RGB images, the performance of the method was above average in comparison
with previous studies. With target images acquired at heights below 100 m, the maximum detection
precision and detection recall of the most accurate input image were 0.804 and 0.699, respectively.
However, the low resolution of the thermal sensor and its shooting height limitation were hindrances
to wildlife detection. The aim of future research will be to develop a detection method that can
improve these shortcomings.

Keywords: thermal sensing; unmanned aerial vehicle; object-based animal detection; instant and
automated detection; mixed image analysis; wildlife monitoring; multiple height shooting

1. Introduction

For wildlife detection and monitoring, traditional methods such as direct observa-
tion [1] and capture–recapture have been carried out for diverse purposes [2]. However,
these methods require a large amount of time, considerable expense, and field-skilled ex-
perts [3,4] to obtain reliable results. Furthermore, performing a traditional field survey can
result in dangerous situations, such as an encounter with wild animals. Remote monitoring
methods, such as those based on camera trapping [5], GPS collars [6], and environmental
DNA sampling [7], have been used more frequently, mostly replacing traditional survey
methods, as the technologies have developed. Camera-trapping methods can track the life
cycle of animals at the nest level. Camera networks can be created by installing multiple
cameras, and high-quality data can be acquired across the region of interest [8]. However,
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these methods still have limitations, such as the inability to cover an entire region [9] or
detect individual targets [10].

As a means of overcoming such limitations, unmanned aerial vehicles (UAVs) are
becoming popular for conducting wildlife censuses [11]. The main benefits of UAVs are
that they can detect animals remotely, covering a wider region with fine spatiotemporal
resolution [11,12]. In addition, UAVs can be used to investigate hard-to-access or dangerous
areas [13]. However, UAVs clearly have some limitations. The study site, and the UAV
flying height and speed, can limit the ability to detect small animals [14] and targets in
dense forest [15] and to track fast moving animals [16]. The weather can also limit UAV
operations [17], and flight time is constrained by the battery [18]. Although detailed
detection data using UAVs are somewhat lacking, some studies have used UAVs to detect
terrestrial mammals [19–23], marine [24] mammals, birds [25], and reptiles [26].

The most common type of data acquired by UAVs is RGB images. Using these images,
manual counting—of elephant seals [27] and Antarctic shag [28], for example—provides
the most accurate results. Automated detection studies mainly used machine-learning and
deep-learning (ML–DL) methods for wildlife detection [19]. Cattle [20–22], wild animals in
the savannah [23], and various mammals [11] have been targets. The studies targeting cattle
and other mammals used convolutional neural network (CNN) deep-learning models, and
the study that detected wild animals in the savannah used an exemplar support vector
machine (ESVM) machine-learning model. ML–DL methods provide relatively accurate
results, but at least 1000 images are required to develop a proper detection model for
specific species [11,21]. Moreover, producing training data and training the model require
a lot of time. To detect mammal species, one study [11] spent 4 days training the machine-
learning model. Therefore, such ML–DL methods using big data cannot be used in the
field for real-time acquisition. Furthermore, the detection models developed are fitted to
training images, so they cannot detect different species or targets on different types of
land cover.

Instead of RGB images, by changing the existing camera to a thermal camera or
mounting an additional camera, thermal images can be acquired by a UAV. The devel-
opment of the thermal sensor technology and reduction in sensor prices have attracted
the interest of wildlife researchers [29]. Using a thermal camera, homeothermic animals
can be detected based on the temperature difference between their bodies and the sur-
rounding environment. This new technology has already been used to detect animals
such as hippopotami [30], seals [24], deer [31], and cattle [22]. Furthermore, research on
detecting marine mammals [24] and avian species [25] has been conducted. Additionally,
the thermal sensor feature of detecting infrared radiation makes it possible to locate animals
at night [11] and camouflaged targets [29]. Although the technology and data are new,
the same ML–DL methods are typically used for animal detection [32]. However, new
methods, such as isoline creation [30] and using two images shot at different times to
identify changes [31], have been suggested. The former method improves the detection
rate by considering the degree of growth and overlapping conditions, but it requires pre-
processing for geo-referencing and image merging and clipping. The latter method, unlike
other methods used for thermal sensing research, uses images shot at a height greater than
1 km, and this feature has the strength of being able to cover a very broad region. However,
preprocessing is still needed. This data preprocessing limits the use of thermal cameras for
real-time wildlife detection in the field [33].

Another limitation of previous studies that used thermal cameras is that most only
used thermal images for detection; however, some detection research targeting avian
species [25] and white-tail deer [34] used thermal and RGB images simultaneously, which
resulted in higher detectability than using thermal images alone. However, in these
studies, an RGB camera and thermal camera were mounted together on the UAV. This
method increases research costs, and using the two types of datasets together mandates an
additional preprocessing step and additional time to match their data properties.
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This paper proposes a new method for detecting animals. There were three main
objectives, to address the limitations of previous research:

(1) Reduce the animal detection time

The main limitation of previous animal detection methods is that they cannot not
be applied in the field in real time. ML–DL-based methods need an enormous number
of training images, and it takes a long time to train the detection model. Methods using
thermal images require preprocessing to detect animals. To address these limitations, the
proposed method can detect animals based on single images, and image preprocessing
is simplified.

(2) Enable detection in more environments

ML–DL-based methods are only suitable for certain species and land cover types or
environments. To improve detection versatility, the proposed method considers target size
and surface temperature when detecting animals. Theoretically, the method can be adapted
to all homeothermic animals if the body size and surface temperature are known. Here, we
focused on detecting mid-sized animals (alpaca).

(3) Use thermal and RGB images acquired from the same thermal camera

When a detection method needs both thermal and RGB images, separate thermal
and RGB cameras are used. However, any thermal camera can save thermal and RGB
images simultaneously, and the centroid is the same because the shooting time is the same.
Therefore, by modifying the distortion caused by focal length, shooting area, and spatial
resolution, thermal and RGB images can be used simultaneously for research without the
requirement of two cameras [35].

The main goal of this study was to develop an automated method for detecting
animals using a thermal image dataset, to apply it under in situ conditions in real time, and
to achieve similar detection ability to previous methods. The fastest detection time was
0.033 s, the maximum detection precision was 0.804, and the detection recall rate was 0.699.

2. Study Site and Data
2.1. Study Site

An animal farm (37.827◦ N, 127.882◦ E) in the middle of a natural forest in Hongcheon,
Republic of Korea, was used as the study site for data collection (Figure 1). To determine
the animal species and their locations, the UAV operated over the entire farm. Through
this process, the distribution of land cover was also confirmed. The major species on the
farm is Vicugna pacos (alpaca), so these animals were mainly used to develop the detection
and analysis method. The farm also has a few Cervus nippon (sika deer), Struthio camelus
(ostrich), and Camelus bactrianus (camel). The barns for each species are located on grassland
or bare land, and they are mainly moving on those land covers. The area of the farm is
approximately 12.02 ha, and the main cover type is forest (50%), followed by grassland
(35%). The remaining contributors to land cover comprise artificial structures such as roads
and buildings, and bare land. The minimum and maximum elevations on the farm are
450.56 and 512.00 m, respectively.
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Figure 1. Overview of the study site.

2.2. Data Acquisition

UAV flights were conducted using a MATRICE 210 UAV (DJI, Shenzhen, China), and
the thermal camera was a FLIR ZENMUSE XT2 (DJI). The thermal camera has both an
RGB sensor and a thermal sensor, and images are captured by both sensors at different
resolutions. Each RGB image contains 4000 × 3000 pixels, and each thermal image contains
640 × 512 pixels. The spatial resolution of each RGB image at 25 m above the ground
is 0.59 cm/pixel, whereas the resolution of each thermal image is 2.24 cm/pixel. Due to
the increased focal length of the thermal sensor, each thermal image covers a narrower
region [36].

The data were acquired on 25 November 2020. In Korea, November is considered to fall
within the winter season, and snow typically falls from the middle of November. Although
snow cover provides advantages, in the sense that a lower land-surface temperature is
beneficial in automated animal detection and photographs can show not only the animals
but also their tracks, thereby improving detection rates [37], a lack of adequate snow cover
can inhibit animal detection, requiring the images to be filmed again [38]. Therefore, the
shooting date was selected to occur when the air and land surface temperatures were
low and there was no snow cover. This decision maximized the temperature difference
between the targets and land cover types and facilitated more accurate detection of animals.
Furthermore, by shooting images around noon, the shadow size of individual targets was
minimized, which reduced the possibility of error from shadows.

After a programmed drone flight over the entire study site, the drone was controlled
manually to capture the locations of the main target animals (alpaca). After finding a spot,
26 images were acquired from heights of 25–275 m above the ground at 10-m intervals
to aid the development of a method to be used under various circumstances. The body
lengths of the main target animals range from 80 to 100 cm when fully grown, and they
have various fur colors, including black, gray, white, dark brown, and light brown. Based
on the UAV results, the targets were sorted into four categories according to their visible
condition. The category “isolated” indicated that the target stood alone, not touching any
other target or obstacle. “Bordering” meant that two targets were touching each other,
and “overlapping” meant that the targets’ body parts were crossing each other’s. “Partial”
indicated that the target was partly visible at the edge of the image (Figure 2).
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Figure 2. Target shape categories: (a) isolated, (b) bordering, (c) overlapping, and (d) partial.

2.3. Data Preprocessing

As the outputs of the XT2 sensors have different pixel sizes, spatial resolutions,
and coverage areas (Figure 3), they need to be modified to have the same properties.
Furthermore, to acquire accurate results, temperature correction of the thermal images and
masking of non-target regions are required.

Figure 3. Representative outputs from the thermal sensor. The small image at the bottom-left is the thermal
image (640 × 512 px), and the larger image is the RGB image (4000 × 3000 px). The coverage area of the thermal im-
age is marked by the white rectangle in the RGB image.

2.3.1. RGB Lens Distortion Correction and Clipping

Due to the difference in focal length, the distortion in the images also differs [39]. The
RGB sensor of XT2 has a focal length of 8 mm, but the thermal sensor has a focal length of
19 mm. When the focal length is shorter, the image is subject to barrel distortion compared
with an image with longer focal length [40]. Therefore, to use the thermal and RGB images
together, we had to correct the distortion in the RGB images. Python and the OpenCV2
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library [41] were used for this purpose. After correction, the corrected RGB images were
clipped and rescaled to have the same coverage as the thermal images (Figure 4).

Figure 4. Example of focal length distortion and correction. (a) Original RGB image (distorted), (b) corrected RGB image,
(c) clipped RGB image, and (d) original thermal image.

2.3.2. Thermal Image Correction by Fur Color

Although the body temperature of the target animals is the same across individuals,
the surface temperature can differ because of the fur color. The surface temperatures
of animals with brighter fur were lower [42] because of higher reflectance [43]. Surface
temperature differences can cause errors in the detection process and must be corrected for.

The pixel value of each RGB channel is needed to identify bright targets. Based on our
measurements, we found that the surface temperature of white animals was approximately
25% lower than that of animals with darker fur. Therefore, the pixels of thermal images
located at the same locations as white pixels from RGB images were adjusted to have higher
values (Figure 5).

Figure 5. Example of thermal image correction (fur color). (a) Original RGB image, (b) original thermal image, and (c)
corrected thermal image.

2.3.3. Unnatural Object Removal

The principle of animal detection using thermal images is to locate spots where
the temperature is different, because homeothermic animals always have the same body
temperature and this consistency creates a temperature gap between animals and their
surrounding environment. However, artificial structures, e.g., buildings and roads, have a
much higher surface temperature compared with animals or natural surfaces. Therefore,
when these types of artificial land cover are included in a thermal image, numerous errors
in animal detection occur [31]. To eliminate this error, artificial structures should be masked.

However, it is difficult to tell which parts of the image should be removed, since
one of main purposes of this study was to develop a method that can be used for instant
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detection under in situ conditions, and pursuing this objective limited the time available
to analyze images and locate artificial structures. Therefore, as an alternative to artificial
cover detection, the unnatural color masking method was used. Fortunately, more than
half of the artificial structures at the study site have unnatural colors, such as vivid red,
vivid blue, and vivid orange (Figure 6). As when correcting the temperature for fur color,
for this step, temperature values were removed according to pixel color. Many possible
errors can be prevented by removing these high-temperature artificial structures.

Figure 6. Example of thermal image correction (unnatural). (a) Original RGB image, (b) original thermal image, and
(c) corrected thermal image.

3. Methods

Our method requires both thermal and RGB images but especially thermal images, as
these contain more useful information.

The open-source programming language Python was used in the Google Colab [44]
environment to develop the proposed method. Google Colab, a cloud service based
on Jupyter Notebooks, executes Python code using both CPU and GPU resources, thus
enabling quantitative analysis on a scale that exceeds the limitations of personal computers.
The main functions of the proposed method are Sobel edge creation [45] and contour
drawing. OpenCV2, an optimized computer vision library, was used for image processing.

The automated detection results obtained using the proposed method were catego-
rized based on shooting height and target shape, i.e., isolated, bordering, overlapping,
or partial.

3.1. Sobel Edge Detection and Contour Drawing

Sobel edge creation refers to a method that finds edges simply. This gradient operator
works vertically and horizontally [46]. When the difference in pixel value is larger, the
Sobel edge has a higher value. By combining the vertical and horizontal Sobel edges, a
biaxial Sobel edge can be made. This biaxial Sobel edge was used to draw the binary
contours. After applying a threshold to the biaxial Sobel, the segmented image was used
for contouring. At the same time as contours were drawn, the centroid point of each
contour was marked on the images (Figure 7). The accuracy of the contours was high, but
some were wrongly drawn around non-target objects, such as stones, wet soil, and artificial
structures; therefore, to eliminate these false-positive results and obtain accurate results,
the contours had to be sorted.
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Figure 7. Example of Sobel edge detection and contour drawing. (a) Sobel x-axis outcome, (b) Sobel y-axis outcome,
(c) Sobel biaxial outcome, (d) thresholded image, and (e) contoured image.

3.2. Object Detection and Sorting

To eliminate wrongly drawn contours, size–temperature filtering was used. The mean
body length of the target animal was approximately 0.9 m, and the top-view area was
approximately 4500 cm2. However, the body of the animal is fully covered with thick,
curly fur, so its body heat is not shown clearly in the thermal image, making the animal
look smaller than normal. Hence, the area filter was set to detect contours smaller than
3500 cm2 and larger than 100 cm2. The minimum criterion was set much smaller than the
common size of the target to find segmented body parts such as overlapping or partial
targets. Additionally, the size of drawn contours can be small because of the animal’s body
shape. Therefore, to obtain a high probability of animal detection, the area filter was set
with a large range.

For contours sorted by the area filter, the centroid temperature filter was used again.
The maximum and minimum body temperatures of the targets 25 m above the animal’s
body were nearly 20 ◦C and 10 ◦C, respectively. Therefore, the filtering option was set
to find contours warmer than 9 ◦C to ensure that every target was filtered. In addition,
the temperature also changes with changes in shooting height. To minimize this error,
we corrected the temperature by height. The shooting height and maximum temperature
of the targets are linearly related (Figure 8). Temperature filtering was adapted using
Equation (1).
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Figure 8. Regression analysis of maximum temperature and shooting height.

The main target animal in this study was the alpaca. Therefore, size-temperature
filtering was designed and adapted to this species. However, this object detection and
sorting method can be adapted to target other species by changing the filter criteria.

tcorrected = −0.0372 · height + 19.732 (1)

3.3. Input Images Generation

As mentioned previously, six kinds of input images were used for the automated
detection method (Figure 9). These input images were generated to enhance the detection
ability, shorten the detection time, and determine which type of input image produces
the most accurate detection performance. The six kinds of input images were corrected
RGB images, original thermal images, thermal images corrected for fur color, thermal
images with masked unnatural colors, corrected RGB images × original thermal images,
and corrected RGB images × all correction-applied thermal images.

The thermal and RGB images were processed using contour and centroid generation,
size–temperature filtering, a target counting process after Sobel edge creation, and image
binarization. These images were combined after image binarization, and each combined
image could be used to generate contours corresponding to those of the two kinds of
images. Therefore, combined images allowed for a more accurate detection ability.
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Figure 9. Flowchart of the detection method for all image types.
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4. Results

The automated detection results obtained using the proposed method were catego-
rized based on shooting height and target shape, i.e., isolated, bordering, overlapping, or
partial. The detection recall, precision, and time were also analyzed.

The detection results were assessed based on the detection precision and detection
recall rate (Figure 10). The detection precision was calculated as the number of real animals
among the automatic detections divided by the total number of detections. The detection
recall rate was the number of real animals among the automatic detections divided by the
number of animals in the image. These two values have the same range, from 0 to 1, and
higher values indicate higher detection ability.

Figure 10. Calculation of detection precision and recall rate.

To compare the detection precision and detection recall rates of the six kinds of images,
the number of targets in each image was counted manually (Figure 11), and targets were
labeled according to their shape category (i.e., isolated, bordering, overlapping, or partial).
The number of targets in each of the 26 individual original images was about 40. However,
for every type of input image, the numbers of targets detected tended to decrease with
increased shooting height. At shooting heights greater than 100 m, fewer than 10 targets
could be detected in each type of image, and at heights greater than 125 m, fewer than five
targets could be detected.

Based on the results of manual and automatic counting, the detection precision and
recall rate were evaluated. As the detection precision decreased dramatically above a height
of 100 m, we focused on detection results at shooting heights lower than 100 m (Table 1).
The total number of targets was 316, consisting of 56 isolated targets, 243 bordering targets,
17 overlapping targets, and three partial targets. Of the 316 targets, 5 were ostriches.

When only RGB images were used for detection, the detection recall rate was 0.367,
and the detection precision was 0.013. RGB images cannot be subjected to temperature
filtering. Therefore, false-positive detection results such as soil, rocks, roofs, and roads
could not be eliminated. This uncertainty in sorting led to the poor detection recall result.
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Figure 11. Detection results by height and type of input image.

Table 1. Total numbers of targets detected and the detection precision and recall rates (for images with a shooting height of
less than 100 m).

Isolated Bordering Over-
Lapping Partial Detected Error Total

Count
Detection
Precision

Detection
Recall

Manual count 56 243 17 3 316

Corrected
RGB only 17 95 0 4 116 9099 9215 0.013 0.367

Thermal only 32 120 0 0 152 40 192 0.792 0.481

Corrected for fur
thermal 42 149 0 0 191 108 299 0.639 0.604

Unnatural color
removal thermal 31 122 2 0 155 38 193 0.803 0.491

Corrected RGB +
Thermal 28 168 2 1 199 795 994 0.200 0.630

Corrected RGB +
Corrected thermal 34 183 3 1 221 54 275 0.804 0.699

When the input image contained thermal information, the detection precision and
recall rate were higher. In particular, compared with the RGB-only detection results, the
precision increased by at least 50-fold. The original thermal images and the two types
of corrected thermal images also produced similar precision results of approximately 0.8.
However, detection recall increased by approximately 20% when images corrected for fur
color and temperature were used. Moreover, there were two types of combined thermal
and RGB images. The first type was created by multiplying a corrected RGB image with
the original thermal image, and the second type was obtained by multiplying a corrected
RGB image with the all-corrections-applied thermal image. The detection recall rate using
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these images exceeding 0.6, and the detection precisions were 0.200 and 0.804, respectively.
When corrected thermal images were used, the detection precision was approximately
four-fold higher.

Use of the six types of input images resulted in different detection times. To calculate
the detection time of an individual image by image type, the total detection times of
the 26 images shot for each height range were summed, and then the sum was divided
by 26. After repeating this process 50 times, the average detection time was calculated
(Table 2). Of the four processing methods used in Google Colab, parallel processing had
the fastest detection time for all image input types. The image type associated with the
fastest detection time was the thermal image with unnatural color removal, which was
associated with a detection time of 0.033 s. The image type associated with the slowest
detection time was the corrected RGB image × corrected thermal image combined image.
This image type was associated with a detection time that was three times slower than the
fastest time. In general, when the input image had RGB channels, more detection time was
required. This occurred because the detection method had to consider more channels and
because the large numbers of errors associated with RGB images prolonged the true–false
decision-making time of the method. Converting the detection time to frames per second
(FPS), the input images including RGB channels were acquired at 9 FPS. The other input
images were acquired at 25–30 FPS.

Table 2. Time needed for detection by type of image under four kinds of processing environment.

CPU and RAM Intel(R) Xeon(R) CPU @ 2.20 GHz and 12.69 GB

Running Environment Single CPU GPU Accelerated
(Tesla T4_16 GB)

GPU Accelerated
(Tesla P100_16 GB)

CPU Parallel
Processing
(2 Cores)

Detection Time and Applicable FPS Time (s) FPS Time (s) FPS Time (s) FPS Time (s) FPS

Corrected RGB only 0.192 5 0.159 6 0.143 7 0.109 9

Thermal only 0.047 21 0.038 26 0.036 28 0.036 28

Corrected for fur color and temperature 0.063 16 0.051 20 0.047 21 0.040 25

Unnatural color removal 0.048 21 0.038 26 0.036 28 0.033 30

RGB + Thermal 0.194 5 0.151 7 0.146 7 0.109 9

RGB + Corrected thermal 0.197 5 0.158 6 0.145 7 0.111 9

5. Discussion
5.1. Detection Presicion and Recall

For wildlife detection, detection precision and recall are fundamentally important. The
26 images shot at each height range were used to generate six kinds of input images. The
same detection method was used for each of these input images, and it detected between
one- and two-thirds of the targets. When the input image had a thermal channel, the
maximum detection precision increased approximately two-fold. Additionally, a detection
recall rate of 0.699 was obtained when using the corrected RGB image and corrected thermal
image together.

Previous studies have shown a diverse range of detection precision (Table 3). A
method applied for hippopotamus detection performed best [30]. Studies of cattle [47],
monkeys [48], and white-tailed deer [34] detected between 60% and 70% of their targets. Fur
seal [49] and human [32] studies detected approximately 40% of their targets. Considering
the differences in site environment, target size and shape, and thermal image shooting
conditions, the detection method proposed here has above-average performance.



Remote Sens. 2021, 13, 2169 14 of 19

Table 3. Comparison of the proposed method with previous studies.

Proposed
Method

Chrétien, L.P.,
et al., 2016 [34]

Hambrecht, L.,
et al., 2019 [32]

Lhoest, S.,
et al., 2015 [30]

Longmore, S.N.,
et al., 2017 [47]

Seymour, A.C.,
et al., 2017 [24]

Gooday, O.J.,
et al., 2018 [49]

Oishi, Y.,
et al., 2018 [31]

Spaan, D.,
et al., 2019 [48]

Used Dataset UAV Derived RGB and Thermal Images UAV Derived Thermal Images

Site

location

animal farm,
Hongcheon,
Republic of

Korea

Falardeau
Wildlife

Observation and
Agricultural
Interpretive

Centre, Canada

Issa study site,
Tanzania

Garamba
National Park,

Democratic
Republic of

Congo

Arrowe Brook
Farm Wirral, UK

Hay Island &
Saddle Island,

Canada

Kaikoura, New
Zealand

Nara Park,
Japan

Los Arboles
Tulum, Mexico

area (m2) 120,200 2215 - - 6500 160,000 - 5,510,000 40,000

numbers 1 1 24 4 1 2 3 1 3

Data
Acquisition

Date 25 11 2020 06 11 2011 03 2017 09 2014,
05 2015 14 07 2015 29 01 2015~02 02 19 02 2015~27 11 09 2015 10 06 2018~23

Time 11:00~13:00 07:00~13:00 - - - 07:30, 19:00 07:00, 12:00,
16:00 19:22~20:22 17:30~19:00

Altitude (m) 25~275 60 70, 100 39, 49, 73, 91 80~120 - 50 1000, 1300 70

Target
name alpaca white-tailed

deer human hippopotamus cattle grey seal New Zealand
fur seal sika deer spider monkey

body length
(m) 0.8~1.0 1~1.9 0.3~0.5 3~5 2.4 1.0~2.5 1.0~2.5 1~1.9 0.7

Results
(best or average)

Accuracy 0.804 0.650 0.410 0.860 0.700 0.750 0.430 0.753 0.650

Detection
time (s) 0.033 - - - - - - - -
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Among the previous studies, only the white-tailed deer study [34] provided detection
precision and recall results. As was found here, the previous study found very large
numbers of false-positive detection results when RGB images were used as input images.
This previous study used unsupervised pixel-based and object-based methods. When the
unsupervised pixel-based classification method was used with RGB images, the detection
precision was 0.046; when the object-based method was used, it was 1.0. However, the
detection recall of the two methods had the same value of 0.484. Thus, according to this re-
sult, the object-based method did not detect more targets compared with the unsupervised
pixel-based method. However, the method proposed here increased both the detection
recall rate and detection precision by using different kinds of input images.

5.2. Instant Detection

Detection time is also a major factor in wildlife detection. To detect animals in real-
time, detection time is a more important factor than detection precision or recall. The
government of the United States limits the capture rate of thermal video equipment for
export to 9 FPS, and most products have this capture rate [50] including the thermal camera
used here. To apply our method to 9 FPS videos, the detection time should be less than
0.12 s. The full frame rate is 30 FPS. To be able to detect animals in real-time, the detection
time should be less than 0.034 s.

The methods of previous studies based on machine learning and deep learning are
difficult to use in real-time, and the authors have discussed these limitations [51]. The
studies listed in Table 3 did not provide detection times, and their methods require a
preprocessing step so cannot be used in real-time. A study of koalas [52] provided detection-
time results. When shooting from altitudes of 20, 30, and 60 m, the detection times were
1.3, 1.6, and 2.1 s, respectively, but these times are insufficiently fast for real-time use.

With parallel processing, the fastest detection time for a single input image using the
method presented here was 0.033 s, and the slowest was 0.111 s. Converted to FPS, these
times correspond to 30 and 9 FPS, respectively. When the input image had only a thermal
channel, the FPS range was 25–30; when the input image had RGB channels, the rate was
9 FPS. Thus, all input image types can be used to analyze exported thermal videos. Single
thermal channel images can detect almost every frame during real-time shooting.

Furthermore, the sensor always shoots thermal and RGB images simultaneously, so
both types of input image can be used according to preference. The best way to use the
method developed here is to check for the presence of wildlife in a thermal image with
unnatural colors removed. For the frames with a confirmed presence of wildlife, the
corrected RGB image combined with the corrected thermal image can be used to clearly
determine numbers and locations.

5.3. Using the Proposed Method to Supplement Previous Methods

The proposed method can detect animals regardless of color, shape, or size and does
not need to generate a training dataset. This advantage reduces the total time needed for
detection, and, at the same time, the method can be used to generate the training dataset
itself. As a result of the automated detection process, our method marks the outline and
centroid of each target. Then, instant target sorting can be used to form sets of images of
detected animals, and this stacked result can be employed for ML–DL training, even while
simultaneously conducting UAV surveys in the field.

This quick and in-field detection method can be used to supplement the relatively
precise and advanced existing methods. Not only is our method useful for creating a
training dataset but also, when a trained model is used for detection, the region of interest
in the RGB image can be minimized. This areal reduction can lead to time saving.

5.4. Utility of Thermal Sensors

The use of thermal sensors provides several benefits for wildlife detection, especially
time saving in the detection process [53], enhanced detection performance [32,34], and
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wider application across many species. However, thermal sensors still have limitations and
drawbacks. An important limitation is that thermal sensors cannot sense through obstacles
such as tree canopies, hideouts, and bushes. RGB image-based detection methods also
have this limitation. However, thermal images can be used to detect the body temperature
of a camouflaged target and may have an advantage over RGB images.

Another more critical drawback is the sparse resolution of the thermal camera. Com-
pared with an RGB image, the image generated from a thermal sensor has approximately
40-fold fewer pixels and one-quarter of the coverage area. Furthermore, the spatial res-
olution at the same shooting height is approximately four times lower. This drawback
limits the shooting height for obtaining images for use in detecting wildlife. At a height of
100 m, the pixel resolution is approximately 9 cm, and at a height of 200 m, the resolution
is approximately 18 cm (Figure 12). If the shooting height is higher than 100 m, a target of
the size in this paper will be represented by only a few pixels, and if multiple targets are in
contact with each other or overlapped, their edges become more difficult to distinguish,
and blurred targets are not detected properly. In this study, a height of 100 m seemed to
be the maximum height for significant detection of wildlife. If the target size or shape
was different or a high-quality thermal sensor could be used, the maximum height would
be higher.

Figure 12. Thermal images taken at shooting heights of (a) 25 m, (b) 100 m, (c) 200 m, and (d) 275 m, and their pixel resolution.

5.5. Method Overview

Our method overcomes three limitations of previous studies: it can detect target
animals in real-time with minimal data preprocessing, use two types of images for advanced
detection ability, and be applied in diverse situations.

Size-temperature filtering enables our method to be applied to different species and
land cover types. However, a lack of data means that further validation of its applicably to
different land cover types is necessary. In addition, shooting altitude remains a limitation,
similar to previous methods. Another drawback of the proposed method is that it cannot
merge acquired images to minimize preprocessing and reduce detection time. However,
although merging allows for more rapid detection of targets, partial targets might not be
detected accurately. This could be overcome by using slower UAV flight speeds and higher
frame rates.

6. Conclusions

This paper developed a new method for detecting animals using thermal and RGB
images. The maximum detection precision was 0.804, and the recall rate was 0.699. The
major improvement in detection time enables real-time usage.

This method has two limitations. The environments and conditions, such as the
detection target, shooting time, and land cover, were not diverse when the raw data were
acquired, so the method was developed using only limited data. Nevertheless, the method
might be applicable to many species and circumstances. The sparse resolution of the
thermal sensor is another limitation that limits the shooting height. Nonetheless, if high-
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resolution thermal images are used, the method may be able to detect smaller targets and
it may be possible to fly the UAV at a higher altitude.

The focus of future work will be to diversify the target species and shooting conditions
to clarify how versatile a thermal sensor-mounted UAV system would be in conducting
wildlife surveys. Using these data, an advanced method that can detect targets at greater
heights will be proposed.
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