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Abstract: This study investigates the growth and displacement of landfast ice along the shoreline of
the Mackenzie Delta in Northwest Territories, Canada, by synthetic aperture radar (SAR) speckle
offset tracking (SPO). Three-dimensional (3D) offsets were reconstructed from Sentinel-1 ascending
and descending SAR images acquired on the same dates during the November 2017–April 2018 and
October 2018–May 2019 annual cycles. The analysis revealed both horizontal and vertical offsets.
The annual horizontal offsets of up to ~8 m are interpreted as landfast ice displacements caused by
wind and ocean currents. The annual vertical offsets of approximately −1 to −2 m were observed
from landfast ice, which are likely due to longer radar penetration up to the ice–water interface with
increasing landfast ice thickness. Numerical ice thickness model estimates supported the conclusion
that the cumulative vertical negative offsets correspond to the growth of freshwater ice. Time-series
analysis showed that the significant growth and displacement of landfast ice in the Mackenzie Delta
occurred between November and January during the 2017–2018 and 2018–2019 cycles.

Keywords: SAR speckle offset tracking; 3D time-series analysis; landfast ice growth; Mackenzie
Delta; Sentinel-1

1. Introduction

Recent climate change reports highlight the rapidly decreasing sea ice extent and
thickness with record high temperatures in the Arctic [1–4]. Its decreasing maximum extent
and shorter annual cycle with later freezeup and earlier breakup indicate rapid climate
change in the Arctic [5]. Landfast ice is a type of sea ice formed on the land or extended
from the land, which can be classified into bottomfast ice, stabilized floating ice, and non-
stabilized floating ice extensions [6]. The annual maximum extent of Arctic landfast ice is
~1.8 M km2, which is about 12% of the Northern Hemisphere sea ice extent [7]. The landfast
ice thickness in the Canadian Arctic Archipelago (e.g., Cambridge Bay, Eureka, Alert)
has decreased at ~4 cm per decade with changes in snow depth [8]. Landfast ice plays
important roles for coastal sediment and hydrological dynamics [9,10], marine mammal
habitats [11], and traffic and hunting activities of northern coastal communities [12]. It also
serves as a nearshore platform for oil and gas exploration in the Arctic [13]. Thus, spatial
and temporal monitoring of landfast ice is critical for accessing climate change impacts and
natural hazards in the Arctic.

The Mackenzie Delta located in Northwest Territories, Canada, is the second largest
delta of ~13,000 km2 in the Arctic (Figure 1). The terrain is underlain by arctic permafrost
of ~100 to 500 m thickness [14]. The Mackenzie River and surrounding channels discharge
freshwater of ~284 km3 annually [15]. In the Mackenzie Shelf along the Beaufort Sea coast,
landfast ice recurrently forms from fall or early winter and melts away by early summer.
The shallow bathymetry of the Mackenzie Estuary plays an important role in the formation
and pattern of bottomfast and landfast ice [16,17]. Landfast ice and drift sea ice are mainly
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affected by winds and ocean currents (e.g., the Beaufort Gyre specifically in this region), but
they are also impacted by heat transports from ocean mixing and river discharges [17,18].
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represents the coverage of Sentinel-1 and Landsat 8 subsets in Figures 3 and 4. The red, green, and 
blue dots mark the Pelly Island, Inuvik, and Tuktoyaktuk stations, respectively. The DEM was 
modified from the coastal digital elevation model global mosaic provided by National Oceanic 
and Atmospheric Administration (NOAA)/National Centers for Environmental Information 

Figure 1. Digital elevation model of the Mackenzie Delta (a) and InSAR-derived landfast ice map
modified from Dammann et al. (2019) (b, Land is masked out in grey). The solid white lines are
Sentinel-1 ascending and descending coverages used in this study. The dashed white rectangle
represents the coverage of Sentinel-1 and Landsat 8 subsets in Figures 3 and 4. The red, green,
and blue dots mark the Pelly Island, Inuvik, and Tuktoyaktuk stations, respectively. The DEM was
modified from the coastal digital elevation model global mosaic provided by National Oceanic and
Atmospheric Administration (NOAA)/National Centers for Environmental Information (NCEI). The
3D SPO in Figure 5 was performed for the overlapped part of ascending and descending coverages.
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Optical sensors were used to map sea ice type and extent, but it is very limited to
acquire optical imagery not obscured by cloud and atmosphere in the Arctic with the polar
night of ~6 months during the winter. SAR, on the other hand, has a great advantage of all-
weather and day and night imaging capability, so it has been extensively used to monitor
sea and landfast ice [19]. SAR backscattering can characterize ice types (e.g., multi-year
vs. first-year ice), and roughness [20–22]. SAR penetration depth is very sensitive to the
salinity of ice [23]. In the case of landfast ice affected by significant freshwater inflow, such
as the Mackenzie Delta and the Lena Delta, it has very low, close to zero salinity [24,25].
In the Mackenzie shelf near the mouth of the Mackenzie River, freshwater landfast ice
forms by incorporating river discharges spreading along the coast [24]. Macdonald et al.
(1995) confirmed the different freshwater proportion and salinity within the Mackenzie
Delta landfast ice zone by analyzing ice core samples [24]. They observed that the ice core
samples from the shallow nearshore are mostly composed of freshwater (e.g., freshwater
ice/total ice = 1.71 m/1.72 m from the GI-1 station). Stevens (2011) also confirmed that the
pore water salinity of sediments below ice surface in the Mackenzie Delta is close to zero
up to ~5 m depth [26]. This allows C-band radar with a penetration depth of several meters
for dry snow and freshwater ice to reach into the ice–water interface [16,27], unlike saline
sea ice with a very short penetration depth of tens of centimeters [23,28]. Well-established
InSAR techniques have been used to study glacier and sea ice motion and dynamics in
the Arctic and Antarctica [29–32]. Yue et al. (2013) delineated bottomfast ice from floating
landfast ice in the Mackenzie Delta by combining InSAR coherence with polarimetric SAR
classification [16]. Recently, Dammann et al. (2019) classified landfast ice in the pan-Arctic
including the Makenzie Delta depending on the InSAR fringe patterns observed at the most
stable ice growing end stage (Figure 1b). While no fringes are observed from bottomfast
ice, distinct fringes start to appear from stabilized floating ice and much denser fringes are
observed from non-stabilized floating ice extensions (i.e., the denser interferometric fringes
appear, the more the magnitude of ice motion increases) [6].

Similarly to [6], we observed distinct InSAR fringe patterns relating to landfast ice
displacements with an ascending pair of 20170319–20170331, which were confirmed by
Landsat 8 true color composites showing landfast ice breakups occurred during the over-
lapping time period (Figure 2a,b). Compared to the bottomfast ice, where radar signals
penetrating into grounded ice are mostly absorbed into ground (i.e., very weak backscatter-
ing) [16], much stronger VV backscattering responses were observed from the stabilized
floating landfast ice adjacent to the coastline (Figure 2c,d). Ground penetrating radar mea-
surements in this region revealed the high contrast of backscattering signals between the
ice–ground interface (i.e., bottomfast ice) and the ice–water interface (i.e., floating ice) [33].
The similar radar backscattering contrast observed at C-band suggests that part of the
stabilized floating landfast ice in Figure 1b is mostly composed of freshwater ice that allows
C-band SAR to penetrate to the ice–water interface [16,34,35]. Beyond the outer edge of the
floating landfast ice showing strong backscattering signals, distinctly dark backscattering
features are observed, which are interpreted to be specular reflection from very smooth and
thin ice (or intermittent opening of flaw leads). InSAR fringes were observed from the outer
stabilized floating landfast ice and much denser fringes appeared from the non-stabilized
floating ice (Figure 2e). On the other hand, the inner stabilized floating landfast ice was
masked out with very low coherence. In addition, InSAR analysis showed a limitation in
phase unwrapping to estimate the quantitative displacement from the 2π-modulated inter-
ferometric phase. Different plates and cracks within landfast ice and abrupt transitions in
the boundaries between land and ice showed significant discontinuities in the unwrapped
phase, resulting in inaccurate displacement estimation (Figure 2f). Speckle offset tracking
(SPO), on the other hand, uses SAR amplitudes, which does not require the phase unwrap-
ping process. SPO has been extensively used for monitoring relatively large deformations
at the scale of 10 s cm to 10 s m, such as glacier motion [36–39] and landslides [40,41].
Surface displacements have been reconstructed in 3D by combining 3 line-of-sight (LOS)
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InSAR measurements [42], 2 InSAR measurements with 1 azimuth offset [43], or 2 LOS
InSAR measurements with a DEM-derived surface parallel component [44].
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SAR intensity image of 20170319. (d) SAR intensity image of 20170331. (e) SAR interferogram of 20170319–20170331 over-
laid on the intensity image of 20170319. (f) Unwrapped phase showing discontinuities (black arrows) of 20170319–
20170331. The SAR intensity images were linearly stretched between -25 and -5 dB. The orange arrows represent bottom-
fast ice. The green, light yellow, and light blue dashed lines with double arrows represent the ranges of inner stabilized 
floating ice, outer stabilized floating ice, and non-stabilized floating saline ice, respectively. The coastline is shown in 
yellow (c,d) and black (e,f). 
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2.1. Sentinel-1 SAR and Supporting Data 
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360) Sentinel-1 Terrain Observation with Progressive Scan (TOPS) SAR images of VV po-
larization were collected for two annual cycles of November 2017–April 2018 and October 

Figure 2. Landsat 8 and Sentinel-1 observations of landfast ice in the Mackenzie Delta. (a) Landsat 8 true color composite of
20170313 (yyyymmdd). (b) Landsat 8 true color composite of 20170329 showing open water leads after a breakup. (c) SAR
intensity image of 20170319. (d) SAR intensity image of 20170331. (e) SAR interferogram of 20170319–20170331 overlaid on
the intensity image of 20170319. (f) Unwrapped phase showing discontinuities (black arrows) of 20170319–20170331. The
SAR intensity images were linearly stretched between −25 and −5 dB. The orange arrows represent bottomfast ice. The
green, light yellow, and light blue dashed lines with double arrows represent the ranges of inner stabilized floating ice,
outer stabilized floating ice, and non-stabilized floating saline ice, respectively. The coastline is shown in yellow (c,d) and
black (e,f).

In this work, we investigate the vertical and horizontal changes of landfast ice in the
Mackenzie Delta using a total of 4 SPO measurements from ascending and descending
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Sentinel-1 SAR data acquired within the same day (i.e., minimizing an assumption for
temporal gaps). We propose a novel 3D SAR SPO technique for monitoring the growth
and displacement of landfast ice of sub-meter precision without the uncertainty of phase
unwrapping. The time-series 3D SPO results are compared with climate and environ-
mental factors contributing to landfast ice changes. We demonstrate that the vertical
changes observed from 3D SPO measurements have a very strong link with the growth of
landfast ice.

2. Materials and Methods
2.1. Sentinel-1 SAR and Supporting Data

A total of 18 ascending (path: 108, frame: 226) and 18 descending (path: 116, frame:
360) Sentinel-1 Terrain Observation with Progressive Scan (TOPS) SAR images of VV
polarization were collected for two annual cycles of November 2017–April 2018 and October
2018–May 2019 (Table 1, Figure 3). Sentinel-1 TOPS SAR single look complex (SLC) data
were acquired at a spatial resolution of ~2 m by ~14 m in range and azimuth, respectively,
at incidence angles of ~30◦–45◦. The Sentinel-1 TOPS SAR interferometric wide (IW)
mode with a ~250 km swath can acquire an overlapping spatial coverage from ascending
and descending flights at high latitudes less than 1-day apart [45]. The Polar Pathfinder
daily 25 km EASE-Grid sea ice motion data (produced from multiple sensor observations
and buoy and wind measurements) provided by the National Snow and Ice Data Center
(NSDIC) were compared with the SPO measurements. Daily air temperature and wind
statistics (from the Pelly Island station at 69.63◦ N, 135.44◦ W), snow depth (from the
Inuvik station at 68.32◦ N, 133.52◦ W), freshwater level (from the Mackenzie River Reindeer
channel (10MC011) at 69◦ 01′ N, 135◦ 30′ W), and hourly tide records (from the Tuktoyaktuk
station at 69.44◦ N, 132.99◦ W) provided by the Environment and Climate Change Canada
(ECCC) and Fisheries and Oceans Canada (DFO) were also analyzed.

Table 1. Sentinel-1 SAR datasets for 2017–2018 and 2018–2019 annual cycles 1.

2017–2018 Dataset BT (days) 2018–2019 Dataset BT (days)

20171126–20180113
20180113–20180125
20180125–20180206
20180206–20180302
20180302–20180314
20180314–20180326
20180326–20180407

48
12
12
24
12
12
12

20181028–20181203
20181203–20190108
20190108–20190120
20190120–20190201
20190201–20190225
20190225–20190309
20190309–20190321
20190321–20190402
20190402–20190414
20190414–20190426
20190426–20190508

36
36
12
12
24
12
12
12
12
12
12

1 BT: temporal baseline.

2.2. 3-Dimensional SAR Speckle Offset Tracking

SAR SPO estimates the offsets in LOS and azimuth directions on the order of 1/20th
of a pixel [36]. The SPO algorithm computes the cross-correlation of two SAR amplitude
subset patches by shifting a subset patch within a larger search window to find a nearly
identical feature. The signal-to-noise ratio (SNR) is calculated by the peak value relative to
the average of the cross-correlation function for noise removal, and the offsets are deter-
mined by the local maxima over a given threshold of SNR [36]. SPO has a great advantage
in detecting large deformation gradients at the scale of 10 s cm to 10 s m depending on
the resolution of SAR, the size of a subset patch (i.e., enough to maximize SNR), and the
size of a search window (i.e., enough to include the distance of movement), while InSAR is
limited to relatively small deformation gradients at the scale of cm [40,46] (Figure 4).
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The LOS and azimuth offsets, calculated from each of ascending and descending pairs
(LOSi and AZIi; i = asc, dsc, four product sets in total), are used to reconstruct the 3D offsets
(Dj; j = N, E, U) for each acquisition epoch by inverting the following Equation (1), written
in a matrix form [43]:

LOSasc
LOSdsc
AZIasc
AZIdsc

=


sin ϕasc sin θasc
sin ϕdsc sin θdsc

cos ϕasc
cos ϕdsc

− cos ϕasc sin θasc
− cos ϕdsc sin θdsc

sin ϕasc
sin ϕdsc

cos θasc
cos θdsc

0
0


 DN

DE
DU

 (1)
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where ϕi and θi (i = asc, dsc) are the azimuth and incidence angles of ascending and
descending pairs, respectively. Here, for the purpose of modeling, we assume that each
pair of ascending and descending data were acquired at the same time, although there
is a difference of several hours. The SPO processing was performed with the GAMMA
software [47]. A subset patch of 64 by 16 pixels spacing in range and azimuth (i.e., ~149
m by 222 m in range and azimuth) and a search window of 256 by 64 pixels in range and
azimuth (i.e., ~596 m by 888 m in range and azimuth, ~0.5 km2) were applied. A threshold
of SNR = 5 and the median filter with a window of 11 by 11 pixels in range and azimuth
were applied to remove noise and to smooth the results (Figure 4). The precision of the
SPO estimates was calculated by the standard deviations of the cumulative offset estimates
from ~4400 pixels in the land, which are ~0.4, ~0.3, and ~0.2 m for north–south, east–west,
and up–down components, respectively. Time series analysis was performed for each
of 2017–2018 and 2018–2019 annual cycles by applying the Small Baseline Subset (SBAS)
technique using MSBAS software [48].

3. Results
3.1. 3D SPO and Time Series Analysis

Figure 5 shows the 3D SPO results for landfast ice during the 2017–2018 cycle com-
pared to the average drift sea ice daily motions during the same time period. The stabilized
floating landfast ice characterized by distinct interferometric fringe patterns (i.e., outer sta-
bilized floating ice) and strong backscattering (i.e., inner stabilized floating ice) in Figure 2
showed significant horizontal and vertical offsets. In January 2018, the floating landfast ice
showed horizontal offsets towards northwest, which correspond to the drift sea ice motions
heading to west along the coastline (Figure 5a) and the SE wind (Figure 6a). Negative
vertical offsets of <0.5 m were observed along the Beaufort Sea around the Mackenzie River
mouth. On the other hand, positive vertical offsets were observed along the seaward edges.
These edges correspond to where flaw leads occur with recursive ice freezing and breakup,
and SPO was not applicable beyond the edges due to faster motions (i.e., non-stabilized
floating ice, masked out by the threshold of SNR). In late January to early March 2018,
sudden positive vertical offsets of >0.5 m were observed at the edge of the inner floating
landfast ice during the 12- and 24-day intervals (Figure 5b,c). The horizontal displacements
from 20180125–20180206 (Figure 5b) and 20180206–20180302 (Figure 5c) correspond to
the strong W, NW, and S winds (Figure 6b,c) during the periods. Overall, the floating
landfast ice changes for the 2017–2018 cycle are characterized by the horizontal offsets
heading to the northwest and the negative vertical offsets along the Beaufort Sea coasts
out of the Mackenzie River mouth (Figure 5d). Based on the wind statistics during the
same periods (Figure 6), we confirmed the distinct horizontal displacements towards the
northwest are largely affected by the strong SE wind. For example, the average direction of
the northwest displacements from 20171126–20180407 (Figure 5d) is calculated at about
−40◦ (or 320◦, North is 0◦), which corresponds to the SE winds of 120◦ to 150◦ (Figure 6d).
Similar patterns of landfast ice changes were observed from the 2018–2019 cycle.

The 3D time-series analysis confirmed the cumulative horizontal offsets up to ~8 m
towards the northwest and the cumulative vertical offsets of up to ~−2.3 m from the
floating landfast ice (Figure 7). Three points from the floating landfast ice showing different
fringe patterns according to the distance from the shore were analyzed with a reference
point at the land. The horizontal offsets increase approaching the seaward edge. LFI
1 formed close to the land showed little variation in north-south and east-west offsets
similarly to the land, but only vertical offsets of ~−1 m (Figure 7). LFI 3 close to the
seaward edge showing the largest changes could not be estimated in the 2018–2019 cycle,
which is probably due to faster movements (i.e., low SNR). The horizontal and vertical
changes were predominant between November and January and were more significant in
the 2018–2019 cycle.
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offsets between 20171126 and 20180407. The color bars represent vertical offsets and the black arrows represent horizontal
offsets reconstructed from east-west and north-south offsets. The pale blue arrows represent the averaged drift sea ice
motions during the same period. Note that the sizes of the arrow scale bars vary relative to the changes for each period. The
black (land) and red (landfast ice; LFI 1–3) circles represent the spots for time-series analysis in Figure 7.

3.2. Comparison with Numerical Ice Thickness Modeling

The amount of the cumulative vertical offsets is comparable to the ice thickness
measured at ~1 to 2 m with a ground penetrating radar in the region [33,49]. The reversed
cumulative vertical offsets correspond to the growth patterns of landfast ice thickness
observed in the Canadian Arctic Archipelago [8]. Thus, we converted the cumulative
vertical negative offsets into the relative growth of ice thickness (i.e., reversing a negative
vertical offset to a positive growth of ice thickness), and compared them to ice thickness
model estimates (Figure 8). We applied a sea ice thickness model based on accumulated
freezing degree days (AFDD) developed by [50], Equation (2):

hi = β× [
∫
(Tf − Ta)dt]γ, (2)

where hi is the ice thickness, and Tf and Ta are the freezing point temperature and the air
temperature, respectively [51]. β and γ are empirical coefficients varying depending on
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the target environments such as average snow depth, and β ranging from 1.7–2.4 and γ
ranging from 0.5–0.6 have been tested at different sea and lake ice sites [52]. We calculated
AFDD with the daily mean air temperature and Tf = 0 ◦C assuming freshwater. We used
β = 0.94 and γ = 0.6 optimized for estimating freshwater lake ice thickness (Model 1) [52].
The growth of LFI 1 close to the land matched well with Model 1 estimates. LFI 2 and LFI 3
close to the seaward edge showed faster growth, particularly in November to January, and
reached up to ~2.5 m matching with optimized β = 2.25 and γ = 0.6 (Model 2).
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4. Discussion

While InSAR coherence is very low (i.e., less than ~0.3) over most of the floating
landfast ice, the 3D SAR SPO measurements showed a great potential for monitoring
landfast ice during its growth season. The question remains why high SNR values are
observed in the areas with low InSAR coherence. Firstly, a possible explanation is that
a significantly larger window is applied to calculate for SNR than for InSAR coherence.
Large deformation gradients can produce low coherence at the spatial scale of m to 10 s m,
but can produce high SNR at the spatial scale of 100 s m. In this case, the ice–water
interface may change heterogeneously within neighboring pixels with ice growth, but the
ice thickness may have certain oriented facets at the scale of 100 s m. SPO may be able
to track such a broader spatial pattern. Secondly, Jeffries et al. (1994) reported that the
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ice–water interface and the tubular bubble layer at the ice bottom combine to produce
strong backscattering from floating freshwater lake ice, and the maximum backscattering is
saturated from early January until late April, not increasing as much as the tubular bubble
layers thicken [53]. Although the ice bottom can significantly change with its growth,
the backscattering signals could be saturated and also returned from the tubular bubble
layers, not directly from the ice–water interface. The SPO measurement based on SAR
backscattering intensities could obtain relatively coherent signals at such a large window,
but this can lead to an underestimation of SPO measurements. Probably both reasons are
valid, but follow-up studies need to further assess the possible errors of SPO measurements
with in situ measurements of ice thickness.
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right: 2018–2019). The black solid and dashed lines are the estimates by Model 1 and Model 2, respectively. The orange,
yellow, and blue markers represent the relative ice thickness reversed from the vertical offsets of LFI1, LFI2, and LFI3 in
Figure 5, respectively. The SPO starting points are referenced to the Model 1 estimates of the first SAR acquisition dates.

For the vertical offsets relating to ice growth, SPO is only applicable to nearly fresh-
water landfast ice. As shown in Figure 2c,d, the inner stabilized floating landfast ice is
differentiated by high contrast in VV backscattering between the bottomfast ice and the
outer smooth and thin ice with possible opening of flaw leads. This indicates the inner
stabilized floating landfast ice is freshwater-driven ice. The strong scattering is dominantly
from single-bounce off the ice–water interface [54]. However, the contributions from tubu-
lar bubble and brine inclusions also need to be considered. Based on the polarimetric
SAR composite showing the relative strength of VH backscattering to VV backscatter
(Figure 9), the inner floating landfast ice is also characterized by higher VH backscattering,
while the bottomfast ice and the outer floating ice show little VH backscattering. This
could be due to strong volume scattering from tubular bubble and brine inclusions in the
ice. Given the little VH backscattering from the bottomfast ice, the roughness effect from
the snow–ice interface can be negligible. In addition, it is possible that there are salinity
transition zones within the inner floating landfast ice, which are observed by relatively
low volume scattering (Figure 9). These areas also show lower SNR values (Figure 4d–f).
Thus, the penetration into the ice–water interface can be limited by tubular bubble and
brine inclusions, which could lead to SPO measurement errors.
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(d) 20180302. The backscattering coefficients (sigma naught) were linearly stretched between −25 and −10 dB for the VV
channel and between −28 and −18 dB for the VH channel. The red arrows in Figure 8d indicate bright white areas in LFI
showing higher VV and VH signals. The coastline is shown in yellow.

The horizontal offsets are interpreted to be lateral displacements of the floating landfast
ice, which are mainly driven by wind and drift sea ice motions. The wind statistics showed
the main source is the strong SE wind from the Mackenzie River region. The Beaufort
Gyre forces sea ice motions moving from east to west along the Beaufort Sea coast and
creates coastal flaw leads [55], which largely affects the horizontal displacements towards
the west. Large horizontal offsets and positive vertical offsets are sporadically observed
along the outer edge of freshwater-driven landfast ice (Figure 5b,c). The outer boundaries
are very dynamic zones where thin ice forms and flaw leads (i.e., open water) recursively
occur by drift sea ice motions and salinity can be variable. Spedding (1981) reported that
pressure ridges frequently occur at the outer edges of landfast ice [56]. Given the drift sea
ice motions towards the land from the north during the same periods, it is possible that the
displacements are from deformed ice and pressure ridges formed by the collision between
landfast ice and drifting sea ice. However, any distinct features to characterize deformed
ice and pressure ridges (i.e., very strong backscattering from rough structures relative to
the surroundings) were not confirmed. The sporadic large offset values would rather be
due to SPO measurement errors caused by salinity transition along the edge, as they are
observed from where backscattering signals and SNR are low.

The negative vertical offsets can have a strong link to freshwater-driven landfast ice
thickness, as radar penetration is longer into the lowering ice–water interface with ice
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growth. The time-series analysis revealed that the most significant growth of landfast
ice occurs between November and January and then the growth slows down, which
corresponds to the air temperature records rapidly decreased from November and reached
to the minimum in January and the ice thickness model estimates. The snow depth
has steadily increased reaching ~0.6 m until late April. The snow layer in cold and dry
conditions over the winter are transparent to C-band SAR (see Figure 2c,d). Thus, this does
not largely affect the negative vertical offsets, but it is possible to induce downward motion
of cm-scale by the cumulative snowfall weight. The local freshwater level in the Mackenzie
Delta decreases until late November and then has little variation from early December
(Figure 10a). For example, compared to the large vertical negative offsets up to ~1.5 m
observed from 20171126–20180113 (Figure 7e), the local freshwater level rather increased
more than 0.2 m. It is not certain how much tide can impact the SPO measurements, hourly
tide records from the closest station showed very small fluctuations between±0.3 m during
the SAR acquisition periods (Figure 10b). Thus, both freshwater and seawater level changes
have little impact on the consistent vertical negative offsets. However, if in situ water
level measurements at the same time of SAR acquisition are available, the variation of
accurate water levels can compensate for an overestimation or underestimation of SPO
vertical measurements.
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Figure 10. Local daily freshwater level (a, from the Mackenzie River Reindeer channel (10MC011)
located at 69◦01′ N, 135◦30′ W) and seawater level (b, from the Tutoyaktuk station located at 69.44◦ N,
132.99◦ W). The seawater level was calculated by averaging the hourly water levels at ascending and
descending acquisition times.

5. Conclusions

We developed a methodology for monitoring landfast ice displacement and, in some
cases, ice thickness change. Ice thickness change can be measured only for low salinity
ice that allows SAR to penetrate to the ice–water interface, which is dependent on SAR
frequencies [23]. Horizontal offsets are largely affected by wind directions and drift sea ice
motions. The cumulative downward vertical offsets can indicate the growth of freshwater-
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driven landfast ice thickness except for the early freezing stage and the late melting stage
of very rapid changes and when water overlays the ice. Further works need to address
the SPO measurement errors with in situ measurements of ice thickness, salinity, and local
water level. If the SPO measurement errors are compensated, the proposed methodology
would have a great potential for monitoring the thickness change of freshwater ice, such
as landfast, lake, and river ice. With the C-band Sentinel-1 SAR and the new trio of
RADARSAT Constellation Mission (RCM) SAR satellites with a 4-day revisit cycle, the
forthcoming NASA-ISRO SAR (NISAR) with S- and L-band dual frequencies can be used
to define better in synergy with a longer penetration depth. Higher spatial and temporal
resolution SAR with a capability to acquire at the same time from ascending and descending
orbits can greatly improve the precision of SPO measurement.
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