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Abstract: This study proposed a new hybrid model based on the convolutional neural network (CNN)
for making effective use of historical datasets and producing a reliable landslide susceptibility map.
The proposed model consists of two parts; one is the extraction of landslide spatial information using
two-dimensional CNN and pixel windows, and the other is to capture the correlated features among
the conditioning factors using one-dimensional convolutional operations. To evaluate the validity of
the proposed model, two pure CNN models and the previously used methods of random forest and a
support vector machine were selected as the benchmark models. A total of 621 earthquake-triggered
landslides in Ludian County, China and 14 conditioning factors derived from the topography,
geological, hydrological, geophysical, land use and land cover data were used to generate a geospatial
dataset. The conditioning factors were then selected and analyzed by a multicollinearity analysis
and the frequency ratio method. Finally, the trained model calculated the landslide probability of
each pixel in the study area and produced the resultant susceptibility map. The results indicated
that the hybrid model benefitted from the features extraction capability of the CNN and achieved
high-performance results in terms of the area under the receiver operating characteristic curve (AUC)
and statistical indices. Moreover, the proposed model had 6.2% and 3.7% more improvement than
the two pure CNN models in terms of the AUC, respectively. Therefore, the proposed model is
capable of accurately mapping landslide susceptibility and providing a promising method for hazard
mitigation and land use planning. Additionally, it is recommended to be applied to other areas of
the world.

Keywords: landslide susceptibility; machine learning; convolutional neural network; hybrid models;
Ludian County

1. Introduction

Landslide occurrence is a complicated phenomenon in terms of the gravitational mass
movement of soil and rocks that are ascribed to numerous environmental variables, like
geomorphology, hydrology, human activities, or other natural hazards [1,2]. Depending
on the external triggers, landslides can be classified as earthquake-induced landslides,
rainfall-induced landslides, or human interference induced-landslides [3]. A landslide
is one of the most destructive and widespread disasters across many parts of the world,
occasionally resulting in extensive casualties and severe economic losses [4]. In particular,
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due to the large surface relief and complex geological formations of steep mountainous
terrains, landslides in these areas cause potentially adverse impacts on the downslope
regions, roads network, and local farming. Furthermore, the blockage of rivers by sliding
materials could lead to further catastrophic weirs [5].

The mountainous areas in China account for nearly 69.4% of the total area, mainly dis-
tributed in the central and western regions of country. These areas are prone to landslides
due to the specific topography and the frequent occurrence of heavy rainfalls and earth-
quakes. Rainfall-induced landslides occur almost every year. In recent years, a series of
severe earthquakes in the southwest chain, such as the 2008 Mw 7.9 Wenchuan Earthquake,
the 2013 Mw 6.6 Lushan Earthquake, the 2014 Mw 6.2 Ludian Earthquake, and the 2017
Mw 6.5 Jiuzhaigou Earthquake, have triggered thousands of co-seismic landslides, causing
incalculable damage and potential risks [6–9]. Hence, identifying and predicting where
landslides may occur are urgent tasks that are conducive to the prevention and mitigation
of losses caused by such a hazard.

Landslide susceptibility mapping (LSM) is a useful tool that measures the contri-
bution of each trigger in the spatial likelihood of landslide events and calculates the
probability of landslide occurrence across the target area on the basis of the environmental
conditions [10,11]. LSM does not require precursor data but simply a historical landslide in-
ventory. To date, there have been various methods for landslide susceptibility assessments
and mapping, which can be broadly classified into two distinctive categories: qualitative
and quantitative methods. Qualitative methods require expert knowledge and indicative
signs to describe the classes of landslide susceptibilities of specific sites [12]. Quantitative
methods emphasize the complex interactions between the environmental conditions and
landslides in determining the exact value of the susceptibility using mathematical proce-
dures [13]. In recent years, the development of Geographic Information Systems (GIS),
Global Position Systems (GPS), and Remote Sensing (RS) technologies have improved the
convenience of landslide inventory production and storage. The integration of remote sens-
ing and statistical techniques has introduced various quantitative models to deal with LSM,
including Analytic Hierarchy Processes [14,15], Weights of Evidence [16], the Frequency
Ratio [17], and the Statistical Index [18]. These models are interpretable and can be rapidly
implemented for LSM but may not achieve satisfactory performances when dealing with a
nonlinear problem [19]. Thus, machine learning-based models capable of capturing the
intricate, hidden, and nonlinear correlations between landslides and environmental condi-
tions have been introduced in LSM, such as the Artificial Neural Network [20], random
forest [21], logistic regression [22], support vector machine [23], and Adaptive Neuro-fuzzy
Inference System [24]. In addition, there are a few creative studies in the LSM literature
that reported the application of the Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN) [25–29].

Input data (i.e., landslide inventory) are the most important part of the LSM modeling
process. However, in the existing literature on LSM, there is almost no uniformity in the
form of input data for susceptibility models. Common landslide inventory representations
include the pixel-, single point-, or multiscale-based techniques. The extracted information
of landslides using different representations can be varied. Several scholars have explored
the effects of different landslide representations on the accuracy of LSM. For instance,
Pourghasemi et al. [30] investigated the effects of four landslide positioning techniques,
including the pixel-, centroid-, crown-, and toe-based landslide inventories on LSM, and
found that the pixel-based (rasterized) inventory provided greater detail and information
for modeling. Dou et al. [31] suggested that different landslide representations for LSM are
deemed less consequential with deep learning. A multiscale sampling strategy for LSM,
which considers the relationship between the landslide and its surrounding environmental
conditions, was proposed by Yi et al. [32]. They fused three different pixel windows of
the landslide inventory with the sizes of 15 × 15, 21 × 21, and 27 × 27 and fed it into
a CNN-based model for improving the performance of LSM. To sum up, these studies
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indicated the potential of exploring landslide representations to attain more reasonable
and accurate landslide susceptibility assessments.

Moreover, small, labeled samples that refer to limited bodies of landslide points are a
problem that may lead to overfitting in supervised methods. In practice, the determination
of the landslide position generally needs expert knowledge or even costly on-site investi-
gations [33]. The amount of samples in a landslide inventory in a certain region is, thus,
generally limited and small. As mentioned before, the aim of LSM is to capture the hidden
and useful patterns between the landslide and landslide inventory. Therefore, the immedi-
ate problem is how to mine more useful information using the proper representations from
the limited landslide samples.

To tackle this problem, we proposed a hybrid model that combines the landslide
spatial information with the correlated features among the landslide conditioning factors.
The CNN was selected as the basic module due to its excellent performance in feature
extraction. The applicability of the proposed model was illustrated via a case study from
Ludian County, China. Two pure CNN models and two typical machine learning methods
of random forest and support vector machine were selected as the benchmark models. All
the built models were evaluated and compared using the receiver operating characteristic
curve (ROC), Kappa index, and other statistical indices. To the best of our knowledge,
different from the previous hybrid model-related studies, our study is the first to present
the concept of fusing spatial information and correlated features among conditioning
factors for improving the performance of landslide susceptibility mapping.

2. Study Area and Materials
2.1. Description of the Study Area

Ludian County is located on the northeastern side of Yunnan Province, China, with
a longitude of 103◦09′–103◦40′ E and a latitude of 26◦59′–27◦32′ N (coordinate system,
GCS_WGS_1984; D_WGS_1984) and an area of about 1519 km2. Figure 1 shows the
location of Ludian County. The mean annual temperature and rainfall are about 12.1 ◦C
and 923.5 mm, respectively. The terrain in Ludian County is rather steep and comprises
two mountains and several dissected ravines [34]. Ludian County is considered a seismic
zone. In fact, there have been more than 15 earthquakes with magnitudes of Mw 6.0 or
larger in Ludian since 1900 [35]. Thus, landslides induced by earthquakes pose high risks
to the people living in the area. Figure 2 shows the typical earthquake-induced landslide
disasters in the Ludian earthquake zone.
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Figure 2. (a) Slope failure, (b) debris flow, (c) rock fall, and (d) ground fissures after the 3 August
2014 earthquake event.

2.2. Landslide Inventory Mapping

A landslide inventory map is fundamental and crucial for landslide susceptibility
mapping. In this study, an inventory that consists of 621 landslide sites was developed
using aerial photos and Google Earth images after the 3 August 2014 earthquake event,
as shown in Figure 1. To examine and confirm this inventory, all the landslide records
were verified through field investigations. Of these, 435 (70%) landslides were randomly
selected as the training set, and the other 186 (30%) landslides were used for validation.
Additionally, we randomly selected the same number of non-landslide sites (435 and 186)
from the landslide-free area to balance the whole samples for constructing training and
the validation set. Note that the inventory is compiled as a point shapefile format with
ArcGIS 10.5.

2.3. Landslide Conditioning Factors

The approaches for mapping landslide susceptibility require a combination of various
factors indicating features of the topography, geology, and other contributing indices.
The conditioning factors should also be selected according to some circumstances, such
as the triggering factor and the attribute of the study area. In this study, the PGA is
considered a geophysical factor contributing to landslides. The other conditioning factors
are divided into topographic indices (elevation, slope, aspect, curvature, and relative
relief); geology indices (lithology and distance to faults); land cover/land use (land use,
normalized difference vegetation index, and the distances to roads); and hydrological
indices (topographic wetness index, stream power index, and the distances to rivers). All
the factors are prepared in raster format with ArcGIS 10.5.

2.3.1. Topographic Factors

The digital elevation model (DEM) in the study area is obtained from the ASTER
Global Digital Elevation Model. Figure 3a shows the DEM in the study area, which has a
raster format with a cell size of 30 × 30 m. The elevation has a 0.1 m vertical resolution,
ranging from 747 to 3314 m. The other topographic indices, including the slope angle, slope
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aspect, relative relief, and curvature, are derived from the DEM. Ludian County has a total
area of approximately 1487 km2, 88% of which is mountainous areas.

A large slope inevitably increases the driving forces associated with gravity and the
probability of landslide occurrence. Therefore, the slope is one of the most important
factors in landslide susceptibility mapping. In the study area, the slope ranged from
1.2 to 75.4◦ (Figure 3b).

The aspect is identified as the direction of the maximum slope (Figure 3c). The soil
moisture and hydrology processes are correlated with the aspect, which affects exposure to
sunlight, rainfall (degree of saturation), and drying winds.

Relative relief is also a frequently used factor in LSM. Normally, the slopes with larger
values of relative relief are more likely to lose stability due to earthquakes or rainfall events.
Figure 3d shows the land relative relief in the study area.

The curvature is a widely used topographic factor that portrays the surface shape
and changes of the slope angle. As the curvature controls the erosion process, it exerts
an effect on the transport and erosion of landslide materials [36]. Negative, zero, and
positive curvatures represent concave, flat, and convex shapes, respectively. In this study,
the curvature was derived from the DEM and classified into three classes: <−0.1, −0.1–0.1,
and >0.1 (Figure 3e).
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2.3.2. Geological Factors

According to previous studies, geology plays a major role in mapping landslide
susceptibility. In this study, the original lithology from a geological map was provided by
the local authorities with a 1:50,000 scale, which was classified into 11 groups (in Figure 3f).

The distances to the faults were also a crucial factor to generate a landslide suscepti-
bility map. Ludian County comprises many rocks with fractures, and they are crushed and
even partly weathered, which can raise the possibility of landslides. From the fault map
of the study area (Figure 3g), northeast-trending faults dominate this region. The factor
of the distances to faults was divided into six groups, with values of <500 m, 500–1000 m,
1000–1500 m, 1500–2000 m, 2000–3000 m, and >3000 m.

2.3.3. Land Use and Land Cover Factors

Land use is another common factor contributing to landslides. Different soil types have
different shear strengths and hydraulic conductivity, which influence the slope stability.
For instance, woody vegetation can raise the stability of slopes by root reinforcement and
so do manmade slopes, which have the same effects on increasing the shear strength of
soil. In this study, the land use distribution (Figure 3h) was obtained from Landsat 8 using
ENVI software.

Normalized difference vegetation index (NDVI) is an indicator concerned with the
slope stability and has received great attention. In this study, the NDVI was obtained from
the Landsat 8 image using the digital image processing (DIP) technique. The value of the
NDVI is calculated as:

NDVI =
NIR− R
NIR + R

(1)

where R and NIR are the red portion of the electromagnetic spectrum and the infrared
value, respectively. Figure 3i shows that the NDVI is classified into five groups: (<0.1,
0.1–0.2, 0.2–0.3, 0.3–0.4, and >0.4.

Roads may also affect the stability of a slope nearby, due to evacuation processes or
the disruption of draining soil water. Figure 3j shows the distances to the roads in Ludian.

2.3.4. Hydrological Factors

The topographic wetness index (TWI) is a hydrological factor and has been widely
used to produce landslide susceptibility maps. It is defined as follows:

TWI = ln
α

tan β
(2)

where β is the slope gradient (radian), and α is the specific catchment area (m2·m−1).
Figure 3k shows that the TWI is classified into six groups: <−17, −17~−15, −15~−12,
−12~−8, −8~−3, and −2–11.

The Stream Power Index (SPI) is another hydrological factor that measures the erosive
power of the stream. Similar to the curvature factor, the SPI may control the probability
of a landslide occurrence. In this study, the SPI was divided into four groups: <15, 15–30,
30–45, and >45 (Figure 3l).

The stability of a slope around a river will be significantly affected by the fluctuation
of the water in the river. Therefore, the distances to rivers are important indicators of the
slope stability. In this study, the distances to rivers were classified into <300 m, 300–600 m,
600–900 m, 900–1200 m, 1200–1500, and >1500 m (Figure 3m).

2.3.5. Geophysical Factor

The peak ground acceleration (PGA) is a very important indicator for describing the
strong ground motion and evaluating the earthquake intensity [37]. In general, there is
a correlation between the ground motion and the occurrence of an earthquake-induced
landslide, which could be useful for mapping the landslide susceptibility in earthquake-
related areas [38]. In the present study, the PGA data was derived from the peak ground
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motion amplitudes recorded in 62 strong motion stations, with the interpolation based
on estimated amplitudes where data are lacking and considering the site amplification
effects [39]. The values of the PGA range from 0.06 to 0.5 g (Figure 3n).

3. Methodology

The methodological workflow in the present study is shown in Figure 4.
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3.1. Conditioning Factors Analysis

The analysis and selection of the conditioning factors are very important in landslide
susceptibility mapping. The number of landslide conditioning factors and their combina-
tions significantly affect the predictive ability of susceptibility models. Indeed, the accuracy
of the model does not always improve as the dimensionality of the features increase,
which is known as the phenomenon of the curse of dimensionality [40]. Meanwhile, the
redundancy of datasets, including excessive factors, may complicate the prediction process.
Therefore, proper feature analysis and selection methods should be executed to solve these
problems. In this study, two feature analysis techniques of a multicollinearity analysis and
the frequency ratio are introduced in the following subsections.

3.1.1. Multicollinearity Analysis

In LSM studies, multicollinearity refers to a statistical phenomenon that describes an
erroneous system analysis due to a high correlation between non-independent conditioning
factors [41]. The variance inflation factors (VIF) and tolerance analysis are commonly used
to check and quantify the multicollinearity among all the factors. In this analysis, let
{X1, X2, X3, . . . , Xn} denote the set of conditioning factors and R2

j define the coefficient of
determination for the regression of the conditioning factors, Xj, on all the other conditioning
factors. The formulas about the VIF and tolerance are as follows:

Tolerance = 1− R2
j (3)

VIF = [1/Tolerance] (4)

when the tolerance value < 0.1 or VIF > 10, it indicates the existence of multicollinear-
ity among the conditioning factors and factors in the range the indicator value should
be removed.



Remote Sens. 2021, 13, 2166 9 of 24

3.1.2. Frequency Ratio Method

The FR model is a simple but effective probability method commonly adopted to
analyze the relationship between the distribution of a landslide and each landslide condi-
tioning factor. The FR is not only the ratio of the area where a landslide occurred in the total
study area but, also, the ratio of the probability of a landslide occurrence to a nonoccurrence
for a given attribution [42]. The larger the FR value, the higher the probability of a landslide
occurrence. In this study, the FR model was employed to reassign the categories of the
conditioning factors described in Section 2.3. The FR can be calculated as:

FR =
a/b(%)

c/d(%)
(5)

where a is the number of each factor’s landslide, b is the number of total landslides, c is the
number of pixels in a given factor, and d is the total number of total pixels in the study area.

3.2. Convolutional Neural Networks

A CNN is a type of feed-forward neural network that shows robust performances
in many image classification and pattern recognition tasks [43,44]. The main distinction
between a CNN and a normal neural network is that a CNN benefits from the properties
of the local connective, shared weights, hierarchical features, and pooling [45]. One of
the most attractive characteristics of a CNN is that it can automatically extract the hidden
features from the input data. A typical CNN architecture consists of a convolutional layer,
max-pooling, fully connected layer, and output layer, which are shown in Figure 5. Among
them, the convolutional layer is the key part that directly contributes to the extraction of
features. Using image classification as an example, the output value at the pixel (i,j) of the
input x with a convolutional operator is computed as follows:

hi,j = ∑n
u=1 ∑n

v=1 wu,v·xi+u−1,j+v−1 (6)

C = factiva
(
hi,j
)

(7)

where w and n denotes the filter and its size, respectively. factiva is the nonlinear
activation function.

As the network structure deepens, more feature maps will be generated, and the
parameters they carry will dramatically increase the computational cost. To solve this
problem, the max-pooling operator, which is designed to reduce the size of feature maps,
is introduced and defined as follows:

Mi,j = max
{

xi+u−1,j+v−1
}

, u, v ∈ (0, n) (8)

where Mi,j is the maximum values within the filter range to the former layer. Subsequently,
the feature maps extracted in the convolutional and max-pooling layers are flattened
and fed into the fully connected layers (i.e., regular artificial neural network). In the
following output layer, the probability that the input data belong to the corresponding
class is calculated, and finally, the classification is realized. Training is performed until the
model converges, and all parameters in the CNN are determined using backpropagation
and gradient descent algorithms.
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3.3. Proposed Model

The proposed hybrid model aims to capture the hidden but useful information au-
tomatically from the landslide inventory using the CNN architecture. First, the landslide
datasets should be properly organized before being fed into the CNN-based model. In
the work of reference [26], the landslide factors were stacked together and regarded as a
“multi-channel image” to meet the need of the CNN input. Similarly, in the present study,
we consider the landslide inventory as a “multi-spectral remote sensing data” that contains
the spatial and spectral information. Here, “spatial” refers to the spatial property of a
landslide as the natural hazards, and “spectral” describes the correlated features among
each conditioning factor that contributes to a landslide. All the landslide conditioning
factors mentioned in Section 2.3 are stacked pixel-to-pixel into 14-band spectral data. Then,
as is operated in the hyperspectral remote sensing-related literature [46–49], the CNN
architecture is used to extract the landslide features from both the spectral and spatial
dimensions. Figure 5 shows the structure of the proposed hybrid model, which contains
three parts: spatial feature extraction, spectral feature extraction, and feature fusion.

In the spatial feature extraction part, the pixel window, where all the pixels centered
on the landslide point in a certain range and expand outward, is introduced to process the
prepared “multi-spectral data”. Each sample is in the form of a 14 × n × n tensor, where 14
and n refer to the number of conditioning factors and the size of pixel window, respectively.
Based on a large number of experiments, the n was set to 13. Theoretically, the application
of a pixel window can not only capture the environmental information of the landslide
location but also consider the surrounding environment around the landslide [32], which
can be seen as a spatial dimension. Then, the spatial feature extraction was performed on
the tensor corresponding to the landslide samples using 2D convolutional kernels, and a
series of landslide feature maps at a high level was obtained.

In terms of spectral feature extraction, the conditioning factors contained in the
landslide location are treated as feature vectors of the shape N × 1, where N is the number
of factors. These feature vectors are generally called one-dimensional tensors in the deep
learning framework. Then, a set of 1D convolutional manipulations in the CNN structure
can capture the significant local representation among the landslide factors.

Having the spatial and spectral features, the next step is to fuse these features to
gain a better capability of learning the pattern relationship between a landslide and the
environmental variables. The landslide feature vectors and 2D feature maps are stitched
together and then reorganized through fully connected layers. Finally, the fully connected
layer like a binary classifier can calculate the probability of a landslide occurrence.
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3.4. Evaluation and Comparison Methods

In order to evaluate the validity of the proposed model, six statistical measures
were chosen, such as the area under the receiver operating characteristic curve (AUROC),
Sensitivity, Specificity, Accuracy, Root mean squared error (RMSE), and Kappa index, as
is shown in Equations (9)–(15). The AUROC value is a quantitative indicator of the ROC
curve ranging from 0.5 to 1. An AUROC value close to 1 indicates predictions equivalent
to perfect, whereas a value of 0.5 is considered a random prediction. The Sensitivity is the
ratio of landslide samples that are correctly classified as landslide locations. The Specificity
is the ratio of non-landslide samples that are correctly classified as non-landslide locations.
The Accuracy denotes the ratio of the number of correctly classified samples to the total
number of landslides and non-landslides. The RMSE is a frequently used statistical metric
that measures the differences between the actual and predicted values. The Kappa index
is applied to measure the reliably of the landslide susceptibility models, and its detailed
description can be found in the work of reference [50].

ROC =
∑ TP + ∑ TN

P + N
(9)

Sensitivity =
TP

TP + FN
(10)

Specificity =
TN

TN + FP
(11)

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

RMSE =

√
1
n ∑n

1

(
Xpredicted − Xactual

)2
(13)

Kappa =
Pc − Pexp

1− Pexp
(14)

Pc =
(TP + TN)

(TP + TN + FN + FP)
(15)

where P and N denote the number of landslide and non-landslide samples, and TP (true
positive) and TN (true negative) mean the number of landslide and non-landslide samples
correctly classified, respectively. FP (false positive) and FN (false negative) mean the
number of samples that are misclassified, n is the total samples in the prepared dataset,
Xpredicted is the predicted value in the dataset, and Xactual is the actual value corresponding
to the predicted value. Pexp is the expected agreement.

Besides, a support vector machine (SVM) and random forest (RF) were used as the
benchmark methods to further validate the performance of the proposed model. A SVM
based on the structural risk minimization principle has been widely used as an adaptable
classifier to solve the binary classification in landslide susceptibility mapping [51,52]. RF is
another robust classification technique and belongs to ensemble algorithms based on the
bagging theory [53].

3.5. Sensitivity Analysis of Conditioning Factors

After modeling the landslide susceptibility, the critical step is to run a sensitivity
analysis on the conditioning factors for quantifying their effects on the modeling results
and assisting in understanding the relative importance of each factor. In the present study,
a Jackknife-based test was implemented by relying on the AUC of the proposed model.
The relative decrease of the AUC (RD) was calculated by comparing the results based
on all the conditioning factors, so that one factor being eliminated is the indicator of
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importance [54]. The higher the RD of a conditioning factor is, the more contribution it has
to the susceptibility model. The formula for the RD is as follows:

RDi =
AUCall − AUCi

AUCall

where AUCall and AUCi represent the AUC computed from the prediction using all the
fac-tors and the prediction without using the ith factor, respectively.

4. Results
4.1. Selection and Analysis of the Landslide Conditioning Factors

In this subsection, a multicollinearity analysis and FR model were applied for the
selection and analysis of those conditioning factors. Table 1 lists the results of the collinear-
ity analysis under the condition of a 95% confidence level. It can be observed that the
highest VIF value is 3.488 (slope), and the lowest TOL is 0.287 (slope). This result is not
within the critical range of the existence of the multicollinearity, which indicated that all the
conditioning factors were independent, and there was no multicollinearity among them.

Table 1. Variance inflation factors (VIF) and tolerances of each conditioning factor.

Conditioning Factors Collinearity Statistics

Tolerance VIF

Aspect 0.967 1.034
Curvature 0.892 1.121
Elevation 0.548 1.823

Distance to faults 0.92 1.087
Land use 0.787 1.271
Lithology 0.829 1.206

NDVI 0.741 1.35
PGA 0.806 1.241
Relief 0.32 3.124

Distance to rivers 0.566 1.766
Distance to roads 0.74 1.352

Slope 0.287 3.488
SPI 0.733 1.365
TWI 0.584 1.712

Figure 6 summarizes the correlations between landslides and each conditioning factor.
As this method previously mentioned, the magnitude of probability of a landslide occur-
rence can be inferred from the FR value. For elevation, the class of 1300–1700 m has the
highest FR value, indicating the highest probability of a landslide occurrence. The result
of the slope revealed that most landslides occurred in 25–35◦ and 35–45◦ (1.58 and 1.44,
respectively). The TWI result demonstrated that the −8~−3 class has a significantly higher
FR value than the other classes, with a value of 3.07, which indicated the highest probability
of a landslide occurrence. For the SPI factor, the >45 class had the highest RF value of 1.42,
followed by the <15 class with a FR value of 0.98. Interestingly, some factors showed a
clear spatial distribution upon the FR results. For example, the FR values of the <300 m
class of the distances to the rivers and the <400 m class of the distances to the roads were
much higher than the other classes, which indicated that landslides occurred close to rivers
and roads. The FR value of the NDVI decreased as the uprooted vegetation increased. In
the case of the PGA, the FR values increased with the increasing PGA values, as expected.
The highest FR value (that is, a representation of a high probability regarding landslide
occurrences) belonged to the 0.30–0.38 class, which can reflect the correlation between the
distribution of landslides and ground shaking. For the curvature factor, the −0.1–0.1 (flat)
class had the lowest FR value, indicating the lowest probability of a landslide occurrence
in the flat area, which was not only consistent with the general knowledge on landslides
but also confirmed the reliability of the dataset in this work. However, for the factors
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of lithology, the distances to faults, relief, and aspect, there was not a clear distinction
between the classes’ FR value. After these analyses, we reassigned the factors classification
described in Section 2.3 based on the FR values and normalized them to 0–1.
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4.2. Construction of Proposed Model

The preprocessed data in terms of the tensor was fed into the hybrid model that was
described in Section 3.3. This hybrid model contained two input nodes and one output
node. One of the input nodes corresponded to the spatial information extraction part, where
the pixel window data were fed. A series of feature maps were generated through two
2D convolutional layers and two max-pooling layers, and these maps were then stretched
into one-dimensional tensors by flatten manipulation. The other node was linked to the
block of spectral information extraction. The input data of this block was one-dimensional
tensor data reflecting an implicit relationship between the landslide factors. Given the
sparsity and length of the 1D input data, we only used two 1D convolutional layers in
this part without embedding a pooling layer. It should be noted that the two blocks of the
model were trained synchronously in each epoch, which guaranteed the consistency of the
training parameters.

Model hyperparameters generally exert a strong impact on the performance of ma-
chine learning methods; thus, it is necessary to execute a tuning process before model
training [55]. In this work, all the hyperparameters of the hybrid model, including the
numbers and sizes of the filters, batch sizes, activation functions, optimizers, and the
neurons in the hidden layers, were determined based on a five-fold cross-validation, as
shown in Table 2. Figure 7 shows the training losses and accuracies over 300 epochs using
backpropagation and gradient descent algorithms. It can be seen that the model accuracy
shows fluctuations at the early stage; then, it increases over time and finally stabilizes after
approximately 300 epochs. A similar trend was shown in the model loss, which suggested
that the model converged. In other words, the model we obtained learned an implicit
correlation between a landslide and its environmental conditions.
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Table 2. Hyperparameters of the proposed model.

No. Parameters Values

1 Conventional kernel size (1D) (3, 3)
2 Conventional kernel size (2D) (3, 3)
3 Pooling size (2D) (2, 2)
4 Loss function Cross entropy
5 Optimizer Adagrad
6 Epoch 300
7 Batch size 32
8 Learning rate 0.08
9 Activation function ReLU
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With regards to the runtime environment, the hybrid CNN-based model proposed in
this study was developed in python using Pytorch, a deep learning framework package, on
a computer with 2.9 GHz Intel(R) Core (TM) i5-10400F CPU, a 6 GB graphic card GTX1660s,
and 16 GB of RAM.

4.3. Generation of Landslide Susceptibility Maps

The trained hybrid model was used to prepare the landslide susceptibility map by
calculating the probability of a landslide occurrence of each pixel, and the susceptibility
values were reclassified into five different degrees with the help of the natural break
technique in ArcGIS 10.5—namely, very low (VL), low (L), moderate (M), high (H), and
very high (VH), as shown in Figure 8a. It can be observed that the VH zone derived using
the hybrid model covered 44.1% of the total area, 38.1%, 6.4%, 5.0%, and 6.3% of the total
area belonging to the VL, L, M, and H zones, respectively. Figure 8b–e illustrated the
LSM of the RF, SVM, and two basic CNN models. For 1D-CNN and 2D-CNN models,
a susceptibility distribution similar to that of the hybrid model observed that most of
area was classified as VH and VL zones; in contrast, the rest of susceptibility zones only
occupied a small portion. However, in the case of the RF model, the areal coverage in
percentage for the VH zone was 18.4%. The H, M, L, and VL zones accounted for 20.0%,
21.1%, 22.2%, and 18.3% of the study area, respectively. According to the SVM model,
17.3%, 19.6%, 21.3%, 18.3%, and 22.6% of the study area were designated to be of the VH,
H, M, L, and VL zones, respectively.
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Interestingly, as shown in Table 3, the three CNN-based models provided a classifi-
cation that sharply divided the VH zone from relative low zones, while the conventional
machine learning (ML)-based model showed stable classification results of each suscepti-
bility zone, which demonstrated the significant sensitivity of the CNN-based models to
the VH and VL zones. These results can be explained by the entire calculation process of
susceptibility. In general, a trained model with good predictive ability can determine, in
terms of probability values, how likely a landslide is to occur in each target pixel. As shown
in Figure 8, the LSM that reflects different susceptibility zones essentially responds to the
resultant probability values. CNN-based models are capable of extracting more spatial
information better than conventional ML methods, which allows them to learn sufficient
landslide features from training samples without excessive noise. Therefore, the probability
values computed by CNN-based models tend to be two extreme values: ~1 and ~0, while
those computed by conventional ML methods are arbitrarily distributed from 0 to 1.
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Table 3. Area (km2) of each susceptibility class.

Classes Hybrid CNN-2D CNN-1D RF SVM

Very low 611.7 (38.1%) 552.81 (34.5%) 741.69 (46.2%) 294 (18.3%) 377.93 (22.6%)
Low 102.69 (6.4%) 176.45 (11.0%) 35.99 (2.2%) 356.09 (22.2%) 293.84 (18.3%)

Moderate 80.43 (5.0%) 145.57 (9.1%) 23.37 (1.5%) 338.2 (21.1%) 340.86 (21.3%)
High 101.91 (6.3%) 172.21 (10.7%) 78.34 (4.9%) 320.72 (20.0%) 313.56 (19.6%)

Very high 706.95 (44.1%) 556.62 (34.7%) 724.29 (45.2%) 294.66 (18.4%) 227.49 (17.3%)

4.4. Evaluation and Comparison of Results

In this subsection, the validation and comparison processes were performed according
to the predicted results and the observed landslide. Figure 9 illustrates the relationship
between the landslide susceptibility zones and the density of the observed landslides. It
can be seen that the landslide density of the VH zone was the maximum, followed by the
H, M, L, and VL zones, respectively. It was evident that the proposed model correctly
predicted most of the observed landslides in the VH susceptibility zone.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 24 
 

 

tial information better than conventional ML methods, which allows them to learn suffi-
cient landslide features from training samples without excessive noise. Therefore, the 
probability values computed by CNN-based models tend to be two extreme values: ~1 
and ~0, while those computed by conventional ML methods are arbitrarily distributed 
from 0 to 1. 

Table 3. Area (km2) of each susceptibility class. 

Classes Hybrid CNN-2D CNN-1D RF SVM 
Very low 611.7 (38.1%) 552.81 (34.5%) 741.69 (46.2%) 294 (18.3%) 377.93 (22.6%) 

Low 102.69 (6.4%) 176.45 (11.0%) 35.99 (2.2%) 356.09 (22.2%) 293.84 (18.3%) 
Moderate 80.43 (5.0%) 145.57 (9.1%) 23.37 (1.5%) 338.2 (21.1%) 340.86 (21.3%) 

High 101.91 (6.3%) 172.21 (10.7%) 78.34 (4.9%) 320.72 (20.0%) 313.56 (19.6%) 
Very high 706.95 (44.1%) 556.62 (34.7%) 724.29 (45.2%) 294.66 (18.4%) 227.49 (17.3%) 

4.4. Evaluation and Comparison of Results 
In this subsection, the validation and comparison processes were performed accord-

ing to the predicted results and the observed landslide. Figure 9 illustrates the relationship 
between the landslide susceptibility zones and the density of the observed landslides. It 
can be seen that the landslide density of the VH zone was the maximum, followed by the 
H, M, L, and VL zones, respectively. It was evident that the proposed model correctly 
predicted most of the observed landslides in the VH susceptibility zone. 

 
Figure 9. Landslide density of the various susceptibility classes of LSM generated by the proposed 
model. 

The AUC value estimated using the ROC curve provided a direct comparison of the 
different models. As shown in Figure 10, the maximum AUC (89.6%) in the validation set 
was obtained for the proposed hybrid model and followed by CNN-1D (85.9%), RF 
(83.6%), CNN-2D (83.4%), and SVM (81.3%). These results indicated that the proposed 
model was the best-performing model for predicting landslide occurrences in comparison 
to the four benchmark models. Specifically, the AUC of the proposed hybrid model was 
6.2% and 3.7% higher than the pure CNN-2D and CNN-1D models, respectively. 

Figure 9. Landslide density of the various susceptibility classes of LSM generated by the proposed
model.

The AUC value estimated using the ROC curve provided a direct comparison of the
different models. As shown in Figure 10, the maximum AUC (89.6%) in the validation set
was obtained for the proposed hybrid model and followed by CNN-1D (85.9%), RF (83.6%),
CNN-2D (83.4%), and SVM (81.3%). These results indicated that the proposed model was
the best-performing model for predicting landslide occurrences in comparison to the four
benchmark models. Specifically, the AUC of the proposed hybrid model was 6.2% and
3.7% higher than the pure CNN-2D and CNN-1D models, respectively.

Figure 11 shows the Accuracy, Sensitivity, Specificity, Kappa, and RMSE values of
the proposed hybrid model and four benchmark models in the validation set. It can be
seen that the proposed hybrid model achieved the best results compared to the other
four benchmark models. In terms of Sensitivity, the proposed hybrid model achieved the
highest Sensitivity value of 81.1%, which was approximately 5% higher than that of the
CNN-1D model (75.8%), followed by CNN-2D, RF, and SVM, respectively. These results
demonstrated that the proposed hybrid model showed a better performance in correctly
classifying the landslide samples as landslide locations compared with the four benchmark
models. A similar result was also observed in the Specificity values, which indicated that
the proposed hybrid model outperformed the others in terms of accurately classifying the
non-landslide locations. In addition, the Kappa index results indicated that the proposed
model (0.656) had the highest index value, followed by CNN-1D (0.596), CNN-2D (0.569),
RF (0.530), and SVM (0.499).
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4.5. Sensitivity Analysis Results

A preliminary analysis on the relationship between the conditioning factors and
landslide occurrences was presented in Section 4.1, while the effect of a single factor on the
modeling results remains unclear. To tackle this, a sensitivity analysis of 14 conditioning
factors based on the Jackknife test was implemented to explore the contribution (i.e.,
importance) of each factor to the proposed susceptibility model. Figure 12 shows the
results in terms of the relative decrease of the AUC values. It can be observed that the three
most important factors are elevation, PGA, and slope, respectively. The elevation has the
highest RD value of ~7% when eliminated in the proposed model, which demonstrated a
high contribution to the modeling results. The second most influential factor was the PGA,
which got an RD value of 5.9%. Numerous studies have demonstrated that there is a high
correlation between the occurrence of co-seismic landslides and PGA [38,56]. Our study
confirmed that the PGA factor should be considered for mapping the earthquake-induced
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landslide susceptibility. Besides, it is worth noting that the factor of the distances to the
faults that sometimes used to substitute the effects of earthquakes did not show a high RD
value compared with the PGA. One possible reason for this result is that earthquakes are
not always triggered by fault activities, as reported by Chang et al. [57]. Overall, all the
factors used in this study contributed to the modeling results, but the importance of the
related landslide conditioning factors still needs to be explored in different study areas.
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5. Discussion

Landslide is one of the most widespread natural hazards around the world, caus-
ing incalculable casualties and economic losses, as well as damage to the landscapes of
landslide-prone areas. Over the past years, various methods and technical frameworks
have been applied for landslide hazard management and mitigation, covering identifica-
tion, susceptibility mapping, and monitoring. Of them, landslide susceptibility mapping
(LSM) plays an important role in providing a thematic map for portraying where landslides
are likely to occur and the probability of their occurrence. A landslide inventory consisting
of landslide points and related conditioning factors is the basis of LSM, but the number
of landslide points is usually restricted due to the time-consuming and labor-intensive
collection process [33]. The motivation of this study is to capture more landslide represen-
tation from a limited dataset. To achieve this goal, we selected the convolutional neural
network as the basic module and proposed a hybrid model that integrates the spatial infor-
mation and the correlated features among the conditioning factors, offering a synergistic
opportunity for them.

In previous related literature, the hybrid model was considered to improve the land-
slide predictive capability by reducing the variance and bias [58,59]. In our experiments,
the proposed hybrid model achieved the best performance in terms of the AUC value and
the other statistical measures compared with the four benchmark models. These results,
to some extent, met the expectations of the hybrid model and can be considered promis-
ing. Meanwhile, the overall performances of the three CNN-based models (i.e., hybrid,
CNN-2D, and CNN-1D) were significantly higher than that of the conventional machine
learning models (i.e., RF and SVM), since CNN-based models have a complicated architec-
ture that enhances their capability of capturing landslide representations from high levels
using convolution and pooling operations. [60]. Furthermore, among the three CNN-based
models, the proposed hybrid method showed a higher performance than any of the single
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1D- or 2D-CNN models, as shown in Figures 10 and 11. This is reasonable, because the
hybrid model enhanced the landslide prediction accuracy effectively by extracting spatial
information and correlated information among the landslide conditioning factors from
the landslide inventory. Put simply, more landslide-related representations were captured
from the limited datasets when using the proposed hybrid model.

Despite the excellent feature extraction capability of a CNN, an overfitting problem,
which needs to be avoided, usually occurs due to the conflict between the complicated
structure and insufficient landslide samples. To further check how the models fit, we
plotted the ROC curve on the training set, which is also called the success rate curve (SRC),
as shown in Figure 13. Figures 10 and 13 show that the CNN-2D had the highest AU-SRC
value of ~1, while its AUC value on the validation set was smaller than that of the proposed
model, which indicated the existence of a somewhat overfitting risk in the CNN-2D model.
The structure of the proposed hybrid model was significantly more complex than that
of the pure CNN models but effectively avoided the overfitting risk. Therefore, it seems
reasonable that the proposed model is capable of extracting more landslide information
from the limited landslide samples by generating additional data from the original dataset,
as reported in the previous studies of hybrid model [61–63].

Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 24 
 

 

work as the basic module and proposed a hybrid model that integrates the spatial infor-
mation and the correlated features among the conditioning factors, offering a synergistic 
opportunity for them. 

In previous related literature, the hybrid model was considered to improve the land-
slide predictive capability by reducing the variance and bias [58,59]. In our experiments, 
the proposed hybrid model achieved the best performance in terms of the AUC value and 
the other statistical measures compared with the four benchmark models. These results, 
to some extent, met the expectations of the hybrid model and can be considered promis-
ing. Meanwhile, the overall performances of the three CNN-based models (i.e., hybrid, 
CNN-2D, and CNN-1D) were significantly higher than that of the conventional machine 
learning models (i.e., RF and SVM), since CNN-based models have a complicated archi-
tecture that enhances their capability of capturing landslide representations from high 
levels using convolution and pooling operations. [60]. Furthermore, among the three 
CNN-based models, the proposed hybrid method showed a higher performance than any 
of the single 1D- or 2D-CNN models, as shown in Figures 10 and 11. This is reasonable, 
because the hybrid model enhanced the landslide prediction accuracy effectively by ex-
tracting spatial information and correlated information among the landslide conditioning 
factors from the landslide inventory. Put simply, more landslide-related representations 
were captured from the limited datasets when using the proposed hybrid model. 

 Despite the excellent feature extraction capability of a CNN, an overfitting problem, 
which needs to be avoided, usually occurs due to the conflict between the complicated 
structure and insufficient landslide samples. To further check how the models fit, we plot-
ted the ROC curve on the training set, which is also called the success rate curve (SRC), as 
shown in Figure 13. Figures 10 and 13 show that the CNN-2D had the highest AU-SRC 
value of ~1, while its AUC value on the validation set was smaller than that of the pro-
posed model, which indicated the existence of a somewhat overfitting risk in the CNN-
2D model. The structure of the proposed hybrid model was significantly more complex 
than that of the pure CNN models but effectively avoided the overfitting risk. Therefore, 
it seems reasonable that the proposed model is capable of extracting more landslide infor-
mation from the limited landslide samples by generating additional data from the original 
dataset, as reported in the previous studies of hybrid model [61–63]. 

 
Figure 13. The receiver operating characteristic (ROC) curves on the training set. 

In addition, the susceptibility maps can, in turn, reflect the reasonableness and relia-
bility of the models. As shown in Figure 8, most landslides fell into the VH susceptibility 
zone in the LSM of the three CNN-based models. This result is a positive sign from a 
disaster mitigation perspective view, because it means that the built models are capable 

Figure 13. The receiver operating characteristic (ROC) curves on the training set.

In addition, the susceptibility maps can, in turn, reflect the reasonableness and reliabil-
ity of the models. As shown in Figure 8, most landslides fell into the VH susceptibility zone
in the LSM of the three CNN-based models. This result is a positive sign from a disaster
mitigation perspective view, because it means that the built models are capable of precisely
calculating the probability of a landslide occurrence and providing safe hazard mitigation
measures to decision-makers. Besides, researchers also use the Specificity and Sensitivity
indices to further assess the reliability of a susceptibility model. A susceptibility model
with a high Specificity value may avoid economic losses, since it can correctly classify
non-landslide areas as stable slopes and maximize the use of the landscape. Additionally, a
model with a high Sensitivity value can provide safe mitigation guidance due to accurately
identifying landslide-prone areas [10,64]. In the present study, both the Specificity and
Sensitivity values of the proposed model in the validation set were higher than the other
benchmark models, thus proving reliability for hazard mitigation and land use planning.

6. Conclusions

In the present work, a robust CNN-based hybrid model that incorporates the spatial
representations of the conditioning factors with the correlated information between the
factors was proposed and successfully applied to map the landslide susceptibility in Ludian
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County, China. The experiment results showed that the proposed hybrid model achieved
the highest performance for predicting the landslide occurrence compared to the four
benchmark methods of CNN-1D, CNN-2D, RF, and SVM. Specifically, the AUC of the
proposed hybrid model was 4.7% and 5.9% higher than the pure CNN-2D and CNN-1D
models, respectively. Additionally, the overall performances of the three CNN-based
models were somewhat higher than that of the conventional machine learning methods in
terms of the AUC, which indicated the remarkable features extraction capability of the CNN.
The results also demonstrated that the proposed model effectively avoided an overfitting
risk by generating additional data from the limited dataset. Moreover, the proposed hybrid
model with high Specificity and Sensitivity values confirmed its reliability and safety
for hazard mitigation. A Sensitivity analysis of the conditioning factors to the proposed
hybrid model showed that the elevation, PGA, and slope made strong contributions to the
modeling results. Based on all the results and discussion, conclusions can be drawn that
the proposed hybrid model effectively enhanced the capability of mapping the landslide
susceptibility and provided a reliable and promising tool for hazard mitigation and land
use planning. However, the performance of the proposed model needs to be further tested
in additional research and case studies.
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