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Abstract: Advanced techniques capable of early, rapid, and nondestructive detection of the impacts
of drought on fruit tree and the measurement of the underlying photosynthetic traits on a large
scale are necessary to meet the challenges of precision farming and full prediction of yield increases.
We tested the application of hyperspectral reflectance as a high-throughput phenotyping approach
for early identification of water stress and rapid assessment of leaf photosynthetic traits in citrus
trees by conducting a greenhouse experiment. To this end, photosynthetic CO2 assimilation rate
(Pn), stomatal conductance (Cond) and transpiration rate (Trmmol) were measured with gas-exchange
approaches alongside measurements of leaf hyperspectral reflectance from citrus grown across a
gradient of soil drought levels six times, during 20 days of stress induction and 13 days of rewatering.
Water stress caused Pn, Cond, and Trmmol rapid and continuous decline throughout the entire
drought period. The upper layer was more sensitive to drought than middle and lower layers.
Water stress could also bring continuous and dynamic changes of the mean spectral reflectance and
absorptance over time. After trees were rewatered, these differences were not obvious. The original
reflectance spectra of the four water stresses were surprisingly of low diversity and could not track
drought responses, whereas specific hyperspectral spectral vegetation indices (SVIs) and absorption
features or wavelength position variables presented great potential. The following machine-learning
algorithms: random forest (RF), support vector machine (SVM), gradient boost (GDboost), and
adaptive boosting (Adaboost) were used to develop a measure of photosynthesis from leaf reflectance
spectra. The performance of four machine-learning algorithms were assessed, and RF algorithm
yielded the highest predictive power for predicting photosynthetic parameters (R2 was 0.92, 0.89, and
0.88 for Pn, Cond, and Trmmol, respectively). Our results indicated that leaf hyperspectral reflectance
is a reliable and stable method for monitoring water stress and yield increase, with great potential to
be applied in large-scale orchards.

Keywords: water stress; photosynthetic CO2 assimilation rate; leaf conductance; transpiration rate;
hyperspectral reflectance; machine language algorithms

1. Introduction

Agriculture worldwide accounts for up to 70% of the total consumption of water.
Water demand for agricultural use in irrigation remains the largest source of consumption,
and it will increase by 60% in 2025 [1]. Global warming is projected to increase evaporation
and to reduce soil moisture [2], which will lead to increasing drought and food shortages.
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Consequently, climate change may exacerbate droughts, which may then set in more
quickly, be more intense, and last longer [2,3]. Fruit trees, such as citrus, which are
sensitive to droughts, are already showing decreased yields and poor tolerance to pests
and stresses [4]. Photosynthesis is an important physiological activity in the growth
process of green plants and, generally, limited by soil drought [5]. Photosynthetic efficiency
is not just connected with potential yield increases, but it also influences efficiency of
the use of resources such as water [6]. Drought often leads to low net photosynthetic
rates [7]. Improvements in plant photosynthetic efficiency are expected to play a major
role in the efforts to increase agriculture productivity [8–10]. An important reason for the
insufficient exploration of the potential for changes to water use and photosynthesis for
fruit yield forecast and quality improvements is the lack of appropriate high-throughput
screening methods.

Further information on fruit trees’ responses to water stress at the large scale through-
out the growth period can improve the efficiency of water use. Severe drought has been
associated with regional-scale tree mortality and premature senility worldwide which
leads to reductions in yields [11]. Moderate drought stress is a common method to induce
flower buds in tropical and subtropical fruit trees. A moderate water shortage treatment
can make trees enter reproductive growth as soon as possible and promote flowering
for improving fruit quality and regulating the maturity period. In addition, plants can
be irreversibly affected before visible symptoms of water stress appear [12]. Therefore,
a pre-symptomatic or pre-visual detection of plant physiological changes is urgent for
avoiding severe damages [13,14].

Physiologically, morphologically, and biochemically rapid changes were observable
early in the drought treatment or slow change of those parameters after some time when
green plants were under drought stress [15–17]. Measuring photosynthesis data is a
challenge affected by heterogenetic environmental parameters such as soil moisture con-
tent [18]. Advancements in phenotyping techniques capable of rapidly assessing the effects
of drought on plant photosynthetic responses are necessary to understanding plant traits
under predicted future environmental conditions [19]. The functional responses that are
associated with increased yield, such as improving photosynthetic productivity under
stressful conditions, require new techniques to quantify this parameter, yet traditional
methods rely on leaf sampling and analysis under laboratory conditions or using in-field
gas-exchange systems [10,20]. This method can provide very precise photosynthetic infor-
mation but is costly, time-consuming, and hard to accomplish, especially in citrus-growing
mountainous areas.

Water deficit monitoring and yield estimations for citrus trees in large areas are critical.
Laboratory methods for water stress and gas-exchange measurements are still cumbersome
experimental techniques and are not suitable for large-scale monitoring in a period of
short time [21,22]. Novel techniques are thus required to efficiently select for water stress
and photosynthetic capacity [6]. Remote sensing communities have long used spectrum
or spectral vegetation indices to estimate plant biochemical and morphological proper-
ties, which also presents huge potential in assessing photosynthetic capacity of plants
quickly and non-destructively at different scales (ground, airborne, and satellite) [23–25].
Hyperspectral spectra, ranging from the visible over the near infrared to the intermediate
infrared, can provide spectral features regarding differences in leaf metabolism, structure,
and physiological and chemical traits in associated plant conditions [10,26–29]. It is popular
to use hyperspectral reflectance to assess crop physiological and biochemical parameters.
Nutritional status [30,31], chlorophyll or carotenoid contents [32–34], water content [35,36],
heavy metal content [37], and species composition [38] in crops have been estimated using
leaf reflectance spectrum. Application of hyperspectral spectra to assess plant function
or physiology is complex, as the mechanisms linking spectra reflectance and emission to
plant functional traits are not always clear or known [14]. Spectroscopy techniques coupled
with deep-learning algorithms have also been used for leaf morphological and biochemical
traits with the highest photosynthetic potential [10,39]. The photosynthetic capacity of
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crop plants has been evaluated based on leaf reflectance successfully using specific wave-
lengths or indices related to the photosynthesis status of the plants over a wide range of
species [6,18,21,22,40–44]. Although further research on citrus is necessary, the macro- and
micro-nutrient contents of citrus have successfully been predicted with leaf reflectance
data [10]. Very few studies have focused on using leaf reflectance spectra to monitor the
response of citrus leaves to water stress and estimate the photosynthetic capacity.

Citrus is the most widely cultivated fruit crop worldwide and also abundant within
China. In the past 20 years, the citrus industry has developed rapidly around the world.
The most outstanding research on citrus is related to molecular breeding, stress response,
and post-harvest treatment. In this study, citrus leaves—more specifically, from lemon
(Citrus limon) trees—were selected to comprise the experimental dataset. Measurements of
leaf reflectance and photosynthesis were taken from a greenhouse experiment that included
a factorial water stress applied to citrus trees. Using these data, we addressed the following
questions: (1) How does water stress affect citrus physiology, leaf photosynthetic CO2
assimilation rate (leaf Pn), stomatal conductance (Cond), and transpiration rate (Trmmol)?
(2) What is the variation in the leaf reflectance of citrus in different drought treatments?
How do hyperspectral leaf reflectance records detect water stress? What is the key spectral
information of selected citrus leaves responding to water stress? (3) Concerning the
performance of machine learning algorithms, how does the machine-language algorithm
perform in predicting the photosynthetic capacity of citrus leaves? The answers to these
questions help to facilitate the spectral response of citrus to drought and photosynthesis
prediction models. The selection of key spectral information is conducive to quantitative
watering and fertilization on a larger scale for realizing high-efficiency utilization of water
and fertilizer, so as to increase yield and quality.

2. Materials and Methods
2.1. Experimental Design

The study was conducted using lemon (Citrus limon) as the selected plant material
at the greenhouse facility of Huazhong Agriculture university located in Wuhan, Hubei
Province, China (113◦41′–115◦05′E, 29◦58′–31◦22′N). Wuhan is one of the largest cities on
the upper and middle reaches of the Yangtze River in central China. The annual average
temperature, mean annual relative humidity, precipitation, and annual average frost-free
period are 16.9 ◦C, 77%, 1259 mm, and 240 days, respectively. A random block design was
used in this study. Four-year-old lemon trees (Femminello) propagated by bud grafting
to trifoliate orange rootstocks were used. These trees ranged in height from 2 to 2.5 m
growing in 60 cm plastic pots containing potting mix of commercial medium and perlite
(3:1). Trees in the greenhouse were exposed to natural variations in photoperiod throughout
the experiment during the summer (from August to September) 2020. The soil moisture
was controlled to approximately 35% (normal water supply), approximately 25% (mild
stress), approximately 15% (moderate stress), and approximately 10% (severe stress) [45].
Each moisture level included 8 lemon trees. Trees apart from normal water supply were
drought-stressed for 21 days in 6 August, 12 August, 18 August, 26 August, and then
watered three times in 26 August, 4 September, and 9 September. After being rewatered,
the soil moistures of the mild tress, moderate stress, and severe stress were consistent with
the normal water supply. Three trees were randomly selected from each drought treatment,
and two randomly selected leaves from the upper, middle, and lower layers of each selected
trees were used for measuring photosynthetic and spectral-related parameters on 6 August
(day 1), 12 August (day 7), 18 August (day 13), 26 August (day 20), 4 September (day 28),
and 9 September (day 33). A representative branch was chosen first. The top 3–4 leaves
were the upper layer, the middle position of the branch was the middle layer, and the
bottom position of the branch was the lower layer (Figure 1).
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Figure 1. (a) the position of upper layer, middle layer and lower layer; (b) in the process of drought treatment, citrus trees
of severe stress had obvious physiological changes and even bloomed early; and (c) experimental design.

2.2. Hyperspectral Measurement Processing

Under the natural light of a sunny day in the greenhouse, the spectral radiance of the
lemon leaves was measured with a full-range hyperspectral PSR-3500 spectroradiometers
by applying an artificial light. The FieldSpec collects data in the 350–2500 nm spectral range,
with a resampled spectral resolution of 1 nm before 1006 nm and 3.5 nm after 1006 nm.
Leaf radiance data were collected on the surface of the leaf at 2 positions per leaf using the
leaf clip from mature leaves. Ten measurements were conducted in each leaf position to
produce one mean spectral reflectance. Before each spectral measurement, a white surface
plate was registered to calibrate the equipment and convert the digital number to a physical
signal [10]. Leaf reflectance was computed as the ratio of leaf radiances relative to the
radiance from the white reference panel [46].

2.3. Photosynthetic Measurement

Immediately after the spectral radiance scan, the selected leaf was placed into the
leaf room of the LICOR 6400XT gas analyzer (LICOR Biosciences, Lincoln, NE, United
States) with an attached red-blue light leaf chamber according to a reported method [47].
Measurements were initiated at a saturating light (1000 mmol m−2 s−1), a block temperature
of 25 ◦C, and a flow rate of 500 mmol mmols−1. Leaf photosynthetic CO2 assimilation
rate (Pn, µmol CO2 m−2s−1), leaf stomatal conductance (Cond, mol HO2 m−2s−1), and
leaf transpiration rate (Trmmol, mmol HO2 m−2s−1) for each leaf were captured after an
adjustment period of approximately 30 min.
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2.4. Extraction of Vegetation Indices

A database of 20 narrow-band spectral vegetation indices (SVIs) (Table 1), which
have shown potential for assessing attributes of vegetation parameters related to plant
physiology, morphology, and biochemistry, were preselected for analysis. They simplified
the interpretation of complex vegetation reflection characteristics based on the indirect
relationship between plant physiological and structural parameters [14]. All of the data
processing and calculations of the SVIs were performed in the Python 3.7 software package.

Table 1. The 20 selected spectral vegetation indices examined in this research, together with their band-specific formulations,
and associated principal reference.

NO. Spectral Vegetation Indices Description Reference

1 Normalized difference vegetation index,
NDVI = (R800 − R670)/(R800 + R670)

Structure: greenness, vegetation
cover, biomass, LAI and fraction

of photosynthetic active
radiation

[48]

2 Ratio vegetation index, RVI = R800/R670 [49]

3 Enhanced Vegetation Index,
EVI = 2.5 × (R800 − R680)/(R800 + 6 × R680 − 7.5 × R450 + 1) [50]

4 Greenness Index, GI = R554/R667

Pigments: Chlorophyll,
carotenoids, and anthocyanin.

[51]
5 Red Edge model, CI730 = R800/R730 − 1.0 [52]
6 Red Edge model, CI709 = R800/R709 − 1.0
7 Chrollophy Index at Green band, ch1green = R800/R550 − 1.0 [53]
8 Normalized Difference Red Edge, NDRE = (R790 − R720)/(R790 + R720) [54]
9 Red and Green Vegetation Index, RGVI = R550/R670 [49]

10

CARI_a = (R700 − R550)/150
CARI _b = R550 − CARIa × 500

[55]
CAR = |CARIa × R670 + R670 + CARI _b|/

√
CARI_a2 + 1.0

Chlorophyll Absorption Ratio Index, CARI = CAR × R700/R670
11 MERIS Terrestrial Chlorophyll Index, MTCI = (R754 − R709)/(R709 − R681) [56]

12 Photochemical Reflectance Index, PRI = (R570 − R531)/(R570 + R531)
Photosynthetic activity

[57]

13 Photochemical Reflectance Index Improved,
PRI2 = (R528 − R567)/(R528 + R567)

14 Moisture Stress Index, MSI = R1600/R820

Water content

[58]
15 Water Index, WI = R900/R970 [59]

16 Normalized Multi-band Drought Index,
NMDI = (R860 − R1640 + R2130)/(R860 + R1640 − R2130) [54]

17 Global Vegetation Moisture Index,
GVMI = (R820 + 0.1 − R1600 − 0.02)/(R820 + 0.1 + R1600 + 0.02) [60]

18 Normalized Difference Water Index,
NDWI1200 = (R886 − R1200)/(R886 − R1200) [61]

19 Normalized Difference Water Index,
NDWI1240 = (R886 − R1240)/(R886 − R1240) [61]

20 Normalized Difference Water Index,
NDWI1640 = (R886 − R1640)/(R886 − R1640) [61]
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We also conducted 45 spectral absorption features and wavelength position variables
acquired from leaf spectral reflectance (Table S1) to analyze the different stress level on
lemon leaves. The red edge optical parameters from a plant spectrum between 670 and
780 nm are commonly used in analysis plant. In this paper, we used red edge position (REP)
parameter, which is a wavelength position variable indicating biophysical and biochemical
parameters of vegetation. The inverted-Gaussian (IG) model was used to extract the red
edge optical parameters. The spectral shape of the red edge reflectance can be modeled as
shown in Equation (1):

R(λ) = Rs − (Rs − R0) exp(
−(λ0 − λ)2

2σ2 ) (1)

where R(λ) is the leaf spectral reflectance at λ wavelength; Rs is the maximum spectral
reflectance; R0 and λ0 are the minimum spectral reflectance and corresponding wavelength,
respectively; λ is the wavelength; and σ2 is the Gaussian function variance parameter. The
REP is calculated using Equation (2):

λp = λ0 + σ (2)

We also acquired the absorption features in 1230–1650 nm and 1800–2200 nm, as these
two spectral ranges highly correspond to the water stress. The absorption features in a
reflectance spectrum include wavelength position (nm), depth, width, area, asymmetry,
and spectrum absorption index with a continuum removal procedure [62]. Figure 2 showed
a part of typical spectrum (1200–1300 nm) of lemon leaf to illustrate the feature parameters.
The absorption position (P) marks the wavelength at the deepest absorption. The width
(W) defines the full-width at half maximum. X1 and X2 are the wavelengths of the left and
right shoulder at the position of the full-width at half maximum. ∆λ, which represents
the value of W, is calculated by X2–X1. Y is the corresponding reflectance of X1 and X2.
The absorption depth (DEP) is the depth of the feature minimum relative to the hull. The
hull means no absorption feature appearance. The absorption area (Area) is the area of the
absorption district. The asymmetry of an absorption feature is derived as the ratio of the
left area (label A in Figure 2) of the absorption center to the right area of the absorption
center. L is the tangent line, and the slope of L can be calculated. The spectrum absorption
index (SAI) defines the absorption intensity, which was calculated as Equation (3):

SAI =
dρλ1 + (1− d)ρλ2

ρλp

(3)

where λ1 and λ2 are shoulder wavelength, and ρλ1 and ρλ2 are the reflectance at corre-
sponding wavelengths, respectively. The absorption position (P) marks the wavelength
at the deepest absorption in the region of visible wavelength. λP is the corresponding
wavelength (Figure 2). d is the normalized weight, calculated as Equation (4):

d =
λp − λ1

λ2 − λ1
(4)
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Figure 2. A part of lemon leaf reflectance (1200–1700 nm) and definitions of absorption features (where H means absorption
depth, W represents the full-width half maximum, the absorption position (P) marks the wavelength at the deepest
absorption in the region of visible wavelength, λP is the corresponding wavelength, A is the area left area of the absorption
center, L is tangent line, X1 and X2 are the wavelengths of left and right shoulder at the position of the full-width half
maximum, and Y is the corresponding reflectance of X1 and X2).

2.5. ANOVA Analysis and Principal Component Analysis (PCA)

Prior to ANOVA analysis, all the data were tested for normality using the D’Agostino-
Pearson omnibus test. A one-way ANOVA was performed to assess the effect of drought
treatment to photosynthetic capacity and spectral parameters. Multiple mean comparisons
(LSD test) among treatments were performed as a post hoc test after one-way ANOVA to
investigate the differences between treatments. Differences in means were regarded as
significant if the p- value was less than 0.05. In order to understand the difference of lemon
leaf reflectance spectra of four drought treatments, PCA was conducted in Python 3.7 with
the scikit-learn package [63]. Ten-fold cross-validation was used in this study.

2.6. Machine-Learning Algorithms

The random forest (RF), support vector machines (SVM), gradient boost (GDboost),
and adaptive boosting (AdaBoost) methods were applied to estimate the Pn, Cond, and
Trmmol value. The greenhouse measured data were randomly divided into training (70%)
and testing (30%) data. The prediction metrics to evaluate the abovementioned algorithms
were the coefficient of determination (R2), root-mean-squared error (RMSE), and mean
absolute error (MAE), which were calculated from Equations (5)–(7). To determine the
relationship between the predicted and measured values, the overall model is evaluated
in the graph including linear regression and a 1:1 dash-line. All the algorithms were
implemented in the scikit-learn package in Python 3.7 [63].

R2 = 1−
n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − ym)
2 (5)

RMSE =

√
n

∑
i=1

(yi − ŷi)
2/n (6)
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MAE =
1
n

n

∑
i=1
|yi − ŷi| (7)

where ŷi are the predicted values of Pn, Cond and Trmmol; yi are the measured values of Pn,
Cond, and Trmmol in the greenhouse; and ym was the mean values of measured Pn, Cond,
and Trmmol. N was the sample number of validations.

Ntree (i.e., to the number of variables) and Mtry (i.e., to the number of variables to
randomly sample as candidates at each split) are two key parameters influencing the
robustness of the RF algorithms [64]. These two parameters were often set as default
values [65,66].

SVM uses a nonlinear kernel function to project input data onto a high dimensional
feature space, where complex non-linear patterns can be simply represented [67]. The key
to SVM is the kernel function. Low-dimensional space vector sets are usually difficult
to divide. The best choice is to map them to high-dimensional spaces. The classification
function of the high-dimensional space can be obtained by selecting the appropriate
kernel function [68]. Gaussian radial basis kernel function of the form was applied in this
study [69].

The boosting method establishes several basic estimators (a decision tree was used
in this paper), each of which can learn to correct the prediction error of a prior model in
the model sequence, such as the GDboost and Adaboost methods. The GDboost algorithm
tries to match the residual error of the new predictor with the previous one, while the
Adaboost algorithm corrects the unfitness of the training instance through the previous
training. The main difference between GDboost and Adaboost was how they dealt with
the underfitted values. The number of trees (ntree) and learning rate (learning rate) were
tuned in AdaBoost and GDBoost models [70]. The ntree was tested from 50 to 500 stepped
by 50, and the learning rate was tested from 0.5 to 1.0 stepped by 0.1. According to the value
of R2, we found that in the Adaboost and GDboost models, the highest R2 was acquired
when the ntree parameter was set to 150 and the learning rate was set to 0.9.

3. Results
3.1. Photosynthetic Response to Water Stress

The sensitivity of Pn, Cond, and Trmmol to water stress of the upper layer, middle layer,
and lower layer were compared in drought treatment period (i.e., days 1, 7, 13, and 20) and
rewatering period (i.e., days 28 and 33) (Figure 3, Tables S2 and S3). Comparing among soil
water status from 35% (normal water supply) to 10% (severe drought) showed decreases
in average Pn, Cond, and Trmmol in upper, middle, and lower layers during the drought
treatment period. After rewatering at day 33, Pn, Cond, and Trmmol values for different
water stresses were not significantly different. Pn, Cond, and Trmmol of normal water
supply for the upper layer was significantly higher than other water stresses in the entire
drought treatment time, whereas these values of severe drought were significantly lower
than other water stresses. Photosynthetic changes for drought in the middle and lower
layer were less sensitive than the upper layer. Pn, Cond, and Trmmol of moderate or severe
drought were significantly lower than normal water supply, whereas these photosynthetic
parameters were nearly non-significantly different for the mild drought compared to the
normal water supply.
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Figure 3. One-way ANOVA test results of photosynthetic CO2 assimilation rate (Pn, mol m−2 s−1) for the upper layer,
middle layer, and lower layer of different water stresses in the drought treatment period (i.e., Days 1, 7, 13, and 20) and
rewatering period (i.e., Days 28 and 33). The data are presented in the form of mean ± standard error, and significant
differences are indicated by different letters in the same subfigure.
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3.2. Variation in Leaf Reflectance Spectra for Different Water Stress and Tracking of Leaf
Hyperspectral Reflectance to Water Stress

The spectra of four drought treatment were of low diversity, with a 97.55% variance
contained in the first three principal components. The reason for this becomes apparent
in the correlation matrix of the spectra (Figure 4). Five main independent wavelength
ranges were identified, within which the measurements are closely related. Two correlated
ranges are found in the visible spectrum (from approximately 400 to 480 nm and from 500
to 660 nm) and three in the infrared region (from approximately 720 to 1400 nm, from 1450
to 1800 nm, and from 1900 to 2500 nm). Three of them could be reflected in the three main
components (Figure 4).

Figure 4. Heat maps of the reflectance spectra of lemon leaves over four drought treatments. Each
point shows the Pearson correlation of reflectance at both wavelengths. The panel below shows the
three components that account for the largest proportion of variance.

Water stress caused continuous and dynamic changes of the mean spectral reflectance
and absorptance over time. After trees were rewatered, these differences were not obvious
(Figure 5). From days 1 to 20, higher reflectance was observed in 700–1100 nm with the
increase in drought treatment. At days 13 and 20, severe stress-treated leaves had lower
absorbance values at 450 nm, and 640–680 nm was found, compared to other treatments.
At about 1420–2500 nm, the reflectance of severe stress was the highest, and its curve was
above those of other treatments obviously from days 7 to 20.
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Figure 5. Comparison between the mean spectral reflectance and absorptance at 300–2500 nm for each of the four treatment
groups. (a–f) represent days 1, 7, 13, 20, 28, and 33.

Eighteen hyperspectral parameters selected from 65 parameters presented significant
difference among different water stresses. PRI, NDVI, RVI, GI, C, NMDI, VIS-λp, SW1-
fwhmX1, and SW1-fwhmX2 showed differences just after drought treatment. Especially,
PRI was more sensitive to water stress than other hyperspectral parameters, and the values
of different drought treatments had significant differences in the whole drought period.
The PRI value of normal water supply was significantly higher than mild, moderate, and
severe treatments (Figure 6a, Table S4). The NDVI and GI of the normal water supply and
mild treatment were significantly higher than moderate and severe treatments at days
1 and 7 (Figure 6b,d, Table S4). RVI showed the opposite trend (Figure 6c). At days 13
and 20, NDVI and RVI for the severe treatment were significantly higher or lower than
other treatments (Figure 6b,c, Table S4). The GI and C of the normal water supply were
significantly higher than the other three drought treatments, and significant differences
were not observed among the three drought treatments at day 13. At day 20, GI and C
decreased with water stress obviously; however, there was not difference between the
mild drought and moderate drought (Figure 6d,e). NMDI, VIS-λp, SW1-fwhmX1, and
SW1-fwhmX2 were effectively used to distinguish the severe drought treatment based on
spectra from days 1 to 20 (Figure 6f–i, Table S4).
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Figure 6. Performance of spectral parameters for revealing the difference of four drought treatments. (a–i) represent PRI,
NDVI, RVI, GI, C, NMDI, SW2-fwhm-X1, SW2-fwhm-X2, and VIS-λP, respectively. Significant differences are indicated by
different letters on the histogram at the same time.

SW1-fwhm-Y, SW1-fwhm-∆λ, SW1-SAI, SW2-fwhm-Y, SW2-fwhm-∆λ, SW2-SAI, SW2-
Area, MSI, NDWI1640, and GVMI were sensitive to severe drought treatment at days 7,
13, and 20. At these values of normal water supply, mild and moderate treatments were
not significantly different (Figure 7, Table S5). The SW1-fwhmY, SW2-fwhm-Y, and MSI
values of severe drought were significantly higher than the other three treatments, while
SW1-fwhm-∆λ, SW1-SAI, SW2-fwhm-∆λ, NDWI1640, SW2-Area, SW2-SAI, and GVMI
presented opposite trends (Figure 7, Table S5).

GI, CI730, CI709, CIG, NDRE, Rg, CARI, MCTI, PRI, VIS-λ2, VIS-λp, VIS-Area, VIS-
symmetry, VIS-slope, VIS-fwhm X1, VIS-fwhm-∆λ, SW1-λ1, SW2-λ1, SW2-slope, SW2-
fwhm-X1, C, λ, λp, σ, and REP of the responses to drought lagged, and spectral variations
in the different treatments could still be presented in the initial stage of rewatering (i.e.,
day 28), but great uncertainty occurred (Table 2 and Table S6).
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Table 2. Performance of the spectral parameters of the normal water supply, mild stress, moderate stress, and severe
stress in the initial stage of rewatering (i.e., day 28). The data are presented in the form of the mean ± standard error, and
significant differences are indicated by different letters in the same row.

Parameter Normal Water Supply Mild Stress Moderate Stress Severe Stress

GI 0.6228 ± 0.0027 b 0.5870 ± 0.0027 b 0.5937 ± 0.0028 b 0.6473 ± 0.0013 a

CI730 0.2040 ± 0.0020 a 0.1617 ± 0.0021 c 0.1742 ± 0.0016 bc 0.2024 ± 0.0011 ab

CI709 1.1799 ± 0.012 ab 0.9835 ± 0.011 c 1.0303 ± 0.0010 bc 1.2230 ± 0.0067 a

CIG 3.3888 ± 0.038 ab 2.9082 ± 0.031 b 3.0010 ± 0.036 b 3.6980 ± 0.022 a

NDRE 0.09232 ± 0.00082 a 0.07453 ± 0.00091 c 0.07998 ± 0.00065 bc 0.09182 ± 0.00047 ab

rg 0.1418 ± 0.00011 ab 0.1539 ± 0.00086 a 0.1478 ± 0.00012 ab 0.1329 ± 0.00082 b

CARI 1.1168 ± 0.024 ab 1.2758 ± 0.018 a 1.0828 ± 0.017 ab 0.9431 ± 0.0072 b

MCTI 1.3550 ± 0.015 ab 1.1412 ± 0.013 c 1.2204 ± 0.012 bc 1.4350 ± 0.0075 a

PRI 0.08426 ± 0.00059 b 0.09272 ± 0.00063 ab 0.08426 ± 0.00059 b 0.09925 ± 0.00035 a

VIS-λ2 745.7833 ± 0.073 a 743.9444 ± 0.1051 c 744.3944 ± 0.076 bc 745.4222 ± 0.043 ab

VIS-λP 669.6667 ± 0.15 a 667.2111 ± 0.13 bc 667.6667 ± 0.14 ab 665.2833 ± 0.065 c

VIS-Area 118.6700 ± 0.24 ab 116.47 ± 0.24 ab 115.10900.4322 ± 0.43 b 120.87 ± 0.16 a

VIS-symmetry 0.6914 ± 0.0012 a 0.6800 ± 0.00096 a 0.6795 ± 0.0010 a 0.6613 ± 0.00043 b

VIS-slope 0.002289 ± 0.000012 ab 0.002182 ± 0.000013 b 0.002120 ± 0.0000081 b 0.002386 ± 0.0000048 a

VIS-fwhm-X1 573.3167 ± 0.10 ab 572.0278 ± 0.11 a 572.1167 ± 0.13 a 569.6222 ± 0.039 b

VIS-fwhm-Y 138.0944 ± 0.22 ab 135.5389 ± 0.24 b 136.1056 ± 0.22 b 140.5556 ± 0.077 a

SW1-λ1 1281.6778 ± 0.10 b 1282.5222 ± 0.14 b 1282.5222 ± 0.10 b 1284.8444 ± 0.088 a

SW2-λ1 1818.1444 ± 0.085 b 1818.3333 ± 0.089 b 1819.8444 ± 0.079 a 1820.4111 ± 0.076 a

SW2-cslope −0.0003405 ± 1.58 × 10−6 b −0.0003277 ± 1.6 × 10−6 ab −0.0003189 ± 7.9 × 10−8 a −0.0003425 ± 8.2 × 10−7 b

SW2-fwhm-X1 1838.8 ± 0.045 c 1874.1833 ± 0.070 bc 1874.1 ± 0.042 ab 1875.1444 ± 0.044 a

C 3.4474 ± 0.030 ab 3.1406 ± 0.028 b 3.1544 ± 0.039 b 3.7082 ± 0.015 a

λg 543.4862 ± 0.022 a 543.0308 ± 0.016 b 543.1019 ±0.028 b 542.8853 ± 0.0059 b

λ0 676.0881 ± 0.051 ab 675.2125 ± 0.052 c 6754985 ± 0.045 bc 676.3048 ± 0.025 c

σ 29.6841 ± 0.053 a 28.7165 ± 0.063 b 29.1676 ± 0.041 ab 29.8467 ± 0.024 a

3.3. Machine-Learning Algorithms to Predict Pn, Cond, and Trmmol

The photosynthetic parameters returned heterogeneous and non-parametric results
for the analyzed leaves (Table 3). The analysis showed that Pn, Cond, and Trmmol had high
variability and uniform distribution. This heterogeneous dataset is very useful for building
prediction models using machine learning algorithms. Four machine-learning algorithms
were applied to estimate the Pn, Cond, and Trmmol values of lemon leaves. A comparison
of the four machine learning algorithms showed that RF demonstrated the best regression
performance in terms of Pn, Cond, and Trmmol values. The R2 value ranged from 0.88 to
0.92, and the RMSEs were 1.86, 0.049, and 1.88 for Pn, Cond, and Trmmol, respectively. The
AdaBoost achieved the second highest accuracy except for the Trmmol. In the AdaBoost
regression models, R2 ranged from 0.49 to 0.69, and the RMSE were 1.84, 0.056, and 2.078
for Pn, Cond, and Trmmol. The SVM obtained a moderate performance and presented R2

values from 0.28 to 0.64 (Table 4).
To ascertain the relationship between observed and predicted Pn, Cond, and Trmmol,

their regression values were plotted (Figure 8). For Pn, AdaBoost, GDboost, RF, and SVM
presented similar trends to a 1:1 relationship (Figure 8a–d). For Cond and Trmmol, AdaBoost
and GDboost did not show a similarity to a 1:1 relationship (dashed-line—Figure 8e,f,i,j).
Predictions of RF and SVM were comparatively well related to the observed Pn, Cond, and
Trmmol values (Figure 8c,d,g,h,k,l).
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Figure 7. Performance of the spectral parameters for revealing the difference of the four drought treatments. (a–j) represent
SW1-fwhm-Y1, SW1-fwhm-∆λ, SW2-Area, SW1-SAI, SW2-fwhm-Y, GVMI, SW2-fwhm-∆λ, SW2-SAI, MSI, and NDWI1640,
respectively. Significant differences are indicated by different letters on the histogram at the same time.

Table 3. Descriptive data from the photosynthetic parameters’ analysis of the lemon leaves.

Summary Pn (µmol CO2 m−2s−1) Cond (mol HO2 m−2s−1) Trmmol (mmol HO2 m−2s−1)

Mean 4.53 0.089 3.00
SD 2.85 0.069 2.21

Median 4.15 0.073 2.58
Maximum 12.51 0.36 11.61
Minimum 0.022 0.0014 0.037

Coefficient Variation 63.02 77.79 73.70
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Table 4. The machine-learning algorithms’ accuracy performance for the reflectance data.

AdaBoost GDBoost RF SVM

Pn
R2 0.69 0.99 0.92 0.64

RMSE 1.84 2.55 1.86 1.91
MAE 1.53 1.95 1.51 1.53

Cond
R2 0.52 0.99 0.89 0.28

RMSE 0.056 0.068 0.049 0.055
MAE 0.045 0.049 0.038 0.045

Trmmol
R2 0.49 0.99 0.88 0.50

RMSE 2.078 2.48 1.88 2.06
MAE 1.65 1.74 1.34 1.46

Figure 8. Measured vs. predicted values after applying AdaBoost, GDBoost, random forest (RF), and support vector
machine (SVM) model to predict leaf photosynthetic CO2 assimilation rate (Pn in µmol m−2 s−1), leaf stomatal conductance
(Cond in mol m−2 s−1), and leaf transpiration rate (Trmmol in µmol m−2 s−1). The red line is the 1:1 line, and the black line
is fitting line between observed and predicted values. (a–l) represents Pn–AdaBoost, Pn–GDBoost, Pn–RF, Pn–SVM, Cond–
AdaBoost, Cond–GDBoost, Cond–RF, Cond–SVM, Trmmol–AdaBoost, Trmmol–GDBoost, Trmmol–RF, and Trmmol–SVM.
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4. Discussion

Drought resistance is a combination of physiological and biochemical adaptations [71,72]
that can be reflected in the plants’ spectral signature (Figures 5–7) [73]. To understand the
general properties and diversity of leaf reflectance spectra in different drought treatments,
we estimated their distribution. The percentage of 97.55 of raw spectra for the three water
stresses was contained in the first three principal components, which revealed a low and
unexpected diversity of spectral properties. Five highly correlated band regions (from
approximately 400 to 480 nm, from 500 to 660 nm, from approximately 720 to 1400 nm,
from 1450 to 1800 nm, and from 1900 to 2500 nm) were identified. This feature of the
spectra poses a challenge for the development of robust predictive models. Machine-
learning algorithms may be urgent to predict photosynthetic characterization because of
their advantages in solving multi-collinearity [74].

Hyperspectral technology can accurately obtain the fine spectral information of plants
needed for accurately monitoring the growth, physiological, and biochemical characteristics
of plants. Although using remote sensing to assess responses to drought is a very active
topic of research, most studies to date have focused on estimating the biochemical and
structural parameters related to water stress [14,16,75–77]. In this study, physiological and
spectral responses to soil drought were assessed. For citrus, a significant decline in leaf Pn,
Cond, and Trmmol was observed after trees suffered water stress (Figure 3, Tables S1 and S2).
An effective and alternative method was provided to identify drought stress and its severity
early in citrus trees. PRI, NDVI, RVI, GI, C, NMDI, VIS-λp, SW1-fwhm-X1, and SW1-fwhm-
X2 were effective in tracking continuous drought responses in citrus at the beginning of
drought treatment when leaves did not show any morphological changes. Once drought
stress occurs, leaves quickly close the stomata to reduce water loss, stomatal conductance,
and transpiration [78].

Drought stress affects morphological characteristics such as leaf relative water content,
leaf area, and leaf relative conductivity [79]. NDVI, RVI, GI, NMDI, SW1-fwhmX1, and
SW1-fwhmX2 have indirect relationships to plant physiological and structural parameters
such as water content and greenness [80]. Especially, PRI was a key remote sensing
index, which was surprisingly more sensitive to an early plant water-stress stadium than
traditional SVIs from beginning to end and can serve as a pre-visual and continuous
water-stress indicator [81,82]. This result was contributed to by the fact that PRI was
closely linked to photosynthetic process due to the faster changes in xanthophyll pigments
comparing other SVIs under stress conditions [14]. Leaf stomatal closing responding to
water stress was earlier than the change in leaf morphology and pigment. Water stress
caused continuous and dynamic changes of spectral curves over time. After trees were
rewatered, these differences were not obvious (Figure 5). PRI nearly presented the same
response as photosynthetic parameters with water stress (Figure 3, Tables S1 and S2,
and Figure 6a). In addition to photosynthesis and moisture reduction, the total soluble
sugar, soluble protein, and starch content increased, whereas chlorophyll a and b content
decreased significantly with the extension of the drought period [79]. SW1-fwhm-Y, SW1-
fwhm-∆λ, SW1-SAI, SW2-fwhm-Y, SW2-fwhm-∆λ, SW2-SAI, SW2-Area, MSI, NDWI1640,
and GVMI of severe drought were also significantly different than other water stress
from the 7th day of drought treatment to the end (Figure 7). SW1 and SW2 was around
approximately 1230–1650 nm and 1800–2200 nm, which were highly sensitive to leaf water
content. Zovko et al [73] also showed that SWIR was effective in determining drought
stress and its severity in grapevines. Drought led to the change of leaf water, cellulose,
starch, and lignin content [17], which was linked to SW1 and SW2 [83]. Water deficits
affect citrus physiology, and citrus exposed to drought stress had a higher amount of
soluble sugar and a lower amount of starch. The accumulation of soluble sugar and
proline indicates the possible role of these osmolytes in drought tolerance [17,84]. MSI,
NDWI1640, and GVMI were measured approximately around 800 and 1600 bands, which
were just related to starch and sugar. GI, CI730, CI709, CIG, NDRE, Rg, CARI, MCTI, PRI,
VIS-λ2, VIS-abs, VIS-Area, VIS-symmetry, VIS-slope, VIS-fwhm X1, VIS-fwhm-∆λ, SW1-
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λ1, SW2-λ1, SW2-slope, SW2-fwhm-X1, C, λ, λ0, σ, and REP of the different treatments
could still be presented in the initial stage of rewatering. They were related to content
of xanthophyll, chlorophyll, carotenoid, sugar, and starch [80,83]. There was a process of
plant recovery, and these indicators may reflect differences in the process of recovery from
the drought conditions. It was proved that hyperspectral SVIs, spectral absorption, and
wavelength position variables were effective in drought stress identification. Interestingly,
most of the hyperspectral parameters could only distinguish severe drought from all water
stresses, which was beneficial for monitoring the damage of severe drought to trees in
citrus production.

To obtain a quantitative assessment of water stress and yield prediction, we sys-
tematically developed Pn, Cond, and Trmmol prediction models with high precision and
evaluated the performance of a variety of models. This shed a new light on photosynthetic
parameters estimation. In citrus, past studies on predicting the physiological traits of
citrus mainly focused on nutrient or micronutrient content such as N, P, K, Mg, S, Cu, Fe,
Mn, and Zn [10,85]. In this study, RF was the best predictor, followed by AdaBoost and
SVM (Table 4). RF models had the highest R2 (0.92), and lower RMSE (1.86) and MAE
(1.51). Random forest has been reported to bring high accuracy to the physiological traits
in crops and forests [10,65]. RF has the advantage of modeling data in a non-linear and
a non-parametric manner and solving the problem of multiple collinearities. Although
SVM has the advantage of handling high-dimensionality data and does well with a limited
training dataset [86], it performed poorly in comparison with RF in this study. GDboost
exhibited severe overfitting and returned unreliable predictions, although the literature re-
ported the GDBoost model performed better than RF when estimating forest coverage [87].
It may be concluded that GDBoost presented major flaws in modeling highly correlated
hyperspectral data.

Thirty-two citrus trees were applied, and leaves at the upper layer, middle layer, and
lower layer of 12 selected trees each time were measured for their photosynthetic capacity
and spectral leaf spectral reflectance six times. Although the presented samples were
used for evaluating the water stress and photosynthetic capacity of citrus leaves, it can
be replicated with a larger sample size, and even better performances may be achieved.
Furthermore, this study was obtained with a greenhouse experiment combined with
proximal remote sensing and indicated that hyperspectral remote sensing provided critical
narrow-band spectrum information and presented huge potential in evaluating growth
status horticultural crop. More research in the future may be applied in hyperspectral
data obtained with sensors embedded in remote sensing satellite or UAV-based systems
and provided support for large area monitoring horticultural crop growth including water
stress and photosynthetic capacity.

5. Conclusions

Non-destructive and rapid methods for accurate pre-visual water-stress detection and
photosynthetic parameter estimation are necessary to yield both an increase and quality
improvement in citrus. Photosynthetic parameters presented a significant decrease under
water stress, and this trend was more obvious in the upper layer. The original reflectance
spectra of the three drought treatments presented a low and unexpected diversity. PRI is
more sensitive to an early plant water-stress stadium than traditional SVIs, interestingly,
which can serve as a pre-visual, persistent, and stable water-stress indicator. Spectral
absorption features in SW1 and SW2 regions, MSI, NDWI1640, and GVMI were useful
for distinguishing severe drought treatment effectively. The photosynthetic rate could be
estimated with the highest precision by applying hyperspectral leaf reflectance and RF
models compared to SVM, AdaBoost, and GDBoost. To our knowledge, this is one of the
first applications of hyperspectral parameters for proximal remote sensing as indicators
for water stress and input for the retrieval of photosynthetic traits in citrus and provides
a basis for extending the analysis to other observing platforms, such as unmanned aerial
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vehicle and satellite data for water condition monitoring and yield increasing quickly and
precisely in large-scale orchards.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13112160/s1, Table S1: 45 spectral absorption features and wavelength position vari-
ables acquired from leaf spectral reflectance. Table S2: One-way ANOVA test results of stomatal
conductance (Cond, mol m−2s−1) of upper layer, middle layer, and lower layer in different water
stress. The data was presented in the form of mean ± standard error, significant differences were
indicated by different letters in the same column. Table S3: One-way ANOVA test results of leaf
transpiration rate (Trmmol, mmol m−2s−1) of upper layer, middle layer, and lower layer in different
water stress. The data was presented in the form of mean ± standard error, significant differences
were indicated by different letters in the same column. Table S4: ANOVA results for the spectral
parameters corresponding to Figure 6. SS: Sum of squares, DF: Degree of freedom; MS: Mean square.
Table S5: ANOVA results for the spectral parameters corresponding to Figure 7. SS: Sum of squares,
DF: Degree of freedom; MS: Mean square. Table S6: ANOVA results for the spectral parameters
corresponding to Table 2. SS: Sum of squares, DF: Degree of freedom; MS: Mean square.
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