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Abstract: In recent years, atmospheric PM2.5 pollution in China has become increasingly severe and
exploring the relationships among its influencing factors is important in the prevention and control
of air pollution. Although previous studies have identified complexity in variations in PM2.5 concen-
trations and recognized the interaction of multiple factors, little quantitative information is available
on the evolution of the relationships among these factors, their spatial heterogeneity, and the multi-
scale interactions between them. In this study, geographical detector and multiscale geographically
weighted regression models have been used to explore the multiscale interactions among natural
and socioeconomic factors and PM2.5 concentration in China over the period 2000–2015. The results
indicate that the relationship between natural factors and PM2.5 concentration is stronger than that
for socioeconomic factors. The type of interaction between each factor is dominated by bivariate and
nonlinear enhancement, exhibiting strong interactions between natural factors and anthropogenic
factors. Although the effect of each factor on PM2.5 is complex, the relative influence of both human
activities and social factors is shown to have gradually increased over time and population, agricul-
ture, urbanization, and socioeconomic activities in general make important contributions to PM2.5.
In addition, the scale of effects related to natural factors is smaller and more stable compared to the
influence of human activities during the period 2000-2015. There are significant differences in the
way natural factors and socioeconomic factors affect PM2.5, and there is strong non-stationarity of
spatial relationships. Factors associated with topography, vegetation (NDVI), climate (temperature),
natural sources, and agricultural activity are shown to be important determinants of PM2.5 across
China and warrant significant attention in terms of managing atmospheric pollution. The study
demonstrates that spatial differences in the direction, intensity, and scale of each factor should be
accounted for to improve prevention and control measures and alleviate regional PM2.5 pollution.

Keywords: PM2.5; geographical detector; multiscale geographically weighted regression;
influencing factors

1. Introduction

In the context of global climate change, with the rapid progress of global industrial-
ization and urbanization, ecological and environmental issues such as air pollution and
land degradation have become urgent problems for sustainable development [1–3]. PM2.5
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air pollution, with both regional and complex characteristics, has become a significant
challenge as the main component of air particulate pollutants, which can reduce atmo-
spheric visibility [4], effect local climate change [5], interfere with traffic, and have serious
economic impacts [6]. More importantly, numerous investigations have revealed that
excessive concentrations of PM2.5 have been found to increase morbidity and mortality
rates and are a major risk factor for global disease [7]. For example, in 2015, the num-
ber of premature deaths associated with PM2.5 in 161 cities in China was approximately
65.2 × 104, accounting for approximately 6.92% of the total number of deaths in China in
that year [8]. Therefore, identifying the key factors influencing PM2.5 and exploring their
interactions is crucial for the prevention and control of air pollution.

Identifying the factors influencing PM2.5 has become an important research focus
because it can help to inform more precise responses and preventive measures for PM2.5
pollution [9]. Atmospheric PM2.5 concentrations are affected by factors associated with
the sources of particulate matter, transmission and diffusion [10–13]. Both direct factors,
such as natural and artificial sources, and indirect factors, such as diffusion and settlement
conditions and human activity intensity, have been widely studied [14–16]. At the regional
scale, factors affecting the speed and direction of atmospheric diffusion (topography, tem-
perature, pressure, wind speed and direction) [17–19] and factors related to the deposition
of fine particles (humidity and precipitation) [4,13,18,20] play an important role in the
transmission and diffusion of PM2.5. In addition, urban morphology [21], urbanization [22],
land use [23], and other factors associated with human activities are known to strongly
impact PM2.5 particle source, diffusion and depositional processes by altering local hy-
drothermal conditions [24] or the dynamics of source-sink landscapes [25]. The impacts of
geospatial attributes and the regional economy on PM2.5 pollution have been demonstrated
to have clear spatial aggregation and diffusion effects [26]. For instance, there is a strong
correlation between the spatial configuration of the urban landscape and PM2.5 pollution
in China, illustrating the effects of marked spatial differences in national, regional and
urban agglomeration [27]. Therefore, spatial heterogeneity of PM2.5 concentrations and the
processes influencing regional spatial variations must be taken into consideration when
studying the mechanisms influencing PM2.5.

In recent years, researchers have quantified the relationship between various natural
and socioeconomic factors and PM2.5 concentrations using ordinary least squares (OLS),
spatial econometric models based on spatial autocorrelation, and nonlinear response mod-
els such as generalized additive models and random forest models [28–30]. However, these
simulations are still in essence based on global regression models [27,31], without consider-
ing the spatial non-stationarity caused by interactions among the measured variables [32].
To this end, Wang et al. [31] applied a geographical weighted regression (GWR) model
to assess regional differences in influencing factors through measuring spatial variation
in the parameters. However, the relationship between the influencing factors and PM2.5
concentration varies according to spatial scale [33] which must be accounted for in an-
alyzing the factors influencing PM2.5. Fotheringham et al. [34] emphasized the concept
of multiscale geographic processes and proposed a multiscale geographically weighted
regression model (MGWR) mode, based on a GWR model, which allows relationships
between different variables to operate at different spatial scales by searching for different
bandwidths to capture the effect of spatial scale on the different factors. We have there-
fore applied the MGWR model here to explore the interactions among atmospheric PM2.5
influencing factors in China.

Despite the shift from considering only a single spatiotemporal scale towards a com-
parative study of different spatiotemporal scales, spatiotemporal heterogeneity in the
processes influencing PM2.5 remains unclear [9,30,31,33]. At larger spatial scales, few stud-
ies have managed to overcome the restrictions imposed by administrative boundaries,
which makes it difficult to understand the potential correlation mechanisms underlying the
pattern of PM2.5 pollution and effectively control the transfer of pollutants. Additionally,
although PM2.5 has been recognized as influenced by the interaction between multiple fac-
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tors, these interactions have not been quantified, and their evolution has not been studied,
while the response process of PM2.5 to each factor has not been spatially resolved. The
major aim of this study, therefore, is to describe and explain the multiscale interactions
between natural, socioeconomic factors, and PM2.5 pollution in China. Firstly, spatial
visualization of PM2.5 raster data are used to identify the spatial and temporal evolution of
atmospheric PM2.5 concentrations during the period of 2000–2015. Secondly, correlation
analysis and geographical detector models are used to quantify the global one-way and
interactive relationship between natural, socioeconomic factors on PM2.5 concentration.
Finally, the MGWR model is applied to quantify the multiscale effects of natural, socioeco-
nomic, and land use factors on PM2.5. This study applies a novel method that is capable
of accounting for the spatially explicit responses of natural and socioeconomic factors on
PM2.5 concentrations that can provide accurate theoretical support for the control of PM2.5
pollution in China.

2. Materials and Methods
2.1. Data Sources and Processing
2.1.1. Annual Mean PM2.5 Concentrations

The data on PM2.5 used in this study were selected from the PM2.5 grid estimation
dataset of China (V4.CH.02) simulated by the Atmospheric Composition Analysis Group
with a spatial resolution of 0.01◦ × 0.01◦ (URL: http://fizz.phys.dal.ca/~atmos/martin/
?page_id=140#V4.CH.02 accessed 22 September 2020). Considering that the response of
PM2.5 concentrations to natural and socioeconomic factors requires a certain amount of
time to develop spatial pattern changes on a large spatial scale, the data period 2000–2015
was chosen to start the study by operating in a 5-year time step (2000, 2005, 2010, 2015).
This dataset uses the geophysical relationship between aerosol optical depth (AOD) and
PM2.5 from NASA MODIS, MISR, SeaWIFS and other satellite instruments to estimate
the concentration of PM2.5 through a chemical transport model (GEOS-Chem), and uses
a GWR for calibration, with an accuracy of up to 81% [35]. Detailed information on the
dataset is given in van Donkelaar et al. [35,36]. These data have been widely used in PM2.5
research [37,38].

To verify the reliability of this dataset in across China, this study uses PM2.5 concen-
tration data monitored by 1497 ground-based monitoring stations in 2015 released by the
Chinese Ministry of Ecology and Environment to compare and validate the PM2.5 raster
dataset. The monitored annual average PM2.5 concentrations at the stations were spatially
matched with the estimated PM2.5 concentration values through the “extract by points”
tool in ArcGIS 10.2, and the correlation coefficient and root mean square error (RMSE) were
calculated as 0.852 and 10.57, respectively. Han et al. [37] used this dataset to assess the
accuracy of remotely sensed annual mean PM2.5 concentrations at the provincial spatial
scale and, in validating the results, showed that the maximum relative error was 4.9%
in 2015. Therefore, minimal information is lost in using the modelled dataset compared
with the actual values of regional PM2.5 concentrations in China, and it can therefore be
reliably used in the spatial analysis of regional PM2.5 concentrations in China. Regional
PM2.5 pollution in China is classified by categorizing PM2.5 concentrations into five lev-
els that relate to the annual limit of PM2.5 concentration in China’s Ambient Air Quality
Standard [39] and the air quality guideline (AQG) by the World Health Organization [40];
specific classification information is shown in Figure 1.

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140#V4.CH.02
http://fizz.phys.dal.ca/~atmos/martin/?page_id=140#V4.CH.02
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Figure 1. The areas (a) and the changes in the areas (b) with PM2.5 concentration levels in China 
from 2000 to 2015. No pollution, PM2.5 concentration < 10; Mild pollution, PM2.5 concentration  ∈ 
[10,35); Moderate pollution, PM2.5 concentration ∈ [35,70); Severe pollution, PM2.5 concentration ∈ 
[70,100); Extreme pollution, PM2.5 concentration ≥ 100. The numbers above each column indicate 
the percentage of areas with per PM2.5 concentration level relative to the total area of the entire 
country. The values on the graph are approximate due to rounding. 

From 2000 to 2015, the PM2.5 concentrations exhibit substantial spatial variations; 
there is a clear spatial division in PM2.5 distribution across the so-called Hu Huanyong line 
[66] from the southeast inland to the northwest (Figure 2a–d) revealing clear spatial ag-
glomeration. The spatial variation in moderate and severe pollution areas changed signif-
icantly during the period of 2000–2015. Severely polluted areas, centered on the arid re-
gion of northwest China, spread in a southeasterly direction over time. In addition, severe 
pollution areas in the industrialized provinces of the middle east (including Henan and 
Hebei) expanded to the southwest. Areas of moderate pollution also spread in a south-
westerly direction from the areas of urban agglomerations. A clear overall pattern is ap-
parent: the highly polluted areas of northwest China are associated with the arid dust 
source areas, while pollution in the central and eastern regions of China are associated 
with centers of urbanization and industrialization. 

During the period of 2000–2005 (Figure 2e), the PM2.5 concentration increased across 
75.1% of China, especially to the east of the Hu Huanyong Line, due to rapid urbanization. 
In 2005–2010 (Figure 2f), the variation in PM2.5 concentration exhibited a north-south dif-
ferentiation, and the areas where the pollution situation deteriorated were mainly distrib-
uted in northern China. Between 2010 and 2015, PM2.5 concentrations increased only in 
some of the northern provinces, such as the eastern parts of Xinjiang, Gansu, Inner Mon-
golia, and Heilongjiang (Figure 2g), whereas the rest of the country (almost 50%) China 
showed a decreasing trend of PM2.5 concentrations, especially in western Xinjiang where 
significant pollution-control results have been achieved. Nevertheless, although nearly 
half of the country exhibited improved PM2.5 concentrations in 2015 compared to 2010, 
atmospheric pollution conditions were still worse than in 2000 across more than 80% of 
China (Figure 2h). 

Figure 1. The areas (a) and the changes in the areas (b) with PM2.5 concentration levels in China from
2000 to 2015. No pollution, PM2.5 concentration < 10; Mild pollution, PM2.5 concentration ∈ [10,35);
Moderate pollution, PM2.5 concentration ∈ [35,70); Severe pollution, PM2.5 concentration ∈ [70,100);
Extreme pollution, PM2.5 concentration ≥ 100. The numbers above each column indicate the percent-
age of areas with per PM2.5 concentration level relative to the total area of the entire country. The
values on the graph are approximate due to rounding.

2.1.2. Influencing Factors

This study focuses on the spatial heterogeneity in response to natural and anthro-
pogenic factors of PM2.5 concentration; therefore, based on the principle of spatial raster
data accessibility, factors are selected in terms of natural factors and socioeconomic factors.
Different factors are quantified using different datasets. Table 1 presents the factor cate-
gories established in this research and their corresponding application datasets. Through
statistical analysis of the direction and intensity of the relationship between various factors
and PM2.5 concentration, the difference in the effects of natural conditions and human
activities on PM2.5 can be identified [29–31].

Topographic, meteorological, vegetation, and natural source factors were selected to
express the influence of natural conditions. Elevation (ELE, acquired by digital elevation
model) was chosen to quantify the topographic factor, which often acts as an important
spatial constraint on the transfer of airborne particulate pollution. The effects of com-
plex topographic units such as plateaus, basins, and valleys in the Chinese region are
known to be more important than that of Europe and the United States in that pollutants
are less likely to be dissipated in such situations [13]. Meteorological factors are quanti-
fied using mean annual precipitation (PRE), mean annual temperature (TEM), and wind
speed (WIND). Precipitation is known to affect PM2.5 in the form of a flushing effect and
removing atmospheric pollutants [18]; temperature affects atmospheric convection and
influences evaporative losses with a resultant influence on PM2.5 [20]; high wind speeds
have the ability to both erode and disperse particles and favor PM2.5 dispersion process [4].
Vegetation cover index (NDVI), proportion of forested land (PFOL), and proportion of
grassland (PGRL) were selected to quantify vegetation factors. Generally, relying on the
adsorption and dust reduction effect of vegetation [41,42], there is a negative correlation
between vegetation and PM2.5 concentration, while there will be some variability in effects
of vegetation in general and vegetation type on PM2.5 [25]. In addition, unused or bare
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land and sandy land are susceptible to wind erosion and generate surface dust, making
unused land an important input to PM2.5 [11]. Therefore, the proportion of unused land
(PUNL) is used as a quantitative expression of natural source factors.

Three factors that directly represent the intensity of human activities (gross domestic
product (GDP), population density (POP), and nighttime light intensity (NLI)) and two
land use factors that indirectly reflect the intensity of human activities in rural versus urban
areas (proportion of agricultural land (PFAL) and proportion of built-up land (PCOL))
are used here to represent the influence of socioeconomic activities. Population density
indicates the number of people in a spatial unit, and several existing studies point to
the significant contribution of population density to PM2.5 concentrations [43]. Gross
domestic product (GDP) describes the economic development within a spatial unit, and
in general the energy consumption and particulate emissions from regions with high
population density and rapid economic development become important anthropogenic
sources of PM2.5 concentrations [33,43]. NLI is widely used in the spatial quantification
of urban characteristics, representing integrated urban characteristics such as population,
economic dynamics, traffic levels, and city-size distribution [44,45]. Improvements in the
level of urban development (demographics, economic structure, transportation layout, etc.)
can alleviate the degree of PM2.5 pollution, and the Environment Kuznets Curve (EKC) in
China’s cities can provide a relevant measure of this [46]. While the proportion of cultivated
land can be used directly to assess agricultural activities, the crop cover of cultivated
land and agricultural activities such as fertilization soil plowing and biomass burning
make cultivated land a dynamic source landscape for aerosols [47–49]. The proportion of
construction land is directly related to urbanization. Construction and industrial activities
resulting from the expansion of urban construction land have become major sources of
PM2.5 [50], while the rapid expansion of urban areas has amplified the intensity of the
heat-island effect, thereby affecting the transmission and diffusion of PM2.5 [51].

In considering all of the variables used in this study, spatial resolution was standard-
ized to 1 km × 1 km so that the data on various influencing factors match well with the
PM2.5 data, and spatial sampling errors are minimized. The spatial location of all datasets
was mediated by grid cells. Specifically, we established 23,614 grids of 20 km × 20 km size
at the regional scale across China and PM2.5 data, DEM data, NDVI, meteorological data,
GDP, POP, and NLI data were resampled to the spatial resolution of the grid cells to extract
the corresponding resampled values of the grid cells and to calculate the proportional
areas of arable land, forest land, grassland, construction land, and unused land within
each grid cell. Pearson correlation coefficients between PM2.5 and influencing factors were
calculated using all data attributes for each of the 23,614 grid squares as the sample set,
with PM2.5 concentration values set as the dependent variable. The independent variables
were input into the geographic detector and multiscale geographically weighted regression
model to evaluate the spatial heterogeneity of natural and socioeconomic factors and
PM2.5 concentrations.
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Table 1. Description of data categories and sources.

Data Category Data Describe Resolution

PM2.5 data PM2.5 / Ground-level fine particulate matter (PM2.5) concentration estimation dataset over
China (V4.CH.02) [52], selected 2000, 2005, 2010, and 2015. 0.01◦ × 0.01◦

DEM data ELE Terrain factor Spatial distribution data of elevation (DEM) in China, from Resource and
Environmental Sciences and Data Center, Chinese Academy of Sciences [53].

1 km × 1 km

Meteorological data
PRE; TEM;

Meteorological factors

Spatial interpolation dataset of annual precipitation in China [53]; Spatial interpolation
dataset of annual average temperature in China [53], from Resource and

Environmental Sciences and Data Center, Chinese Academy of Sciences, selected 2000,
2005, 2010, and 2015.

WIND Spatial distribution dataset of annual mean wind speed in China [54], from National
Earth System Science Data Center, China, selected 2000, 2005, 2010, and 2015.

Vegetation data NDVI

Vegetation factors

Annual Normalized Difference Vegetation Index (NDVI) spatial distribution dataset in
China [55], from Resource and Environmental Sciences and Data Center, Chinese

Academy of Sciences, selected 2000, 2005, 2010, and 2015.

Natural underlying surface cover
data

PFOL
PGRL

China Land Use Remote Sensing Monitoring Data [53], from Resource and
Environmental Sciences and Data Center, Chinese Academy of Sciences, selected 2000,

2005, 2010, and 2015.PUNL Natural source factors

Human socioeconomic activity data

POP

Human socioeconomic activity
factors

China population spatial distribution km grid dataset [56], selected 2000, 2005, 2010,
and 2015.

GDP China GDP spatial distribution km grid dataset [57], selected 2000, 2005, 2010,
and 2015.

NLI Version 4 DMSP-OLS Nighttime Lights Time Series [58], selected 2000, 2005, 2010, and
2013, from the National Geophysical Data Center (NGDC) of NOAA.

Human underlying surface cover
data

PFOL
PCOL

Human regional
activity factors

China Land Use Remote Sensing Monitoring Data, from Resource and Environmental
Sciences and Data Center, Chinese Academy of Sciences [53], selected 2000, 2005, 2010,

and 2015.
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2.2. Methods
2.2.1. Geographical Detector Model

Geographical detector modelling, an important statistical method in spatial differenti-
ation research, is a statistical method used to describe heterogeneity in spatial stratification
and reveal its internal driving factors through a nonlinear hypothesis. The model assumes
that if an independent variable has a strong causal relationship with a dependent vari-
able, then the independent variable and the dependent variable will exhibit a high degree
of consistency in their spatial attributes [59]. Geographical detector models have been
widely used in studies of land use, regional economies, ecology, and environmental science
among others (see Wang et al. [60]). In this study, factor detectors and interaction detectors
are used to address two issues, viz., which variables have a significant impact on PM2.5
concentration and how do these variables interact with each other.

In regard to the factor detector, q statistics are first used to quantify the degree of
influence of a single factor and the interaction between two factors. Values of q are
calculated using the following formula:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (1)

where h (1, . . . , L) represents the sub-region of independent variable X, Nh represents
the number of samples in the subregion of h, N represents the number of spatial units in
the whole region, σ2

h represents the variance of the subregion, and σ2 represents the total
variance of the whole region. In this study, the sub-region represents grid cells with a
spatial scale of 20 km × 20 km.

An interaction detector is used to detect the interaction between two factors. The q
value is used to assess the nature of interaction between the two factors, such as whether
the interaction between two factors enhances or weakens the explanatory power of the
single factor on the dependent variable Y or is consistent with the effect of the two factors
acting independently on Y. The interaction detector is based on the factor detector result,
and is calculated as follows:

1. q values of X1 and X2 obtained from equation 1 are expressed as q(X1) and q (X2);
2. The two factor layers X1 and X2 are used for superposition. The new superposition

factor layer after the superposition is X1∩X2, and the Equation (1) is used again to
calculate the q value of X1∩X2 at the superposition factor layer, which is expressed as
q(X1∩X2);

3. According to the magnitude of q (X1), q (X2) and q (X1∩X2), it can be divided
into five types of interaction; the specific comparison and corresponding interaction
relationships are shown in Table A1.

The geographical detector R package was used in this study to calculate the factor
detector and interaction detector [61].

2.2.2. Multiscale Geographically Weighted Regression Model

Classical GWR sets up a consistent bandwidth for all factors such that all the relation-
ships operate at the same spatial scale. However, the spatial relationships between each
factor and dependent variable play different roles at different scales [33], and the relation-
ship between the factor and dependent variable is also scale dependent [62]. Therefore,
Fotheringham et al. [34] developed the MGWR model based on a GWR by relaxing the
hypothesis that all spatial change processes in the model operate at the same spatial scale
and assigning a dedicated bandwidth for each variable to adapt the model to account for its
multiscale effects. The MGWR can eliminate the limitation that all relationships must vary
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at the same spatial scale, minimize overfitting, and improve the accuracy and superiority
of the model [63]. The MGWR is expressed as

yi = βbw0(ui, vi) +
n

∑
k=1

βbwk(ui, vi)xik + εi (2)

where (ui, vi) represents the coordinates of sample point i; yi and xik represent the depen-
dent variable and the kth explanatory variable, respectively; βbwk(ui, vi) represents the
local parameter estimation of the kth explanatory variable of sample point i in optimal
bandwidth; βbw0(ui, vi) represents the intercept in optimal bandwidth; and εi represents
the error term; bwk is the specific optimal bandwidth used in the calibration of the condi-
tional relationship between the explanatory variable k and the independent variable, which
means that the relationship between explanatory variables and dependent variables allows
changes in space in the model and provides bandwidth parameters of optimal geographical
range, thus allowing different processes to run at different spatial scales.

MGWR is essentially a multiple linear regression, and the multivariate complexity
and correlation of PM2.5 concentration influencing factors, so the multiple covariance
problem needs to be solved before running MGWR; the test of variance inflation factor
(VIF) is the most concise variable screening method [64]. This study solves the multiple
covariance problem by screening out the variables with VIF > 10. The original data were
also normalized in order to make the coefficients of the modeling results statistically
comparable at different locations and for different variables.

During the establishment of the MGWR model, the bandwidth was calibrated using a
back-fitting algorithm [34]. In this paper, all calibration of the model was carried out using
MGWR 2.2 software [63,65], which is suitable for modeling large datasets. The software is
available at https://sgsup.asu.edu/sparc/multiscale-gwr accessed 22 September 2020. In
order to verify the practical validity of the MGWR model, a total of 658 matched samples
were obtained using the spatial connection between ground-based monitoring stations and
the 20 km × 20 km grids. The results of the linear fit between the predicted values of the
MGWR model and the monitored PM2.5 concentration values at the stations showed that
the regression coefficient R2 of the fit reached 0.715, which means that the MGWR model
implemented in this study has a reliable practical value.

3. Results
3.1. Spatio-Temporal Patterns in PM2.5 Concentration

Figure 1 shows changes in the percentage areas of each category of mean annual PM2.5
nationwide, considerably more than half of China experienced PM2.5 pollution during 2000
to 2015. Non-polluted areas exhibited a continuous decrease, while the correspondingly
polluted area gradually expanded over time. Notably, areas with moderate pollution and
severe pollution increased by 1.42 times and 1.57 times, respectively, during 2000–2015.
The overall pattern of change in the pollution situation over the period is suggestive of
three temporal phases as follows: rapid deterioration (2000–2005)/deterioration mitigation
(2005–2010)/marginal improvement (2010–2015).

From 2000 to 2015, the PM2.5 concentrations exhibit substantial spatial variations;
there is a clear spatial division in PM2.5 distribution across the so-called Hu Huanyong
line [66] from the southeast inland to the northwest (Figure 2a–d) revealing clear spatial
agglomeration. The spatial variation in moderate and severe pollution areas changed
significantly during the period of 2000–2015. Severely polluted areas, centered on the
arid region of northwest China, spread in a southeasterly direction over time. In addition,
severe pollution areas in the industrialized provinces of the middle east (including Henan
and Hebei) expanded to the southwest. Areas of moderate pollution also spread in a
southwesterly direction from the areas of urban agglomerations. A clear overall pattern is
apparent: the highly polluted areas of northwest China are associated with the arid dust

https://sgsup.asu.edu/sparc/multiscale-gwr
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source areas, while pollution in the central and eastern regions of China are associated with
centers of urbanization and industrialization.
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During the period of 2000–2005 (Figure 2e), the PM2.5 concentration increased across
75.1% of China, especially to the east of the Hu Huanyong Line, due to rapid urbanization.
In 2005–2010 (Figure 2f), the variation in PM2.5 concentration exhibited a north-south
differentiation, and the areas where the pollution situation deteriorated were mainly
distributed in northern China. Between 2010 and 2015, PM2.5 concentrations increased
only in some of the northern provinces, such as the eastern parts of Xinjiang, Gansu, Inner
Mongolia, and Heilongjiang (Figure 2g), whereas the rest of the country (almost 50%)
China showed a decreasing trend of PM2.5 concentrations, especially in western Xinjiang
where significant pollution-control results have been achieved. Nevertheless, although
nearly half of the country exhibited improved PM2.5 concentrations in 2015 compared to
2010, atmospheric pollution conditions were still worse than in 2000 across more than 80%
of China (Figure 2h).

3.2. Correlation Analysis

Determination of Pearson’s correlation coefficient values indicate that the PM2.5 con-
centration is significantly correlated with the influencing factors (Table A2). For natural
factors, there is a significant positive correlation between TEM, PUNL, and PM2.5 concen-
tration, whereas the remaining factors showed a significant negative correlation. Moreover,
the factor with the greatest influence on PM2.5 concentration shifted from the natural source
factor PUNL to the meteorological factor WIND over the period 2000–2015; the intensity of
vegetation factors and meteorological factors in terms of transport dispersion is stronger
than that of natural sources in the middle and late stages. For socioeconomic factors, all
factors have a very significant positive correlation with PM2.5, and the correlation has
strengthened over time; the impact of human agricultural and urban activities on PM2.5
concentration is stronger than the overall socioeconomic activities, and its intensity ap-
proaches the intensity of some natural factors, indicating that human activities and urban
development have an increasingly prominent influence on PM2.5 concentration. Overall,
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the relationships between PM2.5 concentration and natural factors are stronger than those
relating to socioeconomic factors. However, over time, the influence of human activities on
the PM2.5 concentration has gradually increased.

3.3. Geographical Detector Model Analysis
3.3.1. Factor Detector Analysis

The degree of influence (q value) of the spatial distribution of each influencing factor
derived from the factor detector for the spatial differentiation of PM2.5 concentration
indicates that all of the influencing factors have a significant impact on PM2.5 concentration
(p < 0.01) and follow the sequence: natural factors > socioeconomic factors (Table 2). Among
the 13 selected factors, TEM has the highest degree of influence in 2000, 2005, and 2010, with
q values of 0.39, 0.35, and 0.35, respectively. The degree of influence of WIND increased
sharply in 2015, with the q value reaching 0.37. It is also worth noting that the intensity
of the influence of POP on PM2.5 is stronger than that of human regional activities, and
the degree of influence of agricultural activities is stronger than that of urban activities,
and this evidence is different from what is displayed by the correlation coefficients. In
addition, the absolute value of the correlation coefficients is generally larger than the q
value, and the difference between the q value of each influencing factor is larger than that
of the correlation coefficients, which indicates that the effect of each influencing factor on
PM2.5 is dominated by the linear effect and that the nonlinear effect of natural factors is
stronger than the socioeconomic factors.

Table 2. The q value of each influencing factor derived from the factor detector.

Factors 2000 2005 2010 2015

Natural factors

Terrain factor ELE 0.170 ** 0.176 ** 0.176 ** 0.205 **

Vegetation factors
NDVI 0.234 ** 0.175 ** 0.162 ** 0.206 **
PFOL 0.094 ** 0.055 ** 0.076 ** 0.087 **
PGRL 0.128 ** 0.186 ** 0.172 ** 0.221 **

Meteorological factors
PRE 0.327 ** 0.211 ** 0.207 ** 0.241 **
TEM 0.392 ** 0.351 ** 0.352 ** 0.266 **

WIND 0.035 ** 0.090 ** 0.051 ** 0.375 **
Natural source factor PUNL 0.231 ** 0.180 ** 0.184 ** 0.214 **

Socioeconomic
factors

Human socioeconomic
activity factors

GDP 0.039 ** 0.114 ** 0.083 ** 0.088 **
POP 0.075 ** 0.166 ** 0.129 ** 0.139 **
NLI 0.009 ** 0.0412 ** 0.035 ** 0.049 **

Human regional activity
factors

PFAL 0.052 ** 0.101 ** 0.089 ** 0.104 **
PCOL 0.031 ** 0.086 ** 0.075 ** 0.098 **

** Represents p < 0.01.

3.3.2. Interaction Detector Analysis

Interaction detectors are applied to identify the interaction between two influencing
factors on the PM2.5 concentration among the 13 selected influencing factors (Table A3). The
results show that there are two types of interactions between each pair of influencing factors
during the period 2000–2015, viz., bivariate enhancement and nonlinear enhancement. As
shown in Table A3, it is clear that the explanatory ability of the interaction between most
factors on the spatial distribution of the PM2.5 concentration is enhanced nonlinearly. Over
time, the number of dual-factor enhanced factor pairs gradually increased from 30 pairs in
2000 to 40 pairs in 2015, and the increasing factor pairs are mainly those between WIND
and other factors, PGRL and socioeconomic factors. This indicates that the interaction
between WIND, PGRL, and other factors has weakened, while the individual influence of
each factor has been enhanced.

Factor pairs with interactive q statistic values greater than 0.5 occur between natural
factors, as well as between socioeconomic factors and temperature and precipitation.
Temperature and precipitation have the greatest number of high interaction factor pairs, and
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the interaction with temperature is the most frequent in terms of the number of occurrences.
Among the socioeconomic factors, POP, GDP, and PFAL all exhibit strong interactions
with precipitation. Among all factors, natural factors are still the dominant force driving
the variation in PM2.5 concentration. However, the factor pairs with interaction q statistic
values greater than 0.5 among the influencing factors were significantly reduced, and the
difference between q values gradually decreased in 2015. The weakening of the interaction
between natural factors and the strengthening of the interaction between human activities
and social factors represent a change in the dominant force of natural factors and the
synergistic force of socioeconomic factors (i.e., the weakening of the dominant force of
nature and the strengthening of the force of human activities and social factors), and the
gradual decrease in the difference in the forces of interaction reflects the gradual balance in
the interaction between the factors influencing PM2.5 concentrations.

3.4. Multiscale Geographically Weighted Regression Model Analysis

The spatial bandwidth derived from the MGWR model represents the change in the
spatial scale of the relationship between each influencing factor and PM2.5 concentration,
and the bandwidth can be considered as the number of samples included in the local
calculation. The bandwidth size determines whether the relationship between each factor
and the dependent variable is local, regional, or global, on the one hand, and expresses
the degree of spatial stationarity and spatial heterogeneity of each relationship, on the
other hand. To classify the spatial scales of bandwidth, the number of spatial units is
obtained by calculating the ratio of the total number of samples to the number of samples
in the local calculation and rounding it. Comparing the number of spatial units with the
number of administrative divisions at all levels in China divides that the larger regional
scale > provincial division, provincial division > smaller regional scale > municipal scale,
and local scale < municipal scale.

The bandwidth derived from the MGWR for 2000–2015 shows that the spatial scale
at which each influencing factor operates varies (Table 3). During the period 2000–2015,
only WIND, GDP, and NLI showed a shift in spatial scale range, showing the instability of
spatial heterogeneity, and the fluctuation of spatial scale range only appeared at the smaller
regional scale with the smaller regional scale; then, perhaps the provincial level is the
key control range for WIND, GDP, and NLI factor. All other factors fluctuate and change
within the same spatial scale, and the spatial heterogeneity is more stable, while the ELE
has the least variation in the range of influence, indicating that the spatial heterogeneity
is both stable and high and is strongest in spatial non-stationarity. The spatial influence
range of vegetation factor, meteorological factor, and natural source factor is the smaller
regional scale, but PUNL fluctuates more strongly in the smaller regional scale and is close
to the provincial scale. Among the socioeconomic factors, the spatial influence range of
POP and PCOL is the larger regional scale, and the influence range of POP is larger under
the influence of population migration, while the larger regional spatial influence range of
urban activities (PCOL) indicates that construction land plays an important role in the cross-
regional transmission of PM2.5. It is noteworthy that agricultural activities represented
by cropland have a pattern similar to the variation in NDVI, suggesting that crops and
vegetation have similar effects. In general, the influence range of natural factors tends to be
closer to the provincial scale at the smaller regional scale, while the influence range related
to human activities is dominated by a large regional scale and forms a range fluctuation.
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Table 3. Spatial bandwidth of each variable derived from the MGWR model.

Variables
2000 2005 2010 2015

BW 1 NLU 2 BW NLU BW NLU BW NLU

ELE 44 537 * 44 537 * 44 537 * 44 537 *
NDVI 147 161 # 115 205 # 152 155 # 179 132 #
PFOL 242 98 # 171 138 # 147 161 # 242 98 #
PRE 222 106 # 307 77 # 262 90 # 634 37 #
TEM 223 106 # 307 77 # 262 90 # 387 61 #

WIND 287 82 # 1372 17 1051 22 262 90 #
PUNL 70 337 # 98 241 # 93 254 # 70 337 #
GDP 1090 22 194 122 # 2912 8 753 31
POP 1699 14 1581 15 1486 16 3776 6
NLI 1436 16 1049 23 561 42 # 3064 8

PFAL 194 122 # 147 161 # 147 161 # 179 132 #
PCOL 4174 6 3073 8 2861 8 782 30

1 Spatial bandwidth of each variable; 2 the number of local units in local calculation; * indicates local scale;
# indicates smaller regional scale; other variables are larger scale.

In assessing the statistical significance of the regression coefficients, at least 66.47%
of the regression coefficients passed the significance test (p < 0.05) from 2000 to 2015,
indicating that the regression coefficients in general are credible. Regression coefficients for
each influencing factor derived from the MGWR model are shown in Table 4. In terms of
the coefficient maximum ratio in all of the data, in which PCOL has a single positive effect
on PM2.5 nationwide, WIND has a single negative effect on PM2.5 except in 2015, while
other factors act in opposing directions in different regions much of the time. The effects of
each factor on the degree of spatial heterogeneity in PM2.5 vary. The range of coefficients
for all stages of ELE is the largest, illustrating the strongest degree of spatial heterogeneity.
In contrast, NLI in 2000–2010 and PCOL in 2015 exhibit a low range of coefficient values,
thereby suggesting minimal spatial heterogeneity degree, which is consistent with the
bandwidth results. In terms of the average value of various indicators, the factor that
has the greatest impact on PM2.5 changes from PRE (2000) to WIND (2005 and 2010) to
PFAL (2015). Considering the regression coefficients for socioeconomic factors, the effect of
human activity at the regional scale, represented by cultivated land and construction land,
is much stronger than for all the regional socioeconomic indicators; the sequence of the
intensity of effect is PFAL > PCOL.
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Table 4. Coefficients of independent variables derived from the MGWR model.

Various ELE NDVI PFOL PRE TEM WIND PUNL GDP POP NLI PFAL PCOL

2000
Min/Max −0.870 −3.971 −0.484 −1.399 −0.143 16.310 * −0.325 −0.211 −0.240 −3.050 −0.166 0.514 #

Mean 0.073 −0.227 0.057 −0.373 0.328 −0.242 0.197 0.019 0.031 −0.021 0.190 0.100
Max-Min 3.108 0.517 0.270 1.691 0.680 0.444 0.616 0.385 0.129 0.081 0.400 0.067

2005
Min/Max −0.720 −6.289 −0.267 −2.141 −0.362 3.174 * −0.298 −1.474 0.272 # −23.600 −0.049 0.667 #

Mean −0.009 −0.290 0.085 −0.159 0.152 −0.302 0.200 −0.030 0.156 −0.062 0.252 0.114
Max-Min 2.767 0.605 0.356 0.845 0.704 0.337 0.523 0.673 0.217 0.123 0.425 0.047

2010
Min/Max −0.884 −4.408 −0.918 −1.906 −0.427 3.197 * −0.291 −0.120 −0.634 −7.933 −0.185 0.624 #

Mean −0.078 −0.245 0.012 −0.177 0.162 −0.291 0.217 0.027 0.002 −0.052 0.218 0.133
Max-Min 2.883 0.557 0.468 0.930 0.698 0.323 0.573 0.131 0.134 0.134 0.423 0.059

2015
Min/Max −1.083 −5.985 −0.021 −1.614 −0.547 −0.888 −0.302 −0.765 0.143 # 3.455 # 0.083 # 0.366 #

Mean −0.062 −0.202 0.127 −0.118 0.102 −0.077 0.271 −0.017 0.063 −0.052 0.283 0.146
Max-Min 3.678 0.454 0.290 0.690 0.631 0.370 0.656 0.607 0.126 0.054 0.364 0.121

* Single negative action; # single positive action; others are double direction actions.
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4. Discussion
4.1. The Advantages of the MGWR Model in Quantifying the Relationship between Factors and
PM2.5 Concentration

Referring to Tu et al. [27], the coefficient of determination (R2), adjusted R2, Akaike
information criterion (AIC), corrected Akaike information criterion (AICc), and residual
sum of squares (RSS) were selected to compare the fit of the MGWR model degree (Table 5).
Through comparison, it is found that the R2 and adjusted R2 of the MGWR are much higher
than the OLS model, while the AICc and RSS are much lower than the OLS model, which
indicates that the MGWR model performs better in the goodness of fit for spatial elements.
This has also been shown before, in the comparison of model advantages of the OLS and the
MGWR in the evaluation of the impact of air pollution in China by Fotheringham et al. [67],
although in this case the degree of change in the AICc and the RSS from the OLS to the
MGWR model is, however, much greater than in that study. In addition, the fitting ability
of the MGWR model applied in our study has emerged as superior to that of the GWR [27],
PCA-GWR [64], and SEM [28] models.

A previous study also used the global Moran’s I to perform analysis of the residuals of
models to determine consistency of the residual results against the assumptions [68] and to
determine whether the model has the ability to solve the problem of spatial autocorrelation.
In this study, the Moran’s I of the residuals (MIR) indicates very significant positive
spatial autocorrelation in the OLS model. However, the values of the MIR in the MGWR
model show a very low degree of spatial autocorrelation. This indicates that the MGWR
model can solve for the spatial autocorrelation problem well in quantifying the spatial
relationship between various factors and PM2.5 concentration [27,67,68]. By comparison
with Tu et al. [27] the MIR of the MGWR model in this study was closer to 0 and more
random, which effectively eliminates the spatial autocorrelation of each variable and
indicates that the results are more reliable.

4.2. Drivers of PM2.5 Concentration in China

The MGWR model achieves the characteristic of spatial heterogeneity of the relation-
ship between factors and PM2.5 at different spatial locations, focusing on solving the spatial
non-stationarity of the relationship between factors and PM2.5, as manifested by the spatial
distribution of the regression coefficients of each factor from the model output. In this part,
the spatial effects of each driver of PM2.5 concentration in the Chinese region are explored
by taking the MGWR model output coefficients in 2015 as an example.

There are significant differences in the way natural factors and socioeconomic factors
affect PM2.5. The relationship between each factor and PM2.5 and its absolute intensity,
spatial act extent scale, spatial trend of coefficients, and major influence areas can be
obtained from Table 6, and spatial visualization information can be seen in Figure 3 (only
for sample points in which all significance tests of the factor coefficients passed). In terms of
influence range, the scope of human socioeconomic and urban activities is obviously wider
than that of natural factors. In terms of the direction of influence, the socioeconomic factors
act mainly in one direction, while the natural factors have positive and negative spatial
non-stationarity on PM2.5 concentrations across China. In this way, the non-stationarity of
the spatial relationship between PM2.5 and its influencing factors is relatively strong.
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Table 5. Comparison of the parameters in the MGWR and OLS models during the period of 2000–2015.

Parameters
2000 2005 2010 2015

OLS MGWR OLS MGWR OLS MGWR OLS MGWR

R2 0.537 0.987 0.542 0.985 0.529 0.985 0.516 0.983
Adjusted R2 0.537 0.985 0.542 0.983 0.529 0.984 0.516 0.981

AIC 48,827.891 −29,984.883 48,570.197 −26,563.277 49,209.984 −27,311.435 49,909.704 −24,172.930
AICc 48,829.909 −29,244.855 48,572.214 −25,785.727 49,212.002 −26,561.333 49,911.722 −23,412.529
RSS 10,928.094 306.489 10,807.470 352.498 11,106.479 342.742 11,432.107 391.469
MIR 0.915 0.016 0.893 0.021 0.904 0.026 0.896 0.043

Table 6. Comparison of spatial heterogeneity in the relationship between natural, socioeconomic factors, and PM2.5 concentration and summary of important information.

Factors Relationship And
Intensityabs

1 with PM2.5
Spatial Scale Spatial

Tendency
Major Geographic

Locations Influenced Likely Causes Additional
Remarks

ELE — ~ +++ 2;
0.221 2 Local 3 Complex, increases from

southern to northern Xinjiang and Guangxi Terrain effect Consist with Xia et al. [30]

NDVI – ~ +;
0.211 Smaller regional 4 Negative effect increases

from southeast to northwest Northwest China Sources of dust storms and
vegetation fixation High intensity in the northwest

PFOL - ~ ++;
0.123 Smaller regional

Weak positive effect
increases from western to

eastern
Middle China Limited urban pollution

removal from woodlands
Positive effects are different from

vegetation effects

PRE – ~ ++;
0.137 Smaller regional Negative effect weakens

from northwest to southeast Northwest China
Weak precipitation has
limited effect on PM2.5

removal
Obvious in northwest

TEM – ~ ++;
0.145 Smaller regional Negative to positive from

southwest to northeast
Southwest China; northeast

China
Atmospheric convection;

inverse temperature

Negative effects are evident in
southwest China; positive effects

are evident in northeast China

WIND - ~ +;
0.097 Smaller regional Negative effect increases

from northwest to southeast
Northwest China; south

China Diffusion effect of wind Role with topography

PUNL - ~ +++;
0.263 Smaller regional Decrease from southern to

northern
South China; northwest

China Natural sources Strong positive influence in
southern and eastern China

GDP – ~ ++;
0.097 Larger regional 5

Negative to positive effects
show a northeast to

southwest shift
The Qinghai-Tibet area Implementing significant

pollution control
Negative effect in the east;

economic and ecological win-win
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Table 6. Cont.

Factors Relationship And
Intensityabs

1 with PM2.5
Spatial Scale Spatial

Tendency
Major Geographic

Locations Influenced Likely Causes Additional
Remarks

POP +;
0.067 Larger regional Increases from eastern to

western Northwest China
The role of man-made
sources of pollution is

diminished

Contrary to the population
density distribution

NLI -;
0.054 Larger regional The intensity decreases from

southern to northern
Xinjiang; Tibet; Eastern

Coastal Region
Integrated city level

improvement
EKC has crossed the inflection

point

PFAL - ~ ++;
0.290 Smaller regional

Positive effect increases from
southern to northern, the

strongest in middle region
Middle east China Dynamic Source Landscape

Rapid land use/cover change and
anthropogenic binding changes

on atmospheric dispersion

PCOL +;
0.146 Larger regional Weakens from eastern to

western North China and East China China Urbanization
Development

More stronger than all other
socioeconomic activities (GDP,

POP, NLI)
1 Mean of absolute values of regression coefficients; 2 the direction and strength of relationship; 3 local scale < municipal scale; 4 provincial division > smaller regional scale > municipal scale; 5 the larger regional
scale > provincial division.
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Figure 3. The spatial distribution of regression coefficients between factors and PM2.5 concentration (samples with
coefficient significance > 0.05 have been excluded). (a) The spatial distribution of regression coefficients of ELE; (b) The
spatial distribution of regression coefficients of NDVI; (c) The spatial distribution of regression coefficients of PFOL; (d) The
spatial distribution of regression coefficients of PRE; (e) The spatial distribution of regression coefficients of TEM; (f) The
spatial distribution of regression coefficients of WIND; (g) The spatial distribution of regression coefficients of PUNL;
(h) The spatial distribution of regression coefficients of GDP; (i) The spatial distribution of regression coefficients of POP;
(j) The spatial distribution of regression coefficients of NLI; (k) The spatial distribution of regression coefficients of PFAL;
(l) The spatial distribution of regression coefficients of PCOL. ELE, elevation; NDVI, vegetation coverage index; PFOL,
proportion of forestland; PRE, precipitation; TEM, temperature; WIND, wind speed; PUNL, proportion of unused land;
GDP, gross domestic product; POP, population density; NLI, night light intensity; PFAL, proportion of farmland; PCOL,
proportion of construction land.

Taken at the largest spatial scale (i.e., China as a whole), the degree of influence
was determined by the average of the absolute values of each factor coefficient, and the
order of intensity of each factor on PM2.5 was agricultural activity factor > natural source
factor > topography factor > vegetation factor > urban activity factor > meteorological
factor > socioeconomic activity factor (Table 6). PUNL as a natural source factor is the
most influential of the natural factors on PM2.5, which may be associated with the sand
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and dust activities in the large deserts in the northwest and southwest. Moreover, the
overall vegetation factor (NDVI) was observed to have a stronger effect on PM2.5 than
the single vegetation factor (PFOL), which may be related to the strong controlling effect
of vegetation on dust activity in northwest China [69]. Another finding is that the de-
gree of influence of arable land versus construction land is widely different but similarly
stronger than meteorological factors and socioeconomic activities. Both studies at both the
national and urban regional scale have indicated that farmland and construction land both
play important roles in PM2.5 concentration [48,50], then different land management of
urban and agricultural land may be more effective than economic management for PM2.5
management more effectively and with more accessibility than meteorological control.

The factors with the top two absolute values of the coefficients at each location were
considered as the determining influencing factors at that location. The map shown in
Figure 4 indicates the spatial heterogeneity of determining factors in China, and different
colors represent different factors. In terms of the spatial proportions controlled by each
principal factor, the topographic, vegetation (NDVI), meteorological (TEM), natural source
factor, and agricultural activity factor are the factors that need obvious attention in the
Chinese region. However, it should be noted that other pollutants (especially secondary-
formed sulfate particulate matter) account for a considerable proportion of fine particulate
matter (PM2.5), with a contribution of 36.1% from secondary sources in Beijing [70]. This
study did not include secondary particulate matter in the model calculations and did not
distinguish artificial sources separately. The spatial distribution of the main control factors
only distinguishes the strength of the spatial relationship between different natural and
socio-economic factors, and the PM2.5 concentration can identify the key factors in the
variation of PM2.5 concentration from the perspective of spatial heterogeneity and cannot
distinguish absolutely the spatial location of natural and anthropogenic sources.
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Figure 4. The spatial distribution of main control factors in different locations in China. (a) The
spatial distribution of the first main control factors; (b) The spatial distribution of the second main
control factors. ELE, elevation; NDVI, vegetation coverage index; PFOL, proportion of forestland;
PRE, precipitation; TEM, temperature; PUNL, proportion of unused land; GDP, gross domestic
product; PFAL, proportion of farmland; PCOL, proportion of construction land.

Geomorphology is thought to influence PM2.5 accumulation and enhance pollu-
tion [17], and some studies indicate that topographic factors have the greatest effect on
PM2.5 concentrations in southwest China [30], which overlaps spatially with the ELE spatial
distribution results in Figure 4, but southwest China has low pollution levels except for
the Sichuan basin, which is not a pollution management control area. In contrast, the
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pollution in Xinjiang region is serious, and the ELE on PM2.5 is clearly visible in the basin
topography effect.

It is widely accepted that vegetation plays an important role in alleviating PM2.5
pollution for a range of reasons, and in this study, it can be shown that the intensity of
vegetation factor in the northwest is almost twice as strong as that in the eastern and
southern regions (Figure 3b). While desertification is serious in the northwest, vegetation
cover is low, and dust storms are the main sources of PM2.5 concentration in the region [71];
therefore, the vegetation in the northwest exhibits a strong negative effect on dust storm
activity by stabilizing the sandy surfaces [69] and increasing vegetation cover through
afforestation is regularly practiced in the control of PM2.5 in northwest China [72]. Mean-
while, for PM2.5 natural sources, the proportion of natural sources (sand storms) of PM2.5
in northwestern cities increases from east to west and is less directly affected by human
activities [11], and from the distribution of the main first control factor (Figure 4a) and the
second control factor (Figure 4b) in the northwest, the trend of the intensity of the impact
of unused land is consistent with the trend of the proportion of natural sources, but in
some regions, the impact of cropland and vegetation is stronger. This may depend on the
prevalence of planting vegetation to provide root anchorage and wind break to stabilize
unused land surface in northwest China or through the use of straw lattice panels, which
can significantly reduce PM2.5 pollution levels [69,71]. Li and Huang [48] also indicated
that agricultural activities in small urban cities are more important sources of pollution
compared to large cities.

The effect of PUN is shown to be the first control factor in the south, while it is
the second control factor in the east (Figure 4). In the southern and eastern regions, the
occurrence of even relatively small areas of unused land appears to have a strong positive
effect on pollution, indicating that any increase in the area of unused land in this region
may cause a substantial change in PM2.5 concentrations. It is necessary, therefore, to
consider carefully the transfer of unused land to prevent deterioration in air quality. It is
important to note the impact of cultivated land in the central-eastern region. The scope of
the contribution of cropland to PM2.5 concentrations is limited by the space of agricultural
activities and the effect of crop cover [73], and its bandwidth is shown to be narrower
than that of other human activities. In addition, cultivated land is a dynamic source-sink
landscape, and rapid changes in land use/cover and human activities bring about changes
in temperature and humidity constraints on atmospheric dispersion in the central and
eastern regions [74], reinforcing the cropland source effect.

In addition, meteorological factors tend to interact with topography [13], and the
negative effect of TEM on PM2.5 is more pronounced in southwest China (Figure 3e), which
may be due to atmospheric convection caused by higher temperatures here that accelerates
the diffusion of particulate matter [20]. The positive high intensity of TEM makes TEM the
dominant control condition in northeast China (Figures 3e and 4a), according to Li et al. [75].
The Shenyang study attributed the positive TEM effect to the effect of inversion temperature
on PM2.5 diffusion triggering accumulation. While PRE and WIND among meteorological
factors are weak in intensity compared to other factors, the role of PRE in northwest of
Xinjiang is not negligible (Figure 3d). Wang et al. [13] pointed out that strong precipitation
has a significant scavenging effect by wet deposition on PM2.5 concentrations and weak
precipitation and rain and fog processes may trigger air stagnation conditions. Although
the annual precipitation under arid climate conditions in Northwest China is low, the
intensity of precipitation is mainly high intensity and moderate intensity [76], while the
intensity and frequency of precipitation show an increasing trend [77], and the important
scavenging role of strong precipitation on PM2.5 in Northwest China can be speculated.

Spatial trends in GDP and NLI (Figure 3h,i) correlate with the spatial pattern of
urbanization development in China. The results suggest that controlling pollution to
improve atmospheric quality can be achieved in parallel with economic development,
and the improvement of the integrated level of cities (population structure, economic
structure, traffic layout, etc.) can mitigate the degree of PM2.5 pollution. Earlier studies
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applied a semiparametric spatial autoregressive model to show that the Environmental
Kuznets Curve (EKC) for Chinese cities has crossed the inflection point and again suggests
that higher urbanization levels can alleviate haze pollution [46]. The effect of population
density on PM2.5, on the other hand, needs special treatment because the positive effect of
population impact contrasts with the population density distribution [78], suggesting that
a particular increase in population may trigger a greater increase in PM2.5 concentration
in the more sparsely populated western areas, while the role of anthropogenic pollution
sources in the east is weakened.

4.3. Interactions of PM2.5 Influencing Factors and Spatial Multiscale Relationships on PM2.5
Pollution Control in China

PM2.5 concentrations in China are affected by a combination of multiple factors,
among which, on average, natural factors play a dominant role; socioeconomic factors are
synergistic, however, and human activities must be taken into account. This finding concurs
with other studies that have analyzed the factors influencing air quality in China [79],
confirming that natural conditions act to regulate PM2.5 on a large spatial scale. However,
at large scales, natural factors are not easily manipulated or managed and may not therefore
be suitable targets for longer-term governance measures. In terms of socioeconomic factors
in general, population tends to make a dominant contribution while, on the other hand,
agricultural activities are important contributing activities to PM2.5 in China. Moreover, the
interaction between socioeconomic and natural factors has been shown to play an important
and significant role in the PM2.5 concentration change system [80]. It should therefore be
possible to consider the identified factor pairs which exhibit strong interactions between
natural factors and anthropogenic factors in managing aerosol pollution. Anthropogenic
drivers are shown here to be gradually increasing in dominance over all other factors as
demonstrated, for example, by the interaction detector model (Table A3), which clearly
shows that the interaction between GDP, POP, PRE, and TEM can explain as much as 55.1%
of PM2.5. Interactions between PFAL, TEM, and WIND can also exceed 50%, demonstrating
nonlinearity of response. It is therefore suggested that the structure and spatial distribution
of industry, population and distribution of farmland, for example, should be considered if
the goal of regulating PM2.5 pollution is to be achieved.

This study has demonstrated that most PM2.5 influencing factors are scale dependent
(Table 3) and that, as PM2.5 pollution increases, the influence of regional transmission is
enhanced, while the influence of local and surrounding emission sources is reduced [10].
In addition, several econometric spatial analyses factors that influence PM2.5 in urban
agglomerations and economic zones have emphasized the spatial spillover effect of PM2.5
pollution [28,29], indicating that the key to the control of PM2.5 pollution in China lies
in joint governance between regions. Accordingly, the advantages of the spatial non-
stationarity of the MGWR and the division of spatial act scales in this study can provide
a reference for categorizing joint governance strategies level by level and provide more
detailed management decisions for joint regional governance rather than a one-size-fits-all
approach for all factors and all regions. For example, NDVI, PFAL, PUNL, TEM, PRE, and
PCOL are selected as the key regulatory conditions of the treatment measures according
to the main factor types and spatial distribution, and the strong action area of each factor
is used as the center; then, the scope of treatment is determined according to its spatial
bandwidth whether it is a joint treatment of cities in the province or a joint treatment of
regions between provinces. Specifically, management needs to emphasize the limiting role
of natural conditions and continue to promote vegetation restoration projects in the western
parts of the country, while not neglecting the role of arable land contribution in small and
medium-sized cities. In eastern China, the spatial layout of arable and construction land
needs to be considered in relation to the distribution of industry and the source-sink
system in the landscape so as to account for the interaction with natural conditions; at
the same time, arable land and construction land should be managed separately and in
a focused manner according to the spatial location of their intensity centers and their
scale of action. In general, the study indicates that within a region, a reasonable policy
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should be applied to plan its control center and joint scope according to specific regional
natural conditions, in the context of dominant human activities in a region such as industry,
agriculture, and population etc., and to plan its important control and regulation factors
by factor and sub-region to better achieve regional prevention and control of atmospheric
pollution objectives.

4.4. Limitations and Future Work Directions

Without doubt, this study has some limitations. More detailed socioeconomic data
including information on road traffic, industrial structure, and anthropogenic emissions
are not readily available in a rasterized format and were excluded in this study. The mech-
anisms influencing PM2.5 impact mechanism are complex, and the selected impact factors
appear to be multi-correlated. While this study uses geographic detectors to analyze the
interaction among factors, how the multi-correlation between variables affects the model
should be considered in the future. Multiple validation of the linear and nonlinear relation-
ships of influencing factors on PM2.5 would be a fruitful research direction. In the future, as
the understanding of the geospatial relationship between each factor and PM2.5 increases,
remote sensing inversion for PM2.5 may provide corresponding information to improve
the inversion model. Revealing important spatial relationships, such as vegetation factors,
can be done by extracting the corresponding spectral information from satellite remote
sensing in multiple directions in more detail to obtain special data products (vegetation
structure, vegetation growth, crop growth) to optimize model variables.

5. Conclusions

This study was conducted to explore the interaction, spatial heterogeneity and multi-
scale interaction between natural and socioeconomic factors and atmospheric PM2.5 concen-
trations in China using geographical detector and MGWR modelling. The results indicate
that the PM2.5 concentration has followed a sequence of rapid deterioration–deterioration
mitigation–slight improvement during 2000 to 2015, and obvious spatial agglomeration
characteristics are evident over the period. A clear spatial pattern of PM2.5 expansion
across the Hu Huanyong line from the southeast coast to the northwest interior is appar-
ent. Generally, the influence of natural factors on PM2.5 is stronger than socioeconomic
factors; the effect of each influencing factor on PM2.5 is dominated by the linear effect, and
the interaction type of each factor is dominated by bivariate enhancement and nonlinear
enhancement, exhibiting strong interactions between natural factors and anthropogenic
factors. Simultaneously, the prominent influence of natural factors is shown to weaken
over time, while the effects of human activities and social factors are increasing. The contri-
bution of socioeconomic activities in driving the system must be taken into account while
agricultural activities also make important contribution to PM2.5. The analysis also demon-
strates the scale dependency of many of these processes and interactions over the period
2000–2015; the influence range of natural factors tends to be closer to the provincial scale at
the small regional scale, while the influence range related to human activities is dominated
by a large regional scale and forms a range fluctuation. There are significant differences in
the way natural factors and socioeconomic factors affect PM2.5, and the non-stationarity of
spatial relationships is stronger. Topographic, vegetation (NDVI), meteorological (TEM),
natural source factors, and agricultural activity factors are the factors that need significant
attention in Chinese regions. In addition, the study verified that higher urbanization levels
can mitigate haze pollution, while the population in western regions needs to be treated
with caution, and differential land management between arable land and construction land
is recommended. Management decisions for atmospheric PM2.5 concentrations should take
into account both spatial heterogeneity and scale and should use reasonable policies to
plan their control centers and joint scopes according to specific regional natural conditions
and in combination with dominant human activities. The results here provide important
information for the prevention and control of regional PM2.5 pollution in China with a
categorized joint management strategy level by level.
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Appendix A

Table A1. The category and determination of the interaction between two factors.

Type of Interaction Judging Description

Nonlinearly weakened q(X1∩X2) < Min(q(X1), q(X2))
Univariate nonlinearly weakened Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2))

Bivariate enhancement q(X1∩X2) > Max(q(X1), q(X2))
Independent q(X1∩X2) = q(X1) + q(X2)

Nonlinearly enhanced q(X1∩X2) > q(X1) + q(X2)

Table A2. Pearson correlation coefficient between PM2.5 and influencing factors.

Factors
PM2.5

2000 2005 2010 2015

Natural factors

Terrain
factors ELE −0.258 ** −0.342 ** −0.321 ** −0.376 **

Vegetation factors
NDVI −0.318 ** −0.184 ** −0.207 ** −0.249 **
PFOL −0.276 ** −0.196 ** −0.244 ** −0.253 **
PGRL −0.29 ** −0.392 ** −0.363 ** −0.417 **

Meteorological factors
PRE −0.267 ** −0.093 ** −0.141 ** −0.085 **
TEM 0.305 ** 0.416 ** 0.370 ** 0.296 **

WIND −0.156 ** −0.273 ** −0.186 ** −0.505 **
Natural source

factor PUNL 0.439 ** 0.313 ** 0.360 ** 0.393 **

Socioeconomic
factors

Human socioeconomic
activities factors

GDP 0.054 ** 0.186 ** 0.155 ** 0.103 **
POP 0.101 ** 0.289 ** 0.159 ** 0.165 **
NLI 0.071 ** 0.152 ** 0.148 ** 0.171 **

Human regional activities
factors

PFAL 0.137 ** 0.284 ** 0.251 ** 0.275 **
PCOL 0.150 ** 0.265 ** 0.242 ** 0.279 **

** significant at the 0.01 level (two-tailed).

http://fizz.phys.dal.ca/
http://www.geodata.cn/
http://www.resdc.cn/
http://www.ngcc.cn/ngcc
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Table A3. The q value of each pair of interaction derived from the interaction detector.

Factors Year ELE NDVI PFOL PGRL PRE TEM WIND PUNL GDP POP NLI PFAL

NDVI

2000 0.479 *
2005 0.440 *
2010 0.427 *
2015 0.513 *

PFOL

2000 0.349 * 0.305 #
2005 0.322 * 0.251 *
2010 0.343 * 0.253 *
2015 0.40 * 0.289 #

PGRL

2000 0.266 # 0.347 # 0.298 *
2005 0.269 # 0.348 # 0.308 *
2010 0.269 # 0.320 # 0.319 *
2015 0.315 # 0.404 # 0.391 *

PRE

2000 0.573 * 0.455 # 0.444 # 0.478 #
2005 0.473 * 0.308 # 0.285 * 0.369 #
2010 0.467 * 0.269 # 0.289 * 0.356 #
2015 0.552 * 0.336 # 0.367 * 0.435 #

TEM

2000 0.559 * 0.551 # 0.515 * 0.398 # 0.598 #
2005 0.600 * 0.503 # 0.515 * 0.429 # 0.499 #
2010 0.586 * 0.508 # 0.534 * 0.432 # 0.540 #
2015 0.506 * 0.478 * 0.464 * 0.393 # 0.516 *

WIND

2000 0.337 * 0.474 * 0.351 * 0.185 * 0.409 * 0.588 *
2005 0.394 * 0.388 * 0.329 * 0.280 * 0.456 * 0.406 #
2010 0.372 * 0.366 * 0.297 * 0.251 * 0.479 * 0.417 *
2015 0.465 # 0.484 # 0.4687 * 0.427 # 0.522 # 0.501 #

PUNL

2000 0.420 * 0.311 # 0.299 # 0.286 # 0.452 # 0.528 # 0.421 *
2005 0.407 * 0.265 # 0.255 * 0281 # 0.315 # 0.497 # 0.360 *
2010 0.413 * 0.246 # 0.263 * 0.278 # 0.297 # 0.510 # 0.368 *
2015 0.472 * 0.296 # 0.296 # 0.334 # 0.358 # 0.437 # 0.477 #

GDP

2000 0.336 * 0.376 * 0.161 * 0.226 * 0.531 * 0.484 * 0.222 * 0.340 *
2005 0.3673 * 0.403 * 0.236 * 0.269 # 0.452 * 0.474 * 0.286 * 0.394 *
2010 0.368 * 0.338 * 0.210 * 0.253 # 0.432 * 0.486 * 0.247 * 0.368 *
2015 0.386 * 0.424 * 0.239 * 0.303 # 0.474 * 0.448 * 0.471 * 0.425 *

POP

2000 0.338 * 0.397 * 0.195 * 0.251 * 0.551 * 0.506 * 0.272 * 0.358 * 0.106 *
2005 0.376 * 0.435 * 0.282 * 0.318 # 0.466 * 0.497 # 0.340 * 0.412 * 0.186 #
2010 0.363 * 0.382 * 0.252 * 0.286 # 0.454 * 0.517 * 0.308 * 0.390 * 0.147 #
2015 0.396 * 0.432 * 0.282 * 0.326 # 0.503 * 0.461 * 0.485 # 0.434 * 0.173 #

NLI

2000 0.178 # 0.264 * 0.103 * 0.130 # 0.442 * 0.344 * 0.050 * 0.258 * 0.043 # 0.081 #
2005 0.189 # 0.238 * 0.098 * 0.197 # 0.301 * 0.361 # 0.139 * 0.240 * 0.120 # 0.169 #
2010 0.189 # 0.228 * 0.114 * 0.179 # 0.305 * 0.370 # 0.091 * 0.251 * 0.088 # 0.137 #
2015 0.221 # 0.295 * 0.143 * 0.231 # 0.345 * 0.313 # 0.401 # 0.300 * 0.099 # 0.151 #

PFAL

2000 0.280 * 0.360 * 0.129 # 0.214 * 0.515 * 0.478 * 0.183 * 0.336 * 0.082 # 0.114 # 0.055 #
2005 0.278 * 0.370 * 0.175 * 0.240 # 0.392 * 0.476 * 0.243 * 0.356 * 0.167 # 0.203 # 0.111 #
2010 0.284 * 0.338 * 0.166 * 0.232 # 0.379 * 0.490 * 0.195 * 0.351 * 0.138 # 0.174 # 0.095 #
2015 0.325 * 0.408 * 0.193 * 0.284 # 0.431 * 0.438 * 0.449 # 0.402 * 0.146 # 0.190 # 0.119 #

PCOL

2000 0.198 # 0.302 * 0.115 # 0.143 # 0.487 * 0.369 * 0.079 * 0.295 * 0.053 # 0.086 # 0.034 # 0.067 #
2005 0.209 # 0.308 * 0.133 # 0.213 # 0.369 * 0.388 # 0.197 * 0.305 * 0.134 # 0.177 # 0.089 # 0.127 #
2010 0.209 # 0.285 * 0.139 # 0.196 # 0.365 * 0.363 # 0.133 * 0.305 * 0.107 # 0.142 # 0.079 # 0.113 #
2015 0.148 # 0.367 * 0.175 # 0.249 # 0.415 * 0.366 * 0.426 # 0.373 * 0.119 # 0.167 # 0.103 # 0.136 #

* The nonlinear enhancement interaction; # the Bivariate enhancement interaction.
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