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Abstract: Forest height is an essential input parameter for forest biomass estimation, ecological
modeling, and the carbon cycle. Tomographic synthetic aperture radar (TomoSAR), as a three-
dimensional imaging technique, has already been successfully used in forest areas to retrieve the
forest height. The nonparametric iterative adaptive approach (IAA) has been recently introduced
in TomoSAR, achieving a good compromise between high resolution and computing efficiency.
However, the performance of the IAA algorithm is significantly degraded in the case of a small
tomographic aperture. To overcome this shortcoming, this paper proposes the robust IAA (RIAA)
algorithm for SAR tomography. The proposed approach follows the framework of the IAA algorithm,
but also considers the noise term in the covariance matrix estimation. By doing so, the condition
number of the covariance matrix can be prevented from being too large, improving the robustness of
the forest height estimation with the IAA algorithm. A set of simulated experiments was carried out,
and the results validated the superiority of the RIAA estimator in the case of a small tomographic
aperture. Moreover, a number of fully polarimetric L-band airborne tomographic SAR images
acquired from the ESA BioSAR 2008 campaign over the Krycklan Catchment, Northern Sweden,
were collected for test purposes. The results showed that the RIAA algorithm performed better
in reconstructing the vertical structure of the forest than the IAA algorithm in areas with a small
tomographic aperture. Finally, the forest height was estimated by both the RIAA and IAA TomoSAR
methods, and the estimation accuracy of the RIAA algorithm was 2.01 m, which is more accurate
than the IAA algorithm with 3.25 m.

Keywords: forest height; tomographic synthetic aperture radar (TomoSAR); iterative adaptive
approach (IAA); robust iterative adaptive approach (RIAA); L-band

1. Introduction

Forest height, an important input characteristic parameter, can be widely used in
forest biomass estimation, ecological modeling, forest management, global carbon cycle
and climate change research [1–5]. Synthetic aperture radar tomography (TomoSAR)
and light detection and ranging (LiDAR), as two popular three-dimensional imaging
techniques, both make it possible to reconstruct the forest height. However, compared to
LiDAR, TomoSAR can retrieve the forest vertical structure with long carrier wavelengths
such as the L-band and P-band due to its strong penetration, can be almost independent
of weather conditions and covers a larger study area [6–13]. TomoSAR combines several
multiple-baseline SAR images to synthesize the aperture along the vertical direction, in
addition to the conventional azimuthal synthetic aperture. Accordingly, it can separate the
different scatterers along the elevation direction within one resolution cell.
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Forests contain a large number of distributed scatterers and their vertical backscat-
tering power is usually estimated from the covariance matrix including the phase and
amplitude information. Based on this, several kinds of spectral analysis methods have been
proposed, ranging from the classical Fourier-based methods to high-resolution approaches.
Among these different methods, nonparametric spectral estimators [14–20] can perform
3D focusing without any prior information. Parametric spectral estimators [21–24], such
as multiple signal classification and weighted subspace fitting, can acquire a high vertical
resolution, but their performance depends on prior information and they are suitable for
identifying discrete scatterers, such as ground/tree trunk interaction. Additionally, sparse
spectral estimators, such as compressed sensing [25–30] and sparse iterative covariance-
based estimation [31,32], can achieve a high elevation resolution, but some certain processes
are required to make the forest backscattering power sparse along the elevation direction,
resulting in a considerable computational burden. From the above analysis, nonparametric
spectral estimators are the candidate for forest height estimation at a large scale. However,
conventional nonparametric spectral methods such as beamforming and Capon hold a low
vertical resolution, which limits the separation of canopy scatterers and ground scatterers.

The nonparametric iterative adaptive approach (IAA) was proposed as an alternative
to overcome this limitation [18,19]. The IAA algorithm is suitable for distributed and
coherent sources, without requiring any prior information or pre-processing. It adopts
the weighted least-squares approach to estimate the covariance matrix in an iterative
process. However, in the case of a small tomographic aperture, the condition number of
the covariance matrix is very large, resulting in an ill-posed problem for the inversion of
the covariance matrix. This easily leads to inaccurate or even wrong parameter estimations.
As a result, the IAA algorithm shows a degraded performance. For airborne tomographic
datasets, in particular, the tomographic aperture generally varies from large to small due
to the increase in the incidence angle from the near range to the far range. Thus, this
paper proposes the robust IAA (RIAA) algorithm for SAR tomography over forest areas
for a small tomographic aperture. The RIAA algorithm follows the framework of the
IAA algorithm, but also considers the noise term in the covariance matrix estimation. By
doing so, it can ensure that the condition number of the covariance matrix is not too large.
Accordingly, the proposed method can improve the performance of the IAA algorithm.

The rest of this paper is organized as follows. Section 2 presents the TomoSAR imaging
model of forests, gives a brief introduction to the IAA estimator, and explains the RIAA
method. In Section 3, a series of simulated experiments with the proposed approach is
described and then some analysis about results is given. In Section 4, we describe the
experiment in which the proposed RIAA estimator was applied to an L-band airborne
tomographic SAR dataset in three polarimetric channels acquired by the European Space
Agency (ESA) BioSAR 2008 campaign. Section 5 makes a further discussion about the
differences between RIAA and IAA methods. Finally, Section 6 is the conclusion of this
work.

2. RIAA TomoSAR Method
2.1. TomoSAR Imaging Model

We assume that N single-look complex (SLC) SAR images are acquired over the
concerned area (seen in Figure 1). Some pre-processing steps, including the selection of a
common master image, co-registration, deramping, and phase calibration, are necessary
to obtain the tomographic dataset. Among this dataset, the measurement in an arbitrary
resolution of the nth image can be expressed as [6]:

yn(l) =
∫

γz(l) exp(jkz(n)z)dz (1)

where l = 1, · · · , L and L is the number of looks. kz(n) = 4πbn
λrsinθ is the vertical wavenumber

between the nth image and the master image, depending on the perpendicular baseline
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bn, the wavelength λ, the range r, and the incidence angle θ. γz(l) indicates the vertical
continuous reflectivity function, which is a complex number.

Figure 1. The geometry of TomoSAR over forest areas.

The integral of Equation (1) is discretized into the sum of backscattering reflectivity of
D scatterers, which can be written as [6]:

y(l) = Ax(l) + e(l) (2)

where y(l) = [y1(l), y2(l), · · · , yN(l)]
T is the observation vector composed of N images;

x(l) = [γz1(l), · · · , γzD (l)]
T is the unknown discrete reflectivity vector; zd(d = 1, · · · , D)

represents the discrete position along the vertical direction; e(l) is the noise vector with N
elements; and A = [a1, · · · , aD] is an N × D coefficient matrix. The steering vector ad is
given by:

ad = [exp(jkz(1)zd), · · · , exp(jkz(N)zd)]
T (3)

where (·)T describes the transpose operator of a vector or a matrix.
The aim of TomoSAR is to retrieve the backscattering reflectivity power along the

vertical direction, which can be regarded as a spectrum estimation problem.

2.2. The IAA Estimator

The IAA estimator is a nonparametric spectral estimation algorithm based on the WLS
approach. For the TomoSAR imaging model (Equation (2)), the WLS cost function is given
by [31–33]:

f =
L

∑
l=1
‖y(l)− xd(l)ad‖2

R−1 (4)

where R = APAH is the covariance matrix. P is the D×D diagonal matrix of backscattering
reflectivity power. (·)H is the conjugate transpose operator of a vector or a matrix.

The solution to minimizing Equation (4) with respect to xd(l) is given by [31–33]:

xd(l) =
aH

d R−1y(l)
a∗dR−1ad

(5)

Thus, the corresponding power is written as [31,32]:

pd =
aH

d R−1R̂R−1ad(
aH

d R−1ad
)2 (6)

where R̂ is the sample covariance matrix with R̂ = 1
L ∑L

l=1 y(l)y(l)H .
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By inspecting the above equations, parameter xd(l) and R depend on each other.
Thus, an iterative solution must be adopted, as shown in Table 1. The iterative process is
terminated when the current estimates of P for the last two iterations are almost constant.

Table 1. Main steps of the IAA method.

Initialization

pd = 1
(aH

d ad)
2
L

L
∑

l=1

∣∣aH
d y(l)

∣∣2 (d = 1, · · · , D)

Iteration
repeat

R = APAH

xd(l) =
aH

d R−1y(l)
aH

d R−1ad

pd =
aH

d R−1R̂R−1ad

(aH
d R−1ad)

2

Until(convergence)

2.3. The RIAA Estimator

When the tomographic aperture is small, the vertical wavenumbers are very close
to each other. This leads to the condition number of coefficient matrix A being slightly
large. Accordingly, the condition number of the covariance matrix is very large, resulting
in an ill-posed problem for the inversion of the covariance matrix. This easily leads to
inaccurate or even wrong parameter estimations. As a result, the IAA algorithm shows a
degraded performance. To overcome this problem, this paper takes into account the noise
contribution to the covariance matrix within the framework of the existing IAA algorithm.

We let O be a (D + N)× (D + N) diagonal matrix whose diagonal contains D scatter-
ing reflectivity powers of interest and N noise powers [34,35], and it can be expressed by
the following:

O =

[
P 0
0 Σ

]
=



p1 0 · · · · · · · · · · · · 0
0 p2 0 · · · · · · · · · 0
... 0

. . .
...

...
...

...
0 · · · · · · pD · · · · · · 0
0 · · · · · · · · · σ2

1 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · · · · σ2
N


(7)

where the matrix P is the power matrix of the interested signal, which is the same as the
power matrix in the IAA algorithm. Σ is the noise power matrix, as follows:

Σ =

 σ2
1 · · · 0
...

. . .
...

0 · · · σ2
N

 (8)

According to Equation (2), the covariance matrix R can be expressed by [34,35]:

R = AOAH = APAH + Σ (9)

From Equation (9), we see that APAH is the expression of covariance matrix R in the
IAA algorithm. When the tomographic aperture is small, the difference among the vertical
wave numbers is small, resulting in a large condition of the mapping matrix A. Accordingly,
the condition of the covariance matrix R is large, which leads to the ill-posed problem.
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This is sensitive to noise and is very likely to obtain a wrong estimation. When the noise
covariance matrix Σ is taken into consideration, the regularization is carried out on the
diagonal elements of the matrix APAH , which overcomes the ill-posed problem. Thus,
RIAA can improve the robustness of the original IAA algorithm.

From the above analysis, the solution for the covariance matrix estimation can be
divided into two steps: (1) estimate the covariance matrix of the interested signal; (2)
estimate the noise covariance matrix Σ.

For the first step, it is the same as the expression in the IAA algorithm, that is:

pd =
aH

d R−1R̂R−1ad(
aH

d R−1ad
)2 (10)

For the second step, we can regard the noise as the parameter of interest. The imaging
model can be rewritten as:

y(l) = Ve(l) + t (11)

where V is a N × N unit matrix and t = Ax(l).
According to the description in Section 2.2, the unknown parameter σ2

n can be esti-
mated by:

σ2
n =

vH
n R−1R̂R−1vn(

vH
n R−1vn

)2 (12)

From Equations (9), (10) and (12), RIAA can also need an iterative process, as shown in
Table 2. Moreover, the “convergence” in both Tables 1 and 2 is
‖Pcurrent − Pprevious‖/‖Pprevious‖ ≤ 10−4. This indicates that when the current estimates of
P for the last two iterations remain almost constant, the iteration process is terminated.

Table 2. Details of the RIAA estimator.

Initialization

pd = 1
(aH

d ad)
2
L

L
∑

l=1

∣∣aH
d y(l)

∣∣2 (d = 1, · · · , D) R(0) = APAH

Iteration
repeat

1. σ2
n = vH

n R−1R̂R−1vn

(vH
n R−1vn)

2

2. Σ = diag
{

σ2
n
}N

n=1
3. R = APAH + Σ

4. xd(l) =
aH

d R−1y(l)
aH

d R−1ad

5. pd =
aH

d R−1R̂R−1ad

(aH
d R−1ad)

2

6. P = diag{pd}D
d=1

Until(convergence)

3. Numerical Simulated Experiments

In order to investigate the superiority of the RIAA approach, the simulated parameters
were set on the basis of the acquisition parameters of the E-SAR airborne system described
in Tables 4 and 5.

It is known that the backscattered signal in forest areas can be regarded as a two-
component structure. One part represents the canopy scattering contribution, which has
a higher location and a wider angular spread, and the other part represents the ground
scattering contribution [13,30,32]. Thus, we simulated the backscattered signal with a
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canopy phase center of 15 m and a ground phase center of −15 m. Moreover, the signal-to-
noise ratio was 20 dB. Three kinds of forest scattering scenarios were simulated as follows:
(1) the ground scattering contribution dominates; (2) the ground scattering contribution
is the same as the canopy scattering contribution; (3) the canopy scattering contribution
dominates. After that, based on the well-known TomoSAR imaging model (as shown in
Equation (2)), the observation vector was simulated. Both the IAA and RIAA estimators
were carried out to obtain the reflectivity profile with different tomographic apertures
(30 m, 25 m, 20 m, 15 m, 10 m, and 5 m) in these three simulated scattering scenarios, as
shown in Figures 2–4.

Some observations can be made from the above simulations, as follows:

(1) In the case of the ground contribution dominating, both the IAA and RIAA algorithms
successfully reconstruct the forest canopy and ground scattering contribution with
the large tomographic aperture (i.e., 30 m, 25 m, and 20 m). However, when the
synthetic aperture is reduced to 15 m, 10 m and 5 m, the IAA algorithm detects the
canopy and the ground scattering contribution with a large deviation. Although the
RIAA algorithm has some error in detecting the ground scattering center, it can still
successfully recover the ground and canopy scattering contribution.

(2) When the ground scattering contribution is the same as the canopy scattering contribu-
tion, IAA and RIAA have the same performance in the case of the large tomographic
aperture (i.e., 30 m, 25 m, and 20 m). They can successfully discriminate the canopy
and ground scattering contribution while having a reduced ability to detect the
ground scattering contribution. When the tomographic aperture becomes small (i.e.,
15 m, 10 m, and 5 m), the IAA algorithm has a large misestimation result, while
the RIAA algorithm can still accurately estimate the ground and canopy scattering
contribution.

(3) When the canopy contribution dominates, in the case of the large tomographic aper-
ture (i.e., 30 m, 25 m, and 20 m), both the IAA algorithm and the RIAA algorithm
can successfully obtain the forest canopy scattering contribution, but they have a
weak ability to detect the surface scattering. However, when the synthetic aperture
is reduced to 15 m, 10 m and 5 m, the IAA algorithm cannot accurately estimate the
canopy and ground scattering contribution. The RIAA algorithm cannot detect the
ground scattering contribution, but it can accurately recover the canopy scattering
contribution.

In summary, for these three simulated forest scattering scenarios, the RIAA algorithm
has the same performance as the IAA algorithm in the case of a large tomographic aperture
(i.e., 30 m, 25 m, and 20 m), but it has a much better performance than the IAA estimator
in the case of a small tomographic aperture (i.e., 15 m, 10 m, and 5 m). Accordingly,
we calculated the condition number of the covariance matrix with different tomographic
apertures, as listed in Table 3. It is found that the condition number of the covariance
matrix becomes larger as the tomographic aperture becomes smaller. For a large condition
number, it causes the ill-posed problem for the inversion of the covariance matrix, which
can be solved by considering the noise contribution to the covariance matrix estimation.
This can be regarded as a regularization on the diagonal elements of the covariance matrix.
Thus, IAA shows a degraded performance, while RIAA can still perform well in the case of
a small tomographic aperture.

Moreover, for exploring the tomographic aperture at which the RIAA and IAA meth-
ods begin to diverge, the root-mean-square-errors (RMSEs) of scattering phase center
height estimated by these two approaches were calculated with different tomographic
apertures, as shown in Figure 5. It is clear that the two estimators start to diverge at the
tomographic aperture of around 17m in this case. With the decrease in the tomographic
aperture, RIAA shows a better performance than IAA. This suggests that RIAA is a more
robust TomoSAR method in the case of a small tomographic aperture.
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Figure 2. Reconstructed reflectivity profiles by the RIAA and IAA methods with different tomographic apertures in the
first scattering scenario: (a) 30 m; (b) 25 m; (c) 20 m; (d) 15 m; (e) 10 m; (f) 5 m. The black solid lines are the true simulated
reflectivity profiles. The blue solid lines are the reconstructed reflectivity profiles of RIAA. The red dotted lines are the
reconstructed reflectivity profiles of IAA.

Figure 3. Reconstructed reflectivity profiles by the RIAA and IAA methods with different tomographic apertures in the
second scattering scenario: (a) 30 m; (b) 25 m; (c) 20 m; (d) 15 m; (e) 10 m; (f) 5 m. The black solid lines are the true simulated
reflectivity profiles. The blue solid lines are the reconstructed reflectivity profiles of RIAA. The red dotted lines are the
reconstructed reflectivity profiles of IAA.
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Figure 4. Reconstructed reflectivity profiles by the RIAA and IAA methods with different tomographic apertures in the
third scattering scenario: (a) 30 m; (b) 25 m; (c) 20 m; (d) 15 m; (e) 10 m; (f) 5 m. The black solid lines are the true simulated
reflectivity profiles. The blue solid lines are the reconstructed reflectivity profiles of RIAA. The red dotted lines are the
reconstructed reflectivity profiles of IAA.

Table 3. Condition number of the covariance matrix with different tomographic apertures.

Tomographic Aperture Length Condition Number

30 6.80
25 14.68
20 142.27
15 5493.20
10 1.83 × 105

5 3.72 × 108

Figure 5. RMSEs of scattering phase center height estimated by RIAA and IAA methods with
different tomographic apertures.
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4. Real-Data Experiments and Results

To further investigate the feasibility and effectiveness of the RIAA TomoSAR method,
a set of real airborne SAR images was used to estimate the forest height.

4.1. Study Area and Dataset

The study area is the boreal forests in the Krycklan Catchment, North Sweden, includ-
ing coniferous forests such as scotch pine and Norway spruce, and a few birch trees. The
average annual temperature here is about 1 ◦C and the average annual precipitation is
600 mm. Moreover, the terrain topography is hilly with varying from 190 m to 290 m. The
average tree height is about 18m and the maximum tree height is 30 m [36].

A set of six L-band SAR images in fully polarimetric mode over the study area was
acquired by the German Aerospace Centre (DLR) in the framework of the ESA BioSAR 2008
campaign on 15 October 2008. The BioSAR2008 project was carried out by the cooperation
of the European Space Agency (ESA), the German Aerospace Centre (DLR), the Swedish
Defense Research Agency (FOI), the Swedish University of Agricultural Sciences (SLU), the
Biosphere Remote Sensing Research and Education Centre (CESBIO) and the Polytechnic
of Milan, Italy, which aimed at addressing some important specific requirements of ESA’s
earth resources exploration program BIOMASS [36]. This dataset has performed some
necessary pre-processing steps, such as co-registration and flat-earth phase removal. The
range resolution is 2.12 m and the azimuth resolution is 1.20 m. The incidence angle ranges
from 25◦ to 55◦ from the near range to the far range. The tomographic aperture varies from
30 m at the near range to 7.2 m at the far range [36]. Additionally, the height resolution
varies from 6m in the near range to 25 m in the far range. Tables 4 and 5, respectively,
present details of the parameters of the E-SAR airborne system and the baseline information
for the interferometric synthetic aperture radar (InSAR) pairs.

Table 4. The parameters of the E-SAR airborne system.

Wavelength
Polarimetric Channel

0.23 m (L-Band)
HH + HV + VV

Incidence angle 25◦–55◦

Center slant range 3900 m
Range resolution 2.12 m

Azimuth resolution 1.20 m

Table 5. The baseline information for the InSAR pairs.

Identifier Acquisition Date Baseline (m)

08biosar0201×1

15/10/2008

0
08biosar0203×1 −6
08biosar0205×1 −12
08biosar0207×1 −18
08biosar0209×1 −24
08biosar0211×1 −30

In addition, in order to validate the result of the SAR tomography, this project carried
a helicopter laser radar S/N425 TopEye system on the platform to generate a series of point
cloud data over this study area on 5 August and 6 August 2008. From these point cloud
data, the canopy height model (CHM) was obtained.

4.2. Results and Analysis
4.2.1. Tomograms of the Selected Azimuth Profiles

A range profile (the red dotted line, as shown in Figure 6) was selected as an example
for tomographic focusing. This profile was fixed at the 500th azimuth resolution cell.
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Figure 6. The selected azimuth profile (red dotted line) on the SAR intensity map.

Figure 7 represents the tomograms of the three polarimetric channels for the selected
range profile. In order to directly relate the vertical coordinates to the elevation of the
targets above ground, an operation to flatten the topography was carried out. Meanwhile,
the corresponding CHM was superimposed on the map, for the sake of comparison. We
can find that the RIAA method can successfully retrieve the forest vertical structure in
three polarizations. Moreover, the canopy scattering phase center heights are consistent
with the LiDAR CHM measurements. The scattering phase centers of the HV channel are
more concentrated in the canopy than those from HH and VV channels. However, the
tomograms from three polarimetric channels are basically similar. This is because it is a
boreal forest where the forest height is not high and the canopy is not dense. The L-band
can penetrate the forest and reach the ground. This is consistent with the research findings
in the literature [13].

4.2.2. Forest Height Estimation

From the analysis in Section 4.2.1, the forest height can be obtained from the results of
the HV channel. However, it is clear that the peak position of the tomogram is the phase
center height of the forest volume scattering, rather than the tree top height. According to
the research described in [13,30,32], the forest height can be determined by evaluating the
power loss from the phase center location. Therefore, we should determine the power loss
from the phase center at first.

The power loss location could be extracted with the help of the LiDAR CHM [13,30,32].
We estimated the forest height under different power losses ranging from −10 dB to 0 dB,
and we calculated the difference between the calculated forest height and the LiDAR CHM.
Figure 8 shows the bias and the RMSE of the forest height estimated by the RIAA TomoSAR
estimator under different power losses with respect to the LiDAR CHM measurements.
At a power loss of about 3 dB, the RMSE is the minimum and the bias is also small. Thus,
the location of 3 dB power loss is determined as the forest height location of the RIAA
TomoSAR estimator. When the LiDAR data are unavailable, the tree height information of
several sample plots should be measured in situ to estimate the power loss location.

The LiDAR CHM and the forest height estimated by the RIAA estimator are shown in
Figure 9. It can be seen that the forest height estimation of the RIAA TomoSAR method
varies from about 0 m to 30 m, which keeps in conformity with the truth over this study
area. However, some bias does occur because of the influence of several factors, such as
the estimation error.
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Figure 7. The tomograms of the selected profile estimated by the RIAA method for the three different
polarimetric channels: (a) HH; (b) HV; (c) VV. The black dotted lines represent CHM.

Figure 8. Error of the forest height versus power loss with respect to the phase center elevation:
(a) bias; (b) RMSE.
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Figure 9. (a) The LiDAR CHM. (b) The forest height estimated by the RIAA TomoSAR method.

Moreover, we calculated the mean and RMSE of the forest height estimated by the
RIAA TomoSAR method relative to the LiDAR CHM, as listed in Table 6. The mean and
RMSE are, respectively, 0.72 m and 2.01 m. This suggests that the forest height estimated
by the RIAA algorithm is reliable.

Table 6. Mean and RMSE of the forest height estimated by RIAA with respect to the LiDAR CHM.

TomoSAR w.r.t LiDAR Mean RMSE

Forest height (m) 0.72 2.01

5. Discussion

In order to further demonstrate the advantage of the RIAA TomoSAR method, IAA
was also used to undertake tomographic focusing at the same range profile. The same
parameters (estimation window, height range, and height sample interval) were used in
the IAA method. Figure 10 shows the reconstructed tomograms in three polarizations from
RIAA and IAA estimators, respectively.

It can be seen that there are different performances at the near and far range. For
the near-range segment (from the 1st to 500th range bin), the RIAA and IAA estimators
show the same performance in three polarizations, and their results are consistent with the
LiDAR CHM measurements. However, for the far-range part (from the 501st range bin to
the end), it is clear that the RIAA estimator obtains better results than the IAA estimator
in three polarizations. (1) The tomogram estimated by the RIAA estimator is as good as
the near-range tomogram, agreeing well with the CHM measurements, whereas the IAA
estimator shows a seriously degraded result which hardly reflects the vertical structure of
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the forest, especially the parts marked by the white circles. (2) There are no sidelobes in the
result of the RIAA estimator, while two sidelobes are, respectively, located at about 20 m
and −10 m for the tomogram of the IAA estimator.

Figure 10. The estimated tomograms of the selected range profile for the two TomoSAR estimators: (a) RIAA in HH
polarization; (b) IAA in HH polarization; (c) RIAA in HV polarization; (d) IAA in HV polarization; (e) RIAA in VV
polarization; (f) IAA in VV polarization. The black dotted lines represent CHM.

Furthermore, the forest height was also obtained by the IAA estimator, as shown in
Figure 11c. For the sake of comparison, we divided the study area into two parts: the
near-range part (the area from the 1st to the 500th range bin) and the far-range part (the
remaining area). For the near-range part, the forest height estimations of the two methods
are very similar, and they are both similar to the LiDAR CHM. However, for the far-range
part, the estimation of the RIAA estimator is clearly closer to the LiDAR CHM than that
of the IAA estimator. This is because the RIAA estimator can successfully reconstruct the
forest vertical profiles from the near range to the far range, but the IAA estimator shows a
degraded performance in the far range (as shown in Section 4.2.2).
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Figure 11. (a) The LiDAR CHM. (b) The forest height estimated by the RIAA TomoSAR estimator.
(c) The forest height estimated by the IAA TomoSAR estimator.

Moreover, we calculated the RMSE of the forest height estimated by the IAA TomoSAR
estimator with respect to the LiDAR CHM, as listed in Table 7. The RMSE is 2.01 m for
the RIAA TomoSAR estimator and 3.25 m for the IAA TomoSAR estimator. This suggests
that the forest height estimation accuracy of the RIAA estimator is higher than that of the
IAA estimator.

Table 7. RMSEs of the forest height estimated by RIAA and IAA with respect to the LiDAR CHM.

TomoSAR w.r.t LiDAR RIAA IAA

RMSE (m) 2.01 3.25
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In addition, to analyze the different performances of IAA and RIAA between the
near range and far range, the condition number of the covariance matrix was calculated
at different range locations (see Figure 12). This indicates that the tomographic aperture
decreases and the condition number of the covariance matrix increases from the near
range to the far range, especially after the 500th range bin. This brings about the ill-posed
problem for the inversion of the covariance matrix for the IAA estimator in the far-range
part. However, by considering the noise contribution, RIAA can ensure that the condition
number of the covariance matrix is not too large. Thus, in this case study, RIAA can always
achieve a pleasing performance, from the near range to the far range, whereas IAA cannot
achieve this.

Figure 12. (a) The tomographic aperture at different range locations. (b) The condition number of
the covariance matrix at different range locations.

6. Conclusions

In this paper, we have proposed a robust nonparametric iterative adaptive approach
(RIAA) for TomoSAR in the case of a small tomographic aperture. The RIAA algorithm
extends the existing IAA-based methodology by considering the additive noise term in
the covariance matrix estimation, which avoids the ill-posed problem and improves the
robustness of the IAA estimator. When the tomographic aperture is large, the RIAA and
IAA estimators show the same performance. When the tomographic aperture is small,
RIAA shows a better performance than IAA.

In this case study, a set of simulated experiments was carried out, and the results
confirmed the superiority of the RIAA estimator in the case of a small tomographic aperture
for three simulated forest scattering scenarios. The RIAA and IAA tomographic estimators
were applied to the BioSAR 2008 fully polarimetric L-band airborne SAR dataset from the
Krycklan Catchment, Northern Sweden. The results showed that the RIAA estimator can
always obtain an accurate vertical structure for the forest, from the near range to the far
range, whereas the IAA estimator works poorly in the far range, with serious sidelobes
and wrong estimations. Moreover, the forest height was obtained by both the RIAA and
IAA TomoSAR estimators. With respect to the LiDAR data, the RMSE of the estimations
from the RIAA TomoSAR estimator was 2.01 m, which is better than that of the IAA
estimator with 3.25 m. This suggests that the RIAA estimator can obtain more reliable
results than the IAA estimator for application in forest areas. The reason for this is that,
in the far-range area, the tomographic aperture is small and the condition number of the
covariance matrix is large. In conclusion, the RIAA method has the advantages of a higher
resolution and higher estimation accuracy than the IAA approach in the case of a small
tomographic aperture.

Our future work will focus on analyzing the robustness of the proposed approach with
fully polarimetric tomographic SAR datasets and the application of differential TomoSAR.



Remote Sens. 2021, 13, 2147 16 of 17

Author Contributions: X.P. conceived the idea, performed the experiments, produced the results,
and finished writing the original draft. X.L. took part in the discussion of the method and the results.
Y.D. reviewed and edited the draft. Q.X. participated in the experiment implementation and result
interpretation. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded bythe National Natural Science Foundation of China (No.
41804004,41820104005, 41804003), the Strategic Priority Research Program of the Chinese Academy of
Sciences (Grant No. XDA19070202) and the Fundamental Research Funds for the Central Universities,
China University of Geosciences (Wuhan) (Grant No. CUG200619, CUG190633).

Acknowledgments: The authors would like to thank the ESA Earth Observation Campaigns Data
Project for providing the SAR tomographic dataset.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 2011,

116. [CrossRef]
2. Le Toan, T.; Quegan, S.; Davidson, M.W.J.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.;

Shugart, H.; et al. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote
Sens. Environ. 2011, 115, 2850–2860. [CrossRef]

3. Kugler, F.; Schulze, D.; Hajnsek, I.; Papathanassiou, K.P. TanDEM-X Pol-InSAR performance for forest height estimation. IEEE
Trans. Geosci. Remote Sens. 2014, 52, 6404–6422. [CrossRef]

4. Kumar, S.; Khati, U.G.; Chandola, S.; Agrawal, S.; Kushwaha, S.P. Polarimetric SAR Interferometry based Modeling for Tree
Height and Aboveground Biomass Retrieval in a Tropical Deciduous Forest. Adv. Space Res. 2017, 60, 571–586. [CrossRef]

5. Fu, H.Q.; Wang, C.C.; Zhu, J.J.; Xie, Q.; Zhang, B. Estimation of pine forest height and underlying DEM using multi-baseline
P-band PolInSAR data. Remote Sens. 2016, 8, 820. [CrossRef]

6. Reigber, A.; Moreira, A. First Demonstration of Airborne SAR Tomography Using Multibaseline L-band Data. IEEE Trans. Geosci.
Remote Sens. 2000, 38, 2142–2152. [CrossRef]

7. Ho Tong Minh, D.; Ngo, Y.N.; Lê, T.T. Potential of P-Band SAR Tomography in Forest Type Classification. Remote Sens. 2021, 13,
696. [CrossRef]

8. Aghababaei, H.; Ferraioli, G.; Ferro-Famil, L.; Huang, Y.; d’Alessandro, M.M.; Pascazio, V.; Schirinzi, G.; Tebaldini, S. Forest SAR
tomography: Principles and applications. IEEE Geosci. Remote Sens. Mag. 2020, 8, 30–45. [CrossRef]

9. Tebaldini, S.; Minh, D.H.T.; d’Alessandro, M.M.; Villard, L.; Le Toan, T.; Chave, J. The status of technologies to measure forest
biomass and structural properties: State of the art in SAR tomography of tropical forests. Surv. Geophys. 2019, 40, 779–801.
[CrossRef]

10. Blomberg, E.; Ferro-Famil, L.; Soja, M.J.; Ulander, L.M.; Tebaldini, S. Forest biomass retrieval from L-band SAR using tomographic
ground backscatter removal. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1030–1034. [CrossRef]

11. Aghababaee, H.; Ferraioli, G.; Schirinzi, G.; Sahebi, M.R. The role of nonlocal estimation in SAR tomographic imaging of
volumetric media. IEEE Geosci. Remote Sens. Lett. 2018, 15, 729–733. [CrossRef]

12. Tello, M.; CazcarraBes, V.; Pardini, M.; Papathanassiou, K. Assessment of forest structure estimation by means of SAR tomography:
Potential and limitations. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing,
China, 10–15 July 2016; pp. 32–35.

13. Tebaldini, S.; Rocca, F. Multibaseline Polarimetric SAR Tomography of a Boreal Forest at P- and L- Bands. IEEE Trans. Geosci.
Remote Sens. 2012, 50, 232–246. [CrossRef]

14. Minh, D.H.T.; Le Toan, T.; Rocca, F.; Tebaldini, S. SAR Tomography for the Retrieval of Forest Biomass and Height: Cross-
validation at Two Tropical Forest Sites in French Guiana. Remote Sens. Environ. 2016, 175, 138–147. [CrossRef]

15. Li, L.; Chen, E.; Li, Z.; Zhao, L.; Gu, X. Forest above ground biomass estimation from P-band tomography data. In Proceedings of
the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 21–23.

16. Kumar, S.; Joshi, S.K.; Govil, H. Spaceborne PolSAR Tomography for Forest Height Retrieval. IEEE J. Sel. Top. Appl. Earth Observ.
Remote Sens. 2017, 10, 5175–5185. [CrossRef]

17. Yu, H.; Zhang, Z. The Performance of Relative Height Metrics for Estimation of Forest Above-Ground Biomass Using L-and
X-Bands TomoSAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1857–1871. [CrossRef]

18. Gustavo, D.; del Campo, M.; Reigber, A.; Shkvarko, Y.V. Resolution enhanced SAR tomography: A Nonparametric Iterative
Adaptive Approach. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Beijing, China, 10–15 July 2016; pp. 3238–3241.

19. Peng, X.; Wang, C.; Li, X.; Du, Y.; Fu, H.; Yang, Z.; Xie, Q. Three-Dimensional Structure Inversion of Buildings with Nonparametric
Iterative Adaptive Approach Using SAR Tomography. Remote Sens. 2018, 10, 1004. [CrossRef]

20. Wei, L.; Balz, T.; Zhang, L.; Liao, M. A novel fast approach for SAR tomography: Two-step iterative shrinkage/thresholding.
IEEE Geosci. Remote Sens. Lett. 2015, 12, 1377–1381.

http://doi.org/10.1029/2011JG001708
http://doi.org/10.1016/j.rse.2011.03.020
http://doi.org/10.1109/TGRS.2013.2296533
http://doi.org/10.1016/j.asr.2017.04.018
http://doi.org/10.3390/rs8100820
http://doi.org/10.1109/36.868873
http://doi.org/10.3390/rs13040696
http://doi.org/10.1109/MGRS.2019.2963093
http://doi.org/10.1007/s10712-019-09539-7
http://doi.org/10.1109/LGRS.2018.2819884
http://doi.org/10.1109/LGRS.2018.2808681
http://doi.org/10.1109/TGRS.2011.2159614
http://doi.org/10.1016/j.rse.2015.12.037
http://doi.org/10.1109/JSTARS.2017.2741723
http://doi.org/10.1109/JSTARS.2021.3051081
http://doi.org/10.3390/rs10071004


Remote Sens. 2021, 13, 2147 17 of 17

21. Fornaro, G.; Serafino, F.; Soldovieri, F. Three-dimensional Focusing with Multi-pass SAR Data. IEEE Trans. Geosci. Remote Sens.
2003, 41, 507–517. [CrossRef]

22. Sauer, S.; Ferro-Famil, L.; Reigber, A.; Pottier, E. Three-dimensional imaging and scattering mechanism estimation over urban
scenes using dual-baseline polarimetric InSAR observations at L-band. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4616–4629.
[CrossRef]

23. Huang, Y.; Ferro-Famil, L.; Reigber, A. Under-foliage Object Imaging Using SAR Tomography and Polarimetric Spectral Estimators.
IEEE Trans. Geosci. Remote Sens. 2012, 50, 2213–2225. [CrossRef]

24. Huang, Y.; Zhang, Q.; Ferro-Famil, L. Forest Height Estimation Using a Single-Pass Airborne L-Band Polarimetric and Interfero-
metric SAR System and Tomographic Techniques. Remote Sens. 2021, 13, 487. [CrossRef]

25. Budillon, A.; Evangelista, A.; Schirinzi, G. Three dimensional SAR focusing from multi-pass signals using compressive sampling.
IEEE Trans. Geosci. Remote Sens 2011, 40, 488–499. [CrossRef]

26. Aguilera, E.; Nannini, M.; Reigbe, A. Wavelet-Based Compressed Sensing for SAR Tomography of Forested Areas. IEEE Trans.
Geosci. Remote Sens. 2013, 51, 5283–5295. [CrossRef]

27. Bi, H.; Liu, J.; Zhang, B.; Hong, W. Baseline distribution optimization and missing data completion in wavelet-based CS-TomoSAR.
Sci. China Inf. Sci. 2018, 61, 042302. [CrossRef]

28. El Moussawi, I.; Ho Tong Minh, D.; Baghdadi, N.; Abdallah, C.; Jomaah, J.; Strauss, O.; Lavalle, M.; Ngo, Y.N. Monitoring Tropical
Forest Structure Using SAR Tomography at L-and P-Band. Remote Sens. 2019, 11, 1934. [CrossRef]

29. Cazcarra-Bes, V.; Tello-Alonso, M.; Fischer, R.; Heym, M.; Papathanassiou, K. Monitoring of Forest Structure Dynamics by means
of L-band SAR Tomography. Remote Sens. 2017, 9, 1229. [CrossRef]

30. Li, X.W.; Liang, L.; Guo, H. Compressive Sensing for Multibaseline Polarimetric SAR Tomography of Forested Areas. IEEE Trans.
Geosci. Remote Sens. 2016, 54, 153–166. [CrossRef]

31. Del Campo, G.M.; Nannini, M.; Reigber, A. Statistical Regularization for Enhanced TomoSAR Imaging. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2020, 13, 1567–1589. [CrossRef]

32. Peng, X.; Li, X.; Wang, C.; Zhu, J.; Liang, L.; Fu, H.; Du, Y.; Yang, Z.; Xie, Q. SPICE-based SAR Tomography over Forest Areas
Using a Small Number of P-band Airborne F-SAR Dataset Characterized by Non-uniformly Distributed Baselines. Remote Sens.
2019, 11, 975. [CrossRef]

33. Yardibi, T.; Li, J.; Stoica, P.; Xue, M.; Baggeroer, A.B. Source localization and sensing: A nonparametric iterative adaptive approach
based on weighted least squares. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 425–443. [CrossRef]

34. Roberts, W.; Stoica, P.; Li, J.; Yardibi, T.; Sadjadi, F.A. Iterative Adaptive Approaches to MIMO Radar Imaging. IEEE J. Sel. Top.
Signal Process. 2010, 4, 5–20. [CrossRef]

35. Yang, Z.; Li, X.; Wang, H.; Jiang, W. Adaptive clutter suppression based on iterative adaptive approach for airborne radar. Signal
Process. 2013, 93, 3567–3577. [CrossRef]

36. European Space Agency. Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR
2008 Experiment; Final Report; European Space Agency: Paris, France, 2009.

http://doi.org/10.1109/TGRS.2003.809934
http://doi.org/10.1109/TGRS.2011.2147321
http://doi.org/10.1109/TGRS.2011.2171494
http://doi.org/10.3390/rs13030487
http://doi.org/10.1109/TGRS.2010.2054099
http://doi.org/10.1109/TGRS.2012.2231081
http://doi.org/10.1007/s11432-016-9068-y
http://doi.org/10.3390/rs11161934
http://doi.org/10.3390/rs9121229
http://doi.org/10.1109/TGRS.2015.2451992
http://doi.org/10.1109/JSTARS.2020.2970595
http://doi.org/10.3390/rs11080975
http://doi.org/10.1109/TAES.2010.5417172
http://doi.org/10.1109/JSTSP.2009.2038964
http://doi.org/10.1016/j.sigpro.2013.03.033

	Introduction 
	RIAA TomoSAR Method 
	TomoSAR Imaging Model 
	The IAA Estimator 
	The RIAA Estimator 

	Numerical Simulated Experiments 
	Real-Data Experiments and Results 
	Study Area and Dataset 
	Results and Analysis 
	Tomograms of the Selected Azimuth Profiles 
	Forest Height Estimation 


	Discussion 
	Conclusions 
	References

